Skip to main content
Log in

Bio-inspired fabrication of “brick-and-mortar” interphase in carbon fiber/epoxy composites with significantly improved high-temperature durability

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

The application of carbon fiber–reinforced polymer (CFRP) composites in high-temperature environments was hindered by the bottleneck of poor interfacial performance between carbon fiber and epoxy resin at elevated temperatures. In this work, a sophisticated “brick-and-mortar” interphase, inspired by the structure of nacre, was produced through an industrialized roll-to-roll process. The resulting interphase comprised both inorganic and organic components, namely graphene oxide (GO) and amino-functionalized polyetherimide (APEI), respectively. At 180 ℃, the APEI-GO@carbon fiber (CF)/epoxy (EP) composite showed significant improvements in both interfacial shear strength (IFSS) and transverse fiber bundle tensile (TFBT) strength, with increases of 91.2% and 144.4%, respectively, compared to desized CF/EP composites. These enhancements were attributed to synergistic reinforcement facilitated by strengthened interaction and interphase. Furthermore, the “brick-and-mortar” interphase demonstrated a strong moisture barrier effect, enabling the composite to retain good ILSS (92.8%) after 70 days of hydrothermal aging. The proposed bio-inspired strategy for constructing “brick-and-mortar” interphase with excellent thermostability shed fresh insights into the industrialized design and fabrication of CFRP composite with outstanding high-temperature durability.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Zhang J, Lin G, Vaidya U, Wang H (2023) Past, present and future prospective of global carbon fibre composite developments and applications. Compos B Eng 250:110463. https://doi.org/10.1016/j.compositesb.2022.110463

    Article  CAS  Google Scholar 

  2. Huan X, Wu T, Yan J, Jia X, Zu L, Sui G, Yang X (2021) Phosphoric acid derived efficient reclaimation of carbon fibre for re-manufacturing high performance epoxy composites reinforced by highly-aligned mat with optimized layup. Compos B Eng 211:108656. https://doi.org/10.1016/j.compositesb.2021.108656

    Article  CAS  Google Scholar 

  3. Huan X, Wang H, Deng W, Yan J, Xu K, Geng H, Guo X, Jia X, Zhou J, Yang X (2022) Integrating multi-heterointerfaces in a 1D@2D@1D hierarchical structure via autocatalytic pyrolysis for ultra-efficient microwave absorption performance. Small 18:2105411. https://doi.org/10.1002/smll.202105411

    Article  CAS  Google Scholar 

  4. Wen K, Ma H, Zhang J, Cheng S, Wang X, Hui Y, Li X, Xu P, Shao J, Chen X (2022) Electrostatic incitation on fiber surface for enhancing mechanical properties of fiber-reinforced composite. Compos Sci Technol 228:109627. https://doi.org/10.1016/j.compscitech.2022.109627

    Article  CAS  Google Scholar 

  5. Lu N, Sun X, Wang H, Zhang J, Ma C, Liu C, Zeng Y (2024) Synergistic effect of woven copper wires with graphene foams for high thermal conductivity of carbon fiber/epoxy composites. Adv Compos Hybrid Mater 7:29. https://doi.org/10.1007/s42114-024-00840-7

    Article  CAS  Google Scholar 

  6. Min J, Hu J, Sun C, Wan H, Liao P, Teng H, Lin J (2022) Fabrication processes of metal-fiber reinforced polymer hybrid components: a review. Adv Compos Hybrid Mater 5:651–678. https://doi.org/10.1007/s42114-021-00393-z

    Article  CAS  Google Scholar 

  7. Ince JC, Peerzada M, Mathews LD, Pai AR, Al-qatatsheh A, Abbasi S, Yin Y, Hameed N, Duffy AR, Lau AK, Salim NV (2023) Overview of emerging hybrid and composite materials for space applications. Adv Compos Hybrid Mater 6:130. https://doi.org/10.1007/s42114-023-00678-5

    Article  Google Scholar 

  8. van de Werken N, Reese MS, Taha MR, Tehrani M (2019) Investigating the effects of fiber surface treatment and alignment on mechanical properties of recycled carbon fiber composites. Compos Part A Appl Sci Manuf 119:38–47. https://doi.org/10.1016/j.compositesa.2019.01.012

    Article  CAS  Google Scholar 

  9. Shi K, Dong Y, Zhang X, Huan X, Lin S, Jia X, Cai Q, Yang X (2022) Turning the enemy into a friend: tailored self-assembly of zinc tetraphthalocyanine on rapidly activated carbon fiber through tamed microwave discharging. Appl Surf Sci 578:151967. https://doi.org/10.1016/j.apsusc.2021.151967

    Article  CAS  Google Scholar 

  10. Sun T, Li M, Zhou S, Liang M, Chen Y, Zou H (2020) Multi-scale structure construction of carbon fiber surface by electrophoretic deposition and electropolymerization to enhance the interfacial strength of epoxy resin composites. Appl Surf Sci 499:143929. https://doi.org/10.1016/j.apsusc.2019.143929

    Article  CAS  Google Scholar 

  11. Zhang W, Deng X, Sui G, Yang X (2019) Improving interfacial and mechanical properties of carbon nanotube-sized carbon fiber/epoxy composites. Carbon 145:629–639. https://doi.org/10.1016/j.carbon.2019.01.063

    Article  CAS  Google Scholar 

  12. Wang S, Wang T, Zhang S, Dong Z, Chevali VS, Yang Y, Wang G, Wang H (2023) Enhancing fiber-matrix interface in carbon fiber/poly ether ether ketone (CF/PEEK) composites by carbon nanotube reinforcement of crystalline PEEK sizing. Compos B Eng 251:110470. https://doi.org/10.1016/j.compositesb.2022.110470

    Article  CAS  Google Scholar 

  13. Wang F, Wang J, Fang D, Zhou S, Huang J, Zhao G, Liu Y (2023) Surface sizing introducing carbon nanotubes for interfacial bond strengthening of basalt fiber–reinforced polymer composites. Adv Compos Hybrid Mater 6:117. https://doi.org/10.1007/s42114-023-00695-4

    Article  CAS  Google Scholar 

  14. Kashfipour MA, Mehra N, Zhu J (2018) A review on the role of interface in mechanical, thermal, and electrical properties of polymer composites. Adv Compos Hybrid Mater 1:415–439. https://doi.org/10.1007/s42114-018-0022-9

    Article  Google Scholar 

  15. Liu X, Yang C, Lu Y (2012) Contrastive study of anodic oxidation on carbon fibers and graphite fibers. Appl Surf Sci 258:4268–4275. https://doi.org/10.1016/j.apsusc.2011.12.076

    Article  CAS  Google Scholar 

  16. Fu Y, Zhang Y, Chen H, Han L, Yin X, Fu Q, Sun J (2023) Ultra-high temperature performance of carbon fiber composite reinforced by HfC nanowires: a promising lightweight composites for aerospace engineering. Compos B Eng 250:110453. https://doi.org/10.1016/j.compositesb.2022.110453

    Article  CAS  Google Scholar 

  17. Seo HY, Im D, Kwon YJ, Nam CY, Kim SH, Nam T, Kim C, Vivek E, Baek K-Y, Cho KY, Yoon HG (2023) A strategy for dual-networked epoxy composite systems toward high cross-linking density and solid interfacial adhesion. Compos B Eng 254:110564. https://doi.org/10.1016/j.compositesb.2023.110564

    Article  CAS  Google Scholar 

  18. Sun Y, Fan W, Song C, Gao X, Liu T, Song W, Wang S, Zhou R, Li G, Li S (2022) Effects of stitch yarns on interlaminar shear behavior of three-dimensional stitched carbon fiber epoxy composites at room temperature and high temperature. Adv Compos Hybrid Mater 5:1951–1965. https://doi.org/10.1007/s42114-022-00526-y

    Article  CAS  Google Scholar 

  19. Vu MC, Mani D, Jeong T-H, Kim J-B, Lim C-S, Kang H, Islam MA, Lee OC, Park PJ, Kim S-R (2022) Nacre-inspired nanocomposite papers of graphene fluoride integrated 3D aramid nanofibers towards heat-dissipating applications. Chem Eng J 429:132182. https://doi.org/10.1016/j.cej.2021.132182

    Article  CAS  Google Scholar 

  20. Zhao H, Guo L (2017) Nacre-inspired structural composites: performance-enhancement strategy and perspective. Adv Mater 29:1702903. https://doi.org/10.1002/adma.201702903

    Article  CAS  Google Scholar 

  21. Han ZM, Li DH, Yang HB, Zhao YX, Yin CH, Yang KP, Liu HC, Sun WB, Ling ZC, Guan QF, Yu SH (2022) Nacre-inspired nanocomposite films with enhanced mechanical and barrier properties by self-assembly of poly(lactic acid) coated mica nanosheets. Adv Funct Mater. https://doi.org/10.1002/adfm.202202221

    Article  Google Scholar 

  22. Wu Q, Yang X, Wan Q, Zhao R, He J, Zhu J (2020) Layer-by-layer assembled nacre-like polyether amine/GO hierarchical structure on carbon fiber surface toward composites with excellent interfacial strength and toughness. Compos Sci Technol 198:108296. https://doi.org/10.1016/j.compscitech.2020.108296

    Article  CAS  Google Scholar 

  23. Pu Y, Ma Z, Liu L, Bai Y, Huang Y (2022) Improvement on strength and toughness for CFRPs by construction of novel “soft-rigid” interface layer. Compos B Eng 236:109846. https://doi.org/10.1016/j.compositesb.2022.109846

    Article  CAS  Google Scholar 

  24. He M, Qi P, Xu P, Cai Q, Li P, Jia X, Yang X (2019) Establishing a phthalocyanine-based crosslinking interphase enhances the interfacial performances of carbon fiber/epoxy composites at elevated temperatures. Compos Sci Technol 173:24–32. https://doi.org/10.1016/j.compscitech.2019.01.015

    Article  CAS  Google Scholar 

  25. Sun B, Hu P, Ji X, Fan M, Zhou L, Guo M, He S, Shen Y (2022) Excellent stability in polyetherimide/SiO2 nanocomposites with ultrahigh energy density and discharge efficiency at high temperature. Small 18:2202421

    Article  CAS  Google Scholar 

  26. Fan M, Hu P, Dan Z, Jiang J, Sun B, Shen Y (2020) Significantly increased energy density and discharge efficiency at high temperature in polyetherimide nanocomposites by a small amount of Al2O3 nanoparticles. J Mater Chem A 8:24536–24542

    Article  CAS  Google Scholar 

  27. Jiang J, Li J, Zhang Y, Yuan Y, Liu X, Zuo P, Qian J, Zhuang Q (2022) Tuning the interfacial insulating shell characteristics in CaCu3 Ti4O12 nanowires/polyetherimide nanocomposites for high-temperature capacitive energy storage. Journal of Materials Chemistry C 10:7962–7969. https://doi.org/10.1039/D2TC00968D

    Article  CAS  Google Scholar 

  28. Bonnaud L, Pascault JP, Sautereau H, Zhao JQ, Jia DM (2004) Use of reactive polyetherimide to modify epoxy thermosets. I. Synthesis of an amino-grafted polyetherimide. Eur Polym J 40:2637–2643. https://doi.org/10.1016/j.eurpolymj.2004.05.029

    Article  CAS  Google Scholar 

  29. Li H, Liebscher M, Ranjbarian M, Hempel S, Tzounis L, Schröfl C, Mechtcherine V (2019) Electrochemical modification of carbon fiber yarns in cementitious pore solution for an enhanced interaction towards concrete matrices. Appl Surf Sci 487:52–58. https://doi.org/10.1016/j.apsusc.2019.04.246

    Article  CAS  Google Scholar 

  30. Zheng H, Zhang W, Li B, Zhu J, Wang C, Song G, Wu G, Yang X, Huang Y, Ma L (2022) Recent advances of interphases in carbon fiber-reinforced polymer composites: a review. Compos B Eng 233:109639. https://doi.org/10.1016/j.compositesb.2022.109639

    Article  CAS  Google Scholar 

  31. Sun T, Zhang X, Qiu B, Zhang H, Yan L, Liang M, Zou H (2022) Electrochemical construction of amino-functionalized GO/carbon fiber multiscale structure to improve the interfacial properties of epoxy composites. Mater Chem Phys 286:126197. https://doi.org/10.1016/j.matchemphys.2022.126197

    Article  CAS  Google Scholar 

  32. Yuan X, Zhu B, Cai X, Qiao K, Zhao S, Yu J (2018) Influence of different surface treatments on the interfacial adhesion of graphene oxide/carbon fiber/epoxy composites. Appl Surf Sci 458:996–1005. https://doi.org/10.1016/j.apsusc.2018.06.161

    Article  CAS  Google Scholar 

  33. Bauer M, Beratz S, Ruhland K, Horn S, Moosburger-Will J (2020) Anodic oxidation of carbon fibers in alkaline and acidic electrolyte: quantification of surface functional groups by gas-phase derivatization. Appl Surf Sci 506:144947. https://doi.org/10.1016/j.apsusc.2019.144947

    Article  CAS  Google Scholar 

  34. Shin S, Jang J (1997) Toughness improvement of high-performance epoxy resin using aminated polyetherimide. J Appl Polym Sci 65:2237–2246. https://doi.org/10.1002/(SICI)1097-4628(19970912)65:11%3c2237::AID-APP21%3e3.0.CO;2-Z

    Article  CAS  Google Scholar 

  35. Zhang Y, Lu K, He M, Zuo X, Li G, Yang X (2021) Constructing a rigid-and-flexible twin-stage gradient interphase through starlike copolymer coating on carbon fibers: a route for enhancing interfacial properties of composites. ACS Appl Mater Interfaces 13:55633–55647. https://doi.org/10.1021/acsami.1c14535

    Article  CAS  PubMed  Google Scholar 

  36. He M, Xu P, Zhang Y, Liu K, Yang X (2020) Phthalocyanine nanowires@GO/carbon fiber composites with enhanced interfacial properties and electromagnetic interference shielding performance. Chem Eng J 388:124255. https://doi.org/10.1016/j.cej.2020.124255

    Article  CAS  Google Scholar 

  37. Zhou J, Li Y, Li N, Hao X, Liu C (2016) Interfacial shear strength of microwave processed carbon fiber/epoxy composites characterized by an improved fiber-bundle pull-out test. Compos Sci Technol 133:173–183. https://doi.org/10.1016/j.compscitech.2016.07.033

    Article  CAS  Google Scholar 

  38. Jia X, Zhu J, Li W, Chen X, Yang X (2015) Compressive and tensile response of CFRP cylinders induced by multi-walled carbon nanotubes. Compos Sci Technol 110:35–44. https://doi.org/10.1016/j.compscitech.2014.10.023

    Article  CAS  Google Scholar 

  39. Huan X, Shi K, Yan J, Lin S, Li Y, Jia X, Yang X (2020) High performance epoxy composites prepared using recycled short carbon fiber with enhanced dispersibility and interfacial bonding through polydopamine surface-modification. Compos B Eng 193:107987. https://doi.org/10.1016/j.compositesb.2020.107987

    Article  CAS  Google Scholar 

  40. Yu Y, Li P, Sui G, Yang X, Liu H (2009) Effects of hygrothermal aging on the thermal–mechanical properties of vinylester resin and its pultruded carbon fiber composites. Polym Compos 30:1458–1464. https://doi.org/10.1002/pc.20712

    Article  CAS  Google Scholar 

  41. Yan F, Liu L, Li K, Jin L, Zhang M, Liu Y, Xiao L, Ao Y (2021) A novel π bridging method to graft graphene oxide onto carbon fiber for interfacial enhancement of epoxy composites. Compos Sci Technol 201:108489. https://doi.org/10.1016/j.compscitech.2020.108489

    Article  CAS  Google Scholar 

  42. Ghobeira R, Esbah Tabaei PS, Morent R, De Geyter N (2022) Chemical characterization of plasma-activated polymeric surfaces via XPS analyses: a review. Surf Interfaces 31:102087. https://doi.org/10.1016/j.surfin.2022.102087

    Article  CAS  Google Scholar 

  43. Zheng N, He J, Gao J, Huang Y, Besenbacher F, Dong M (2018) Adhesion force measured by atomic force microscopy for direct carbon fiber-epoxy interfacial characterization. Mater Des 145:218–225. https://doi.org/10.1016/j.matdes.2018.02.060

    Article  CAS  Google Scholar 

  44. Sun B-G, Yang K-X, Lei Q, Shi H-Q, Li Y-Q, Hu N, Fu S-Y (2018) High residual mechanical properties at elevated temperatures of carbon fiber/acetylene-functional benzoxazine composite. Compos Part A Appl Sci Manuf 112:11–17. https://doi.org/10.1016/j.compositesa.2018.05.021

    Article  CAS  Google Scholar 

  45. Ren S, Meng L, Ma W, Lin S, Yang W, Lan J, Jia X, Cai Q, Yang X (2019) Enhancing overall properties of epoxy-based composites using polydopamine-coated edge-carboxylated graphene prepared via one-step high-pressure ball milling. Phys Chem Chem Phys 21:21726–21737. https://doi.org/10.1039/C9CP03014J

    Article  CAS  PubMed  Google Scholar 

  46. Jarrett W, Korkees F (2022) Environmental impact investigation on the interlaminar properties of carbon fibre composites modified with graphene nanoparticles. Polymer 252:124921. https://doi.org/10.1016/j.polymer.2022.124921

    Article  CAS  Google Scholar 

Download references

Funding

This study was financially supported by the Beijing Natural Science Foundation (Grant No. 2242052, No. 2192044), National Key Research and Development Project (No. 2019YFB1504800), Fundamental Research Funds for the Central Universities (Grant No. XK1802-2), BUCT Youth Talent Plan, 2020-2023 Open Project of State Key Laboratory of Organic-Inorganic Composites (Grant No. Oic-202001008, Oic-202101008, Oic-202201007, Oic-202301003). The authors would like to thank Zhouhang Li from Shiyanjia Lab (www.shiyanjia.com) for providing invaluable assistance with the XPS analysis.

Author information

Authors and Affiliations

Authors

Contributions

Hefeng Li: conceptualization, methodology, data curation, writing—original draft; Cong Liu: conceptualization, data analysis; Jiabao Zhu: methodology and data curation; Xianhua Huan: validation, data curation; Pengfei Qi: validation, methodology; Ke Xu: methodology; Hongbo Geng: methodology, data curation; Xiaodong Guo: methodology, funding acquisition; Haoming Wu: methodology, data curation; Lei Zu: methodology, data curation; Lei Ge: writing—review and editing; Xiaolong Jia: supervision, resources, and funding acquisition; Xiaoping Yang: resources, and funding acquisition; Hao Wang: writing—review and editing.

Corresponding authors

Correspondence to Xiaolong Jia or Hao Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2393 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Liu, C., Zhu, J. et al. Bio-inspired fabrication of “brick-and-mortar” interphase in carbon fiber/epoxy composites with significantly improved high-temperature durability. Adv Compos Hybrid Mater 7, 72 (2024). https://doi.org/10.1007/s42114-024-00876-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-024-00876-9

Keywords

Navigation