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Abstract
The images from a monocular camera can be processed to detect depth information regarding obstacles in the blind spot
area captured by the side-view camera of a vehicle. The depth information is given as a classification result “near” or “far”
when two blocks in the image are compared with respect to their distances and the depth information can be used for the
purpose of blind spot area detection. In this paper, the proposed depth information is inferred from a combination of blur
cues and texture cues. The depth information is estimated by comparing the features of two image blocks selected within
a single image. A preliminary experiment demonstrates that a convolutional neural network (CNN) model trained by deep
learning with a set of relatively ideal images achieves good accuracy. The same CNN model is applied to distinguish near
and far obstacles according to a specified threshold in the vehicle blind spot area, and the promising results are obtained. The
proposed method uses a standard blind spot camera and can improve safety without other additional sensing devices. Thus,
the proposed approach has the potential to be applied in vehicular applications for the detection of objects in the driver’s blind
spot.

Keywords Coarse-to-fine analysis · Convolutional neural network · Blind spot detection · Principal component analysis ·
Discrete cosine transformation

Abbreviations

CNN Convolutional neural network
BSD Blind spot detection
ADAS Advanced driver assistance systems
PCA Principal component analysis
DCT Discrete cosine transformation

1 Introduction

In the realworld, advanceddriver assistance systems (ADAS)
increasingly act and interact with complex environments to
support driving tasks. For this purpose, more and more com-
plex environmental detection techniques are being developed
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withmultiple sensors. These sensors can include sonar, radar,
LiDAR, and cameras. To implement proper ADAS function
behavior, the functional system is often based on a model
that is combined with the sensor signal inputs.

Sensor technology provides the basic external informa-
tion for the functional module system. In a vehicle, imaging
data and ranging data (i.e., distance and speed) are collected
by sensors. The reactions to objects are appropriately calcu-
lated using the model algorithm. Because of the complexity
of vehicle dynamics and the ego vehicle environment, the
determined detection algorithm is very often adaptively cali-
brated. The object detection algorithm is often insufficient for
the overwhelming complexity of the real world. These func-
tional insufficiencies can lead to unintended system behavior.
To make the detection algorithm more robust, artificial intel-
ligence approaches [1] and models such as convolutional
neural networks (CNNs), recurrent neural networks (RNNs),
and deep belief networks (DBNs) are increasingly used for
deep learning and optimization.

In the area of ADAS, low-cost monocular cameras are
widely used to provide driving assistance functions. Such
camera sensors can accomplish many tasks, including the
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Fig. 1 Driver blind area and side-view camera

detection of lane marks, vehicles, and pedestrians, as well as
determining the distance from the ego vehicle to an obstacle.
The image data returned by a monocular camera sensor can
be used to issue lane departure warnings, blind spot obstacle
warnings, collision warnings, or to design a lane keep assist
control system. In conjunction with other sensors, it can also
be used to implement an emergency braking system and other
safety–critical features.

In the real world, many fatal accidents are caused by blind
spot ignorance, especially in the case of long trucks or buses
negotiating corners. In Europe and Japan, the car rearview
and side-view mirrors can be replaced by camera monitor-
ing systems. Therefore, commercial mirror-less cars can be
expected soon, and the applied ADAS functions based on
camera image processing in such monitoring systems are of
vital importance.

In this paper, we focus on the task of vehicle blind spot
detection (BSD) through monocular camera image process-
ing. We propose an image processing algorithm to detect the
rear side area (Fig. 1), which contains the driver’s blind spot
area. The image data are captured by a monocular camera
from the rear side view. Using a single two-dimensional (2D)
image, an algorithm detects the near and far area between the
ego vehicle and the obstacle in the driver’s blind spot.

Normally, whether a car is close to the blind spot zone is
judged using 2D image information. For example, a classifier
has been used to determine whether an image region is a
vehicle or non-vehicle based on a feature vector [2], and
vehicle shadow/light location information in the image can
be used to perform blind spot detection [3].

In this paper, we utilize the inferred depth information
from the 2D image and relative position to achieve the robust
BSD performance augmentation. The depth information is
the key to recognizing the near and far areas [4, 5]. In the
field of computer vision, constructing a depth mapping from
a single 2D image is a challenging task [6]. It is difficult to
obtain precise depth information if there is no other refer-
ence parameter in a single 2D image. The mentioned depth
information in the 2D image is a relative scale other than
absolute value. Themethods of depth information estimation
from images rely on the structure from motion, binocular

and multi-view stereo. These observations come from the
multiple view of the scene under different lighting condi-
tions. To overcome this limited conditions, the monocular
depth estimation as a supervised learning task attempts to
directly predict the depth of each pixel in an image by the
off-line trained model. The learning-based methods have
proved effective for the depth estimation in single images.
CNN training objective is proposed to learn to perform single
image depth estimation with an image reconstruction loss by
the generated disparity images [7]. However, this approach
uses binocular stereo footage to enforce consistency between
the disparities produced relative to both the left and right
images.

In this paper, the monocular depth cue plays the key rule.
Supposed that themonocular camera focus is set at an infinite
point, the depth information is inferred from the combination
of the blur cues [8, 9] and texture cues [10–12]. The blue cues
and the texture cues are extracted from the image. The texture
cues mean the density of the edge inside the block, while the
blur cues mean the degree of blur and the sharpness of the
edge. We proposed to conduct the local cues extraction from
the monocular image. The depth estimation is derived from
the feature comparison between two image blocks selected
within a single image. In our proposed algorithm, the follow-
ing methods are used.

Coarse-to-fine analysis is used to increase the probabil-
ity of feature extraction from the limited image block area,
because the information of interest generated from large-
scale features may be lost in high-resolution image blocks,
but will be included in lower-resolution image blocks. The
low-resolution level is ideal for an overview of the image
scene, whereas more detail can be found at higher- or finer-
resolution levels [13].

Principal component analysis (PCA) is applied to extract
the most important information from the image data [14].
PCA is a statistical technique used for image data compres-
sion and data structure analysis. It is used to extract the edge
lines as texture cues from a single image. To classify the edge
line orientations for higher spatial frequency density, we con-
figure the PCA results into four categories. This allows us to
obtain clearer texture cues with higher spatial frequency den-
sity along the edge line orientation.

Discrete cosine transform (DCT) is applied to extract the
features of texture cues and blur cues from the image. DCT
detects the edge line density allocated in the spatial frequency
domainwith regard to the texture cues. For the blur cues,DCT
detects the sharpness of the edges.

Convolutional neural network (CNN) is applied to clas-
sify the depth cues from the DCT analysis results. Through
deep learning, a better trained neural network model with
acceptable accuracy is developed.

The effectiveness of the proposed approach is evaluated
through a series of case studies [15]. In this paper, the out-
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line of the proposed approach is described, and one of the
test results is shown. The application for BSD purposes is
evaluated using real road traffic image data.

The proposed method is found to be able to detect depth
cue information for the purpose of BSD. The adaptation to
more complex environments and improved algorithm perfor-
mance will be considered in future work.

2 Algorithm

The basic theory and methods discussed in this paper are
now briefly introduced. The proposed method uses both tex-
ture cues and blur cues to obtain depth information, whereas
existing methods only utilize one of these cues [12]. Depth
perception allows us to perceive the world around us in three
dimensions and to estimate the distance between ourselves
and other objects. One of the techniques for depth percep-
tion involves themonocular cues.When perceiving theworld
around us, many of these monocular cues work together to
contribute to our experience of depth estimation. In computer
vision, the image taken by a monocular camera is what the
computer sees.When the monocular camera makes the focus
point at an object that located in the far distance, the image
contents nearby to the camera position become blur, while
the farther area has the obvious texture cues. This correla-
tion between blur cues and texture cues can be interpreted
as depth cues. The monocular depth cues are derived from
an image that is characterized by texture cues and blur cues.
The texture cues refer to the density of the edges inside the
block, whereas the blur cues are the degree of blur and the
sharpness of the edges. In this study, we mainly focus on the
local cues to simplify the computations.

Starting from this point, we attempt to enhance the effec-
tiveness of the extraction of texture and blur cues. Several
relevant concepts are now introduced.

The multi-resolution image representation of coarse-to-
fine analysis is discussed first. PCA is not described in detail,
as it is a popular method of extracting features from image
data. PCA is used for image data preparation in the proposed
method, with the edge lines extracted through eigenvalue and
vector analysis of the image covariance matrix. The DCT is
applied to identify the feature distribution density of the edge
lines for the object image. The proposed approach uses the
combined application of PCA and DCT.

2.1 Coarse-to-Fine Analysis

An image can be resized with different resolutions, and the
resized images can be represented in a pyramid structure. For
local analysis, better information coverage can be obtained
by using the pyramid structure approach (Fig. 2). The differ-
ent resolution images are obtained by re-sizing the original

Fig. 2 Image pyramid of coarse to fine

image to smaller pixels. In this paper, we define four res-
olution levels, from level 0 to level 3. Conceptually, the
multi-resolution images provide the probability of feature
extraction from the limited image block selection. The upper
level of the pyramid, i.e., the low-resolution coarse level, is
ideal for acquiring an overview of the image scene, whereas
details can be obtained further down the pyramid at higher-
resolution levels. This is the basis of the coarse-to-fine image
analysis process and it is helpful to augment the feature
extraction of the blur cues and texture cues.

2.2 PCA for Image Processing

2.2.1 Principal Component Analysis

PCA is a statisticalmethod that converts a set of variables into
a set of linearly independent variables through an orthogonal
transform. The converted variables are the principal compo-
nents. In the analysis of large multivariate datasets, PCA is
often applied to reduce the dimensionality of the data. The
process of PCA uses the covariance or correlation of the
data. PCA provides a method for data analysis and pattern
recognition, and is often used in signal and image process-
ing. Because of its statistical properties, PCA is widely used
for dimension reduction and feature extraction, such as edge
lines. PCA can also extract the orientation information of the
edge lines. In the process of image feature extraction, PCA
is often used to identify the main eigencharacteristics for the
image dataset through covariance matrix analysis. Suppose
the points in an image lie on the x–y plane. From the point
data, we can calculate the variance c(x, x) in the x-direction
and the variance c(y, y) in the y-direction. However, the
horizontal and vertical spread of the data does not explain
the clear diagonal correlation. If the x-value of a data point
increases, the y-value also increases, resulting in a positive
correlation. This correlation can be captured by extending
the notion of variance to what is called the “covariance” of
the data: c(x, x), c(y, y), c(x, y) and c(y, x). These four
values can be summarized in a matrix, which is called as the
covariance matrix:

C(x, y) �
[
c(x, x)
c(y, x)

c(x, y)
c(y, y)

]
(1)

123



Blind Spot Obstacle Detection fromMonocular Camera Images with Depth Cues Extracted by CNN 365

Fig. 3 PCA analysis

Fig. 4 PCA visual result

From this 2×2 covariance matrix, two eigenvalues λ1 and
λ2 and two eigenvectors v1 and v2 can be obtained. The line
characteristics can then be derived from the eigenvectors and
eigenvalues. The PCA process is illustrated in Fig. 3, where
the eigenvalues and vectors are also listed.

The largest eigenvector of the covariance matrix always
lies along the direction of the largest variance of the data,
and themagnitude of this vector is equal to the corresponding
eigenvalue. The second-largest eigenvector is always orthog-
onal to the largest eigenvector and lies along the direction of
the second-largest spread of the data.

Figure 4 shows the visual result of edge extraction from
the original image using PCA.

2.2.2 Four Proposed Categories

We propose that all edge lines extracted from an image
by PCA can be configured into four categories (Fig. 5)
of computed line orientation according to the eigenvector
directions. To the best of our knowledge, no previous stud-
ies have considered PCA using the orientation information
from the covariancematrix eigenvectors. Under the proposed
processing, the density of the edge lines in the spatial fre-
quency domain can be intensively expressed in each category.

Fig. 5 Category for edge lines

Combined with the coarse-to-fine analysis described in the
previous section, the four categories of edge lines obtained
by PCA are very helpful in extracting depth cues because of
the enhanced effectiveness of the spatial frequency analysis
process. The orientation categories are described as follows,
where the angle information for each edge line segment is
contained in the eigenvector.

Consider eigenvector e1 and eigenvalue λ1:

e1 � (x, y) � (λ1 cos θ, λ1 sin θ ) (2)

Accordingly, the edge lines can be classified into the fol-
lowing four categories (see Fig. 5).

Category 1 (C1):

0◦ ≤ θ < 45◦ : sin θ ∈
(
0,
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)
cos θ ∈
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)
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√
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2

)
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135◦ ≤ θ < 180◦ : sin θ ∈
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√
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−1, −

√
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√
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)
(10)

123



366 Y. Guo et al.

2.3 Edge Line Density Extraction by Discrete Cosine
Transform

2.3.1 Discrete cosine transform

To determine the edge line density and sharpness in the fre-
quency domain, a transformation is required to deal with
the image in the spatial domain. The DCT helps separate
the image into parts of differing importance with respect to
visual quality. The DCT is similar to the discrete Fourier
transform: it transforms an image from the spatial domain to
the frequency domain, but it can approximate lines well with
fewer coefficients using only real numbers. DCTs operate on
real data with even symmetry.

The general equation for the 1D DCT (N data items) can
be written as:

F(u) �
√

2

N

N−1∑
i�0

Λ(i) · cos
[ πu

2N
(2i + 1)

]
f (i) (11)

where

Λ(i) �
{

1√
2
for i � 0

1 otherwise
.

The values F(u) are the DCT coefficients of Λ. The general
equation for a 2D DCT (N ×M image) is:

F (u, v) �
√

2

N

√
2

M

N−1∑
i�0

M−1∑
j�0

Λ (i)Λ ( j)

· cos
[ πu

2N
(2i + 1)

]
· cos

[ πv

2M
(2 j + 1)

]
f (i, j)

(12)

where

Λ(ξ) �
{

1√
2
for ξ � 0

1 otherwise
, ξ � i, j .

In the proposed method, the spatial frequency response is
calculated using the DCT.

2.3.2 Line Density Expressed by DCT Spectrum

As the binarized image texture resulted from PCA process
is calculated by DCT, the edge line density in the image can
be expressed by the spectrum density of spatial frequency. In
other words, the DCT transforms the edge distribution of the
image into the frequency distribution.

Fig. 6 DCT spectrum for edge detection result

Fig. 7 Spatial frequency calculation procedure

Fig. 8 Block selection and its DCT result

The DCT is used to calculate the spatial frequency of the
selected imageblock.According to the properties of theDCT,
low frequencies are concentrated in the top left of the spec-
trum, and high frequencies are concentrated in the bottom
right.

Lower frequencies indicate the sharpness of the edges,
which is used to evaluate the blur cues. Both low and high fre-
quencies are used to evaluate the density of the edges inside
the block. As an example, the spatial frequency of the DCT
spectrum is illustrated in Fig. 6.

In Fig. 6, k denotes thewave number period in length units,
and v and u denote the horizontal and vertical frequencies of
2D waves, respectively.

To process the local cues obtained from the coarse-to-
fine representation, we apply a moving window to compute
the spatial frequency response. In the coarse-to-fine repre-
sentation, an appropriate window is defined to separate each
resolution level into an integer number. The DCT is then
computed from one window to the next, as shown in Fig. 7.
An explicit DCT result is shown in Fig. 8. CNN takes the

123



Blind Spot Obstacle Detection fromMonocular Camera Images with Depth Cues Extracted by CNN 367

Fig. 9 CNN structure

Fig. 10 Proposed structure
frame work

Fig. 11 Coarse-to-fine
processing

Fig. 12 Four-category PCA results

DCT result as its input and outputs the depth inference from
the deep learning process.

Fig. 13 DCT results: a block at each resolution level

DCT produces more obvious features. In the DCT results,
the low-frequency density part is concentrated in the top left
of the DCT map, and the high-frequency density part is con-
centrated in the bottom right [16]. This frequency distribution
feature is fed to CNN for deep learning.

The PCA image data processing algorithm and DCT spa-
tial frequency analysis method have been described in this

123



368 Y. Guo et al.

Fig. 14 PCA-DCT: four
resolution representations of
four categories

section. CNN is described in the next section for the estima-
tion of the depth cues.

3 Depth Cues Derived by CNN

CNN is one of the most powerful deep learning neural net-
works. Especially in the image processing application, CNN
performance is highly evaluated. Through a lot of structure
and performance improvements, CNN has become a widely
used method. The advantages of CNNs in image processing
are as follows:

(1) It reduces the number of weights in the calculation pro-
cess;

(2) It is robust in terms of object recognition under slight
distortions, deformations, and other interference;

(3) It has the characteristics of automatic learning and fea-
ture induction;

(4) It is not sensitive to changes in object position in the
image.

3.1 Convolutional Neural Network

There are three main neural layers in the CNN structure:

(1) Convolutional layer;
(2) Pooling layer;
(3) Fully connected layer.

A general connection layer is typically used in multilayer
sensing neural networks. The main role is to combine the
previous convolution layer and the pooling layer to extract
the feature vector required for image classification. As shown
in Fig. 9, after passing through the convolutional layers and
maxpooling layers, the datamove to the fully connected layer
(red dotted area), where the weighting and bias processes are
conducted.

The outline of a CNN structure is shown in Fig. 9.

Fig. 15 Blur cue path DCT

3.2 Proposed Structure Framework

Figure 10 shows the framework of the proposed structure. In
this framework, the texture cue path and blur cue path denote
the preprocessing phases of extracting texture features and
blur features, respectively.

CNN is trained to learn the far and near information,which
is the basis to classify the depth informationof “near” or “far.”
The depth estimation is then obtained through the feature
comparison of two different blocks on the image.

The flow of the proposed structure framework is as fol-
lows:

Two blocks from the original 2D image are selected as the
inputs. These two blocks are denoted as Block A and Block
B.

➀ Apply the coarse-to-fine analysis to the blocks selected
from the image to obtain different resolution pictures. In
this study, four resolution levels are used for the coarse-
to-fine process. Thus, there are four pictures of different
resolutions for each block.

➁ In the texture cue path, apply PCAwith the four-category
process toBlockAandBlockB.ThePCA results are then
applied to the DCT (➂-1) to get the feature map.

➂ In the blur cue path, PCA is not applied in order to retain
the blur features of BlockA andBlockB. TheDCT (➂-2)
calculation is applied directly to obtain the feature map.

➃ The DCT feature maps are concatenated and aggregated.
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Fig. 16 Data aggregation and
concatenation process: (a)
category 1 aggregation; (b) DCT
concatenation

Fig. 17 Concatenation illustration

➄ Through this concatenation, the output is obtained by the
CNN deep learning process.

The details of this workflow are described in the following
sections.

3.2.1 Coarse-to-Fine Analysis

The image is preprocessed by the coarse-to-fine analysis
with a multi-resolution image representation, where four
resolution levels are used in this study. The coarse-to-fine

representation can cover more information for image pro-
cessing.

In this study, Block A and Block B are selected from the
original image, and the coarse-to-fine analysis is applied to
give the four resolution levels (see Fig. 11). This method is
applied to get more texture cue and blur cue information.

3.2.2 Texture Cue Path

PCA is used to extract the edge lines from the image. The
four-category edges computed by PCA are used to classify
the edge line directions as category 1, category 2, category 3,
and category 4. The four-category PCA results are shown in
Fig. 12. Each category can then be analyzed to obtain more
information in certain directions.

After the PCA preprocessing, DCT is used to calculate the
spatial frequency of the selected block. Low frequencies are
used to evaluate the degree of blur cues, i.e., the degree of blur
and the sharpness of the edge. Both low and high frequencies
are used to evaluate the density of the edges inside the block,
which is the texture cue.

Figure 13 shows a visualized demonstration of the DCT
results from blocks at each resolution level. As we are
processing the coarse-to-fine analysis, Fig. 14 partially
demonstrates the visual understanding of the PCA-to-DCT
representations regarding category 1 of Block A. Categories
2, 3, and 4 are processed using the same approach.

3.2.3 Blur Cue Path

Referring to Fig. 10, PCA is not applied to the blur cue path
so as to retain the blur features of Block A and Block B.
DCT is directly applied to the original image. The approach
illustrated in Fig. 15 is conducted to calculate the DCT for

123



370 Y. Guo et al.

Fig. 18 Diagram of the
convolution process

different resolutions of Block A. The same approach is used
to apply DCT to the different resolutions of Block B.

3.2.4 Data Concatenation

The DCT results must be concatenated for input to the CNN.
The data concatenation results in an array of size C×H×
W=2×64×64.

Figure 16a illustrates the data aggregation process for
Block A (category 1) and Block B (category 1) at each reso-
lution; consequently, the process is repeated for categories 2,
3, and 4 at each resolution level. Similarly, theDCTs ofBlock
A and Block B at each resolution level are concatenated, as
shown in Fig. 16b.

Figure 17 shows a detailed example of the concatenation
of blocks containing P×P pixels with an 8×8 kernel size.

Ckl �
4∑

n�1

8∑
i�1

8∑
j�1

m(n)
i j x

(n)
i j (13)

where 1�k �P−8+1, 1� l �P−8+1;m(n)
i j is the element

of the filter mask at coordinates i and j in the block, where
n is the order number of the matrix; Ckl is the convolution
result at position k, l; and x (n)i j is the element of the filter at
coordinates k − i and l − j. A visual representation of the
convolution is shown in Fig. 18.

To provide an overview of the entire calculation archi-
tecture, a diagram of the PCA–DCT data preprocessing, data
concatenation, andCNN frame diagram are shown in Fig. 19.
The texture cue path and blur cue path are expressed in
the preprocessing frame, and then, the data concatenation
is aggregated for CNN input. Details of the CNN calculation
configuration are presented in Fig. 20. Fig. 19 Calculation architecture
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Fig. 20 CNN framework

Fig. 21 Image dataset with clear
texture

Table 1 Test results Images for
the test

(a) (b) (c) (d) (e) (f) Average

Accuracy
of the test

93.13% 95.25% 93.63% 92.38% 97.75% 97.63% 94.96%

3.3 CNN Diagram and Parameters

The target is to evaluate the proposed approach of using tex-
ture and blur as cues for estimating the depth information.
Thus, the training image data must contain blur and texture.

This net is setup in the Caffe environment and the details
are introduced by the example of category 1, at resolution
level 0:

(1) Image data of size 4×64×64 are acquired from the
concatenation result.

(2) Convolution layer: the input image is convoluted using a
set of filters, and each filter produces one feature map in
the output image. This CNN structure uses three layers.

(3) Rectified linear units (ReLU) are applied to get a better
stochastic gradient descent (SGD) convergent speed and
to prevent fromgoing to dead zonewithout convergence.

(4) Pooling layer: reduces the dimension of the feature
vector output by the convolution layer output by sub-
sampling.

(5) Inner product: the fully connected layer.

In the next section, the CNN model and the experimental
results are evaluated to verify the parameter settings.

4 Evaluation

4.1 Experiments for the ProposedMethod

For details of the test scenarios, see Ref. [15], in which the
effectiveness of the proposedmethod is demonstrated. In this
paper,we present only the test image data (Fig. 21) and exper-
imental results (Table 1). This average accuracy of 94.96%
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Fig. 22 Measurement setup

Fig. 23 Depth information estimation

verifies that the proposed approach is effective with regard
to the image features of theoretical assumption.

4.2 Experiment for Vehicle Blind Spot Detection

As the focus point of the monocular camera is assumed to be
located far beyond the vehicle side mirror view, the images
taken by the rear side-view camera have the following fea-
tures: The near area is the blur zone and the area far from the
blind spot is the clear zone.

These features are compatible with the proposed
approach. In this study, experiments were conducted to
ensure that the proposedmethod is applicable to vehicleBSD,
and the effectiveness was verified using road traffic image
data. The camerameasurement setup is shown in Fig. 22. The
camera was located on the rear side-viewmirror, as would be
the case in a real system. Our proposedmethod detects obsta-
cles that are close to the ego vehicle in its blind spot area. The
detected depth information is relative to the ego vehicle base
block (seeFig. 23).All other blocks are calculated bywindow
shifting (see Fig. 7), and the candidate nearest block with the
highest accuracy is output by the supervised deep learning
CNN (see Figs. 19 and 20). Currently, the proposed method
cannot estimate the absolute distance value. Images under
driving conditions in the test cases are presented in Fig. 24.

The CNN model in the proposed method is the same as
the trained model used in previous experiments [15]. The
test results from images in Fig. 24 are listed in Table 2. The
test data preconditions are the same as those described inRef.

Fig. 24 BSD test cases

[15]. The base block is selected close to the car’s rear end, and
a total of 1237 image pairs are classified for testing. While
referring to the base block in the black line block (Fig. 24),
the perceived near-obstacle block is shown by the green line
block. The accuracy refers to the model performance with
real road scenes.

In summary, under relatively ideal test conditions, the
CNN deep learning model can achieve high accuracy. In
terms of vehicle blind area detection, the proposed method
is also effective, with an accuracy rate of 78.44%, though
the performance must be improved to handle more complex
vehicle environments.

5 Conclusions and FutureWork

5.1 Conclusions

The proposed method for obtaining monocular depth cues
has been described and tested, and the experimental results
have verified its effectiveness. The deep learningCNNmodel
achieved satisfactory accuracy under ideal test conditions.
Using the same CNN model for vehicle BSD, the results
exhibited reasonable accuracy. We therefore believe that the
proposed method has the potential to be applied in more
complex driving situations. Several advantages and disad-
vantages are summarized as follows:

(1) The proposed approach combining coarse-to-fine anal-
ysis with the four-category PCA process configuration
enhances the effectiveness of depth cue extraction.

(2) The proposed method is robust, as the detection is
not limited to vehicular shape profiles. Any obsta-
cles approaching the ego host vehicle can be detected,
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Table 2 BSD results Images for the
test

(1) (2) (3) (4) Average

Accuracy of the
test

74.13% 78.13% 80.12% 81.38% 78.44%

because the method uses local cues to derive the relative
depth information.

(3) The proposed method is not related to the image color.
However, the detection performance is not good enough
for images taken at night.

(4) Because of the shifting window block in a single image
calculation for local cues, the total calculation cost is
still the concerning due to the current microprocessor
capacity. This may be overcome by using 7-nm chips
and specific artificial intelligence chips.

5.2 FutureWork

More parameter sets and training datasets need to be applied
to the proposed method under vehicle driving conditions
related to blind spot area detection. Using huge real driving
scene image datasets, a robust CNN model can be devel-
oped through the effects of deep learning. Better results with
higher accuracy could then be achieved. The output from
our method can be used as a warning signal to drivers when
changing lanes, alerting them to the presence of a vehicle in
their blind spot. In real driving situations, online, real-time
blind spot detection is required, and so, improvements in
the calculation capacity and efficiency of our algorithm are
required. Future research efforts will focus on this consider-
able challenge.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
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