Skip to main content
Log in

Multi-mode tunable electromagnetic wave absorber based on hollow nano-cage structure and self-anticorrosion performance

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

In order to prevent electromagnetic interference, the standards for electromagnetic wave (EMW) absorption materials have tightened with the widespread growth of electrical communication equipment. Optimal EMW absorption performance may be achieved by prudent control of permittivity. Because of its outstanding dielectric property, controlled structure, and low cost of process, NiCo-based materials (NiCo2X4, X = O, S, Se, and Te) have been viewed as potential materials for absorbing electromagnetic waves. In particular, the presence of anionic sites has a significant impact on a material’s permittivity and conductivity. This work reports the effective hydrothermal preparation of NiCo2X4 hollow nanoceras, followed by telluride, vulcanization, selenium, and oxidation processes. Owing to variations in the element electronegativity of anions, NiCo2Se4 and NiCo2Te4 exhibited enhanced conductivity and dielectric loss. An optimal reflection loss (RL) of Mn-NiCo2Se4 at the matching thickness of 2.0 mm can reach −77.57 dB, and the effective absorption bandwidth (EAB) at the matching thickness of 2.0 mm is 4.88 GHz. The RL of Mn-NiCo2Te4 at the matching thickness of 2.1 mm can reach −64.74 dB, and the EAB can reach 5.68 GHz at 2.0 mm. The samples made in this experiment also show maritime anticorrosion capabilities, which offers some research directions for the creation of materials with dual uses. It is anticipated that this research will offer significant new perspectives on the significant impacts of anionic coordination modulation on the EMA characteristics of composites made of transition metal matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 2

Similar content being viewed by others

Data availability

The authors declare that the data supporting the finding of this study are available with the paper.

References

  1. Wu G, Cheng Y, Yang Z et al (2018) Design of carbon sphere/magnetic quantum dots with tunable phase compositions and boost dielectric loss behavior. Chem Eng J 333:519–528

    Article  CAS  Google Scholar 

  2. Lan D, Li H, Wang M et al (2024) Recent advances in construction strategies and multifunctional properties of flexible electromagnetic wave absorbing materials. Mater Res Bull 171:112630

    Article  CAS  Google Scholar 

  3. Zhang Y, Ruan K, Zhou K et al (2023) Controlled distributed Ti3C2Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv Mater 35(16):2211642

    Article  CAS  Google Scholar 

  4. Fan G, Wang Z, Ren H et al (2021) Dielectric dispersion of copper/rutile cermets: dielectric resonance, relaxation, and plasma oscillation. Scripta Mater 190:1–6

    Article  CAS  Google Scholar 

  5. Sun C, Jia Z, Xu S et al (2022) Synergistic regulation of dielectric-magnetic dual-loss and triple heterointerface polarization via magnetic MXene for high-performance electromagnetic wave absorption. J Mater Sci Technol 20:128–137

    Article  Google Scholar 

  6. Zhao T, Jia Z, Zhang Y et al (2023) Multiphase molybdenum carbide doped carbon hollow sphere engineering: the superiority of unique double-shell structure in microwave absorption. Small 19(6):2206323

    Article  CAS  Google Scholar 

  7. Jia Z, Lan D, Chang M et al (2023) Heterogeneous interfaces and 3D foam structures synergize to build superior electromagnetic wave absorbers. Mater Today Phys 37:101215

    Article  CAS  Google Scholar 

  8. Pan Y, Zhu Q, Zhu J et al (2023) Macroscopic electromagnetic synergy network-enhanced N-doped Ni/C gigahertz microwave absorber with regulable microtopography. Nano Res 16(7):10666–10677

    Article  CAS  Google Scholar 

  9. Jia Z, Kong M, Yu B et al (2022) Tunable Co/ZnO/C@MWCNTs based on carbon nanotube-coated MOF with excellent microwave absorption properties. J Mater Sci Technol 127:153–163

    Article  CAS  Google Scholar 

  10. Yang J, Wang H, Zhang Y et al (2024) Layered structural PBAT composite foams for efficient electromagnetic interference shielding. Nano-Micro Lett 16:31

    Article  CAS  Google Scholar 

  11. Zhang Y, Gao S, He J et al (2024) CoFe@C composites decorated with residual carbon as an ultrathin microwave absorber in the X and Ku bands. Diam Relat Mater 141:110666

    Article  CAS  Google Scholar 

  12. Yin P, Luo Y, Lan D et al (2024) Structural engineering of porous biochar loaded with ferromagnetic/anti-ferromagnetic NiCo2O4/CoO for excellent electromagnetic dissipation with flexible and self-cleaning properties. J Mater Sci Technol 180:12–22

    Article  Google Scholar 

  13. Guo Y, Ruan K, Wang G et al (2023) Advances and mechanisms in polymer composites toward thermal conduction and electromagnetic wave absorption. Sci Bull 68:1195–1212

    Article  CAS  Google Scholar 

  14. Xie P, Zhang Z, Liu K et al (2017) C/SiO2 meta-composite: overcoming the λ/a relationship limitation in metamaterials. Carbon 125:1–8

    Article  CAS  Google Scholar 

  15. Zhang S, Lan D, Chen X et al (2023) Three-dimensional macroscopic absorbents: from synergistic effects to advanced multifunctionalities. Nano Res. https://doi.org/10.1007/s12274-023-6120-1

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chang Q, Liang H, Shi B et al (2021) Sodium oxalate-induced hydrothermal synthesis of wood-texture-column-like NiCo2O4 with broad bandwidth electromagnetic wave absorption performance. J Colloid Interface Sci 600:49–57

    Article  CAS  PubMed  Google Scholar 

  17. Zhou Z, Zhou X, Di L et al (2023) Modulation engineering of electromagnetic wave absorption performance of layered double hydroxides derived hollow metal carbides integrating corrosion protection. Small. https://doi.org/10.1002/smll.202305849

    Article  PubMed  Google Scholar 

  18. Zhao S, Refaai M, Salman S et al (2023) Investigations of physicochemical and microwave absorption performance of NiCo2S4/AgBr nanocomposite in X-band frequency. Surf Interfaces 37:102684

    Article  CAS  Google Scholar 

  19. Dong Y, Zhu X, Pan F et al (2022) Implanting NiCo2O4 equalizer with designable nanostructures in agaric aerogel-derived composites for efficient multiband electromagnetic wave absorption. Carbon 190:68–79

    Article  CAS  Google Scholar 

  20. Zhou X, Jia Z, Zhang X et al (2021) Electromagnetic wave absorption performance of NiCo2X4 (X = O, S, Se, Te) spinel structures. Chem Eng J 420:129907

    Article  CAS  Google Scholar 

  21. Liu J, Jia Z, Dong Y et al (2022) Structural engineering and compositional manipulation for high-efficiency electromagnetic microwave absorption. Mater Today Phys 27:100801

    Article  CAS  Google Scholar 

  22. Rathore D, Ghosh S, Chowdhury J et al (2023) Fe-doped NiCo2Se4 nanorod arrays as electrocatalysts for overall electrochemical water splitting. ACS Appl Nano Mater 6(4):3095–3110

    Article  CAS  Google Scholar 

  23. Tao L, Huang M, Guo S et al (2019) Surface modification of NiCo2Te4 nanoclusters: a highly efficient electrocatalyst for overall water-splitting in neutral solution. Appl Catal B Environ 254:424–431

    Article  CAS  Google Scholar 

  24. Gao Q, Wang X, Shi Z et al (2018) Synthesis of porous NiCo2S4 aerogel for supercapacitor electrode and oxygen evolution reaction electrocatalyst. Chem Eng J 331:185–193

    Article  CAS  Google Scholar 

  25. Huang P, Zhang S, Ying H et al (2021) Few-layered Ti3C2 MXene anchoring bimetallic selenide NiCo2Se4 nanoparticles for superior sodium-ion batteries. Chem Eng J 417:129161

    Article  CAS  Google Scholar 

  26. Li L, Zhao J, Zhu Y et al (2020) Bimetallic Ni/Co-ZIF-67 derived NiCo2Se4/N-doped porous carbon nanocubes with excellent sodium storage performance. Electrochim Acta 353:136532

    Article  CAS  Google Scholar 

  27. Yang J, Gao H, Men S et al (2018) Chen, CoSe2 nanoparticles encapsulated by N-doped carbon framework intertwined with carbon nanotubes: high-performance dual-role anode materials for both Li- and Na-ion batteries. Adv Sci 5(12):1800763

    Article  Google Scholar 

  28. Jiang Y, Zou G, Hou H et al (2019) Composition engineering boosts voltage windows for advanced sodium-ion batteries. ACS Nano 13(9):10787–10797

    Article  CAS  PubMed  Google Scholar 

  29. Majumdar A, Dutta P, Sikdar A et al (2022) Impact of atomic rearrangement and single atom stabilization on MoSe2@NiCo2Se4 heterostructure catalyst for efficient overall water splitting. Small 18(19):2200622

    Article  CAS  Google Scholar 

  30. Wang Y, Shi Y, Zhang X et al (2022) Atomically dispersed manganese sites embedded within nitrogen-doped carbon nanotubes for high-efficiency electromagnetic wave absorption. Carbon 198:382–391

    Article  CAS  Google Scholar 

  31. Janani G, Yuvaraj S, Surendran S et al (2020) Enhanced bifunctional electrocatalytic activity of Ni-Co bimetallic chalcogenides for efficient water-splitting application. J Alloys Compd 846:156389

    Article  CAS  Google Scholar 

  32. Chen G, Zhang L, Lou B et al (2022) Optimal control of the compositions, interfaces, and defects of hollow sulfide for electromagnetic wave absorption. J Colloid Interface Sci 607:24–33

    Article  CAS  PubMed  Google Scholar 

  33. Sun M, Zhao D, Zhang F et al (2023) Expanded graphite and thermally reduced graphene oxide filled with NiCo2O4 for improve microwave absorption. Mater Chem Phys 305:127898

    Article  CAS  Google Scholar 

  34. Long F, Wei L, Rehman S et al (2023) Honeycomb-like structured ZnFe2O4@C derived from ZnFe2O4@ZIF-8 for electromagnetic wave absorption. J Magn Magn Mater 568:170253

    Article  CAS  Google Scholar 

  35. Cheng X, Zhou X, Wang S et al (2019) Fabrication of NiO/NiCo2O4 mixtures as excellent microwave absorbers. Nanoscale Res Lett 14:1–9

    Article  Google Scholar 

  36. Zhou C, Yao Z, Wei B et al (2022) Facile synthesis of ZIF-67 derived dodecahedral C/NiCO2S4 with broadband microwave absorption performance. Nanoscale 14(29):10375

    Article  CAS  PubMed  Google Scholar 

  37. Zhang X, Jia Z, Zhang F et al (2022) MOF-derived NiFe2S4/porous carbon composites as electromagnetic wave absorber. J Colloid Interface Sci 610:610–620

    Article  CAS  PubMed  Google Scholar 

  38. Zhao H, Gao H, Jin S et al (2023) Exploring interfacial engineering in 3D porous, lightweight ZnFe2O4/rGO aerogel for electromagnetic wave absorption. J Alloy Compd 957:170326

    Article  CAS  Google Scholar 

  39. Hou T, Wang B, Ma M et al (2020) Preparation of two-dimensional titanium carbide (Ti3C2Tx) and NiCo2O4 composites to achieve excellent microwave absorption properties. Compos Part B Eng 180:107577

    Article  CAS  Google Scholar 

  40. Shen Z, Lan D, Cong Y et al (2024) Tailored heterogeneous interface based on porous hollow In-Co-C nanorods to construct adjustable multi-band microwave absorber. J Mater Sci Technol 181:128–137

    Article  Google Scholar 

  41. Wang J, Jia Z, Liu X et al (2021) Construction of 1D heterostructure NiCo@C/ZnO nanorod with enhanced microwave absorption. Nano-Micro Lett 13:175

    Article  CAS  Google Scholar 

  42. Xu J, Liu Z, Chen Y et al (2023) Carbon-based cages with hollow confined structures for efficient microwave absorption: state of the art and prospects. Carbon 201(5):1090–1114

    Article  CAS  Google Scholar 

  43. Li W, Xu M, Xu H et al (2022) Metamaterial absorbers: from tunable surface to structural transformation. Adv Mater 34(38):2202509

    Article  CAS  Google Scholar 

  44. Zhao Z, Zhang L, Wu H et al (2022) Hydro/organo/ionogels: “controllable” electromagnetic wave absorbers. Adv Mater 34(43):2205376

    Article  CAS  Google Scholar 

  45. Zhang S, Cheng B, Gao Z et al (2022) Two-dimensional nanomaterials for high-efficiency electromagnetic wave absorption: an overview of recent advances and prospects. J Alloy Compd 893:16234

    Article  Google Scholar 

  46. Liu Y, Wei X, He X et al (2023) Multifunctional shape memory composites for joule heating, self-healing, and highly efficient microwave absorption. Adv Funct Mater 33(5):2211352

    Article  CAS  Google Scholar 

  47. Wang C, Liu Y, Jia Z et al (2023) Multicomponent nanoparticles synergistic one-dimensional nanofibers as heterostructure absorbers for tunable and efficient microwave absorption. Nano-Micro Lett 15(1):13

    Article  Google Scholar 

  48. Manna R, Srivastava SK (2021) Reduced graphene oxide/Fe3O4/polyaniline ternary composites as a superior microwave absorber in the shielding of electromagnetic pollution. ACS Omega 13(6):9164–9175

    Article  Google Scholar 

  49. Zhao T, Jia Z, Liu J et al (2024) Multiphase interfacial regulation based on hierarchical porous molybdenum selenide to build anticorrosive and multiband tailorable absorbers. Nano-Micro Letters 16(1):6

    Article  CAS  Google Scholar 

  50. Mohd N, Gaurav M, Yogendra K et al (2015) Ultra-wide bandwidth with enhanced microwave absorption of electroless Ni–P coated tetrapod-shaped ZnO nano- and microstructures. Phys Chem Chem Phys 17:22923–22933

    Article  Google Scholar 

  51. Feng A, Lan D, Liu J et al (2024) Dual strategy of A-site ion substitution and self-assembled MoS2 wrapping to boost permittivity for reinforced microwave absorption performance. J Mater Sci Technol 180:1–11

    Article  Google Scholar 

  52. Lv H, Zhou X, Wu G et al (2021) Engineering defects in 2D g-C3N4 for wideband, efficient electromagnetic absorption at elevated temperature. J Mater Chem A 9:19710–19718

    Article  CAS  Google Scholar 

  53. Huang M, Lou C, Sun C et al (2023) Achieving absorption-type microwave shielding performance in polydimethylsiloxane/carbon nanotube sandwiched composites via regulating microwave interference effect. Compos Part A Appl Sci Manuf 169:107532

    Article  CAS  Google Scholar 

  54. Zhou Z, Lan D, Ren J et al (2024) Controllable heterogeneous interfaces and dielectric modulation of biomass-derived nanosheet metal-sulfide complexes for high-performance electromagnetic wave absorption. J Mater Sci Technol 185:165–173

    Article  Google Scholar 

  55. Hu W, Yin H, Yuan H et al (2023) Microwave absorption and mechanical properties of glass fiber/polyamide 6 composites containing carbon black by microstructural design. Compos Sci Technol 233:109927

    Article  CAS  Google Scholar 

  56. Lu S, Wan L, Zheng S et al (2024) Effect of austenitizing temperature on martensitic transformation in SA508Gr.4N steel. J Mater Sci Technol 186:244–255

    Article  Google Scholar 

  57. Liang L, Liu Z, Xie L et al (2021) Bamboo-like N-doped carbon tubes encapsulated CoNi nanospheres towards efficient and anticorrosive microwave absorbents. Carbon 171:142–153

    Article  CAS  Google Scholar 

  58. Gao F, Liu Y, Jiao C et al (2023) Fluorine-phosphate copolymerization waterborne acrylic resin coating with enhanced anticorrosive performance. J Polym Sci 61:2677–2687

    Article  CAS  Google Scholar 

  59. Xie T, Li S, Ma L et al (2023) Bimetallic MOF-derived composites with broad electromagnetic wave absorption and strong corrosion resistance. Carbon 208:33–42

    Article  CAS  Google Scholar 

  60. Zheng C, Ning M, Zou Z et al (2023) Two birds with one stone: broadband electromagnetic wave absorption and anticorrosion performance in 2–18 GHz for prussian blue analog derivatives aimed for practical applications. Small 19(32):2208211

    Article  CAS  Google Scholar 

  61. Jalgham R, Roymahapatra G, Dash M et al (2023) In silico studies on triazole derivatives as corrosion inhibitors on mild steel in acidic media. ES Mater Manuf 21:867

    CAS  Google Scholar 

  62. Tong Z, Liao Z, Liu Y et al (2021) Hierarchical Fe3O4/Fe@C@MoS2 core-shell nanofibers for efficient microwave absorption. Carbon 179:646–654

    Article  CAS  Google Scholar 

  63. Yao L, Wang Y, Zhao J et al (2023) Multifunctional nanocrystalline-assembled porous hierarchical material and device for integrating microwave absorption, electromagnetic interference shielding, and energy storage. Small 19(25):2208101

    Article  CAS  Google Scholar 

  64. Hou T, Jia Z, Feng A et al (2021) Hierarchical composite of biomass derived magnetic carbon framework and phytic acid doped polyanilne with prominent electromagnetic wave absorption capacity. J Mater Sci Technol 68:61–69

    Article  CAS  Google Scholar 

  65. Ma Z, Xiang X, Shao L et al (2022) Multifunctional wearable silver nanowire decorated leather nanocomposites for joule heating, electromagnetic interference shielding and piezoresistive sensing. Angew Chem Int Ed 61(15):202200705

    Article  Google Scholar 

  66. Zhou X, Jia Z, Zhang X et al (2021) Controllable synthesis of Ni/NiO@porous carbon hybrid composites towards remarkable electromagnetic wave absorption and wide absorption bandwidth. J Mater Sci Technol 87:120–132

    Article  CAS  Google Scholar 

  67. Lv H, Yao Y, Li S et al (2023) Staggered circular nanoporous graphene converts electromagnetic waves into electricity. Nat Commun 14(1):1982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wang J, Wang B, Wang Z et al (2021) Synthesis of 3D flower-like ZnO/ZnCo2O4 composites with the heterogeneous interface for excellent electromagnetic wave absorption properties. J Colloid Interface Sci 586:479–490

    Article  CAS  PubMed  Google Scholar 

  69. Li M, Zhu W, Li X et al (2022) Ti3C2Tx/MoS2 self-rolling rod-based foam boosts interfacial polarization for electromagnetic wave absorption. Adv Sci 9(16):2201118

    Article  CAS  Google Scholar 

  70. Zhai N, Luo J, Mei J et al (2023) Interface engineering of heterogeneous NiSe2-CoSe2@C@MoSe2 for high-efficient electromagnetic wave absorption. Adv Funct Mater. https://doi.org/10.1002/adfm.202312237

    Article  Google Scholar 

  71. Lv H, Yang Z, Liu B et al (2021) A flexible electromagnetic wave-electricity harvester. Nat Commun 12:834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zhong X, He M, Zhang C et al (2024) Heterostructured BN@Co-C@C endowing polyester composites excellent thermal conductivity and microwave absorption at C band. Adv Funct Mater. https://doi.org/10.1002/adfm.202313544

    Article  Google Scholar 

  73. Wang C, Wang B, Cao X et al (2021) 3D flower-like Co-based oxide composites with excellent wideband electromagnetic microwave absorption. Compos Part B Eng 205:108529

    Article  CAS  Google Scholar 

  74. He M, Hu J, Yan H et al (2024) Shape anisotropic chain-like CoNi/polydimethylsiloxane composite films with excellent low-frequency microwave absorption and high thermal conductivity. Adv Funct Mater. https://doi.org/10.1002/adfm.202316691

    Article  Google Scholar 

  75. Wang C, Jia Z, He S et al (2022) Metal-organic framework-derived CoSn/NC nanocubes as absorbers for electromagnetic wave attenuation. J Mater Sci Technol 108:236–243

    Article  CAS  Google Scholar 

  76. Li F, Wu N, Kimura H et al (2023) Initiating binary metal oxides microcubes electromagnetic wave absorber toward ultrabroad absorption bandwidth through interfacial and defects modulation. Nano-Micro Letters 15:220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wei C, Shi L, Li M et al (2024) Hollow engineering of sandwich NC@Co/NC@MnO2 composites toward strong wideband electromagnetic wave attenuation. J Mater Sci Technol 175:194–203

    Article  Google Scholar 

  78. Han Y, He M, Hu J et al (2023) Hierarchical design of FeCo-based microchains for enhanced microwave absorption in C band. Nano Res 16:1773–1778

    Article  CAS  Google Scholar 

Download references

Funding

This work is financially supported by the National Natural Science Foundation of China (No. 52377026 and No. 52301192), the Natural Science Foundation of Shandong Province (No. ZR2019YQ24), the Taishan Scholars and Young Experts Program of Shandong Province (No. tsqn202103057), the Qingchuang Talents Induction Program of Shandong Higher Education Institution (Research and Innovation Team of Structural-Functional Polymer Composites), and the Special Financial of Shandong Province (Structural Design of High-Efficiency Electromagnetic Wave-Absorbing Composite Materials and Construction of Shandong Provincial Talent Teams).

Author information

Authors and Affiliations

Authors

Contributions

Yuelei Pan: related literature and writing, original draft preparation. Di Lan: complete drawings. Xing Feng: data curation. Zirui Jia, Ailing Feng, Pengfei Yin, and Guanglei Wu: some great enlightenment and helpful advices during the writing process.

Corresponding authors

Correspondence to Zirui Jia, Ailing Feng, Guanglei Wu or Pengfei Yin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2561 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, Y., Lan, D., Jia, Z. et al. Multi-mode tunable electromagnetic wave absorber based on hollow nano-cage structure and self-anticorrosion performance. Adv Compos Hybrid Mater 7, 40 (2024). https://doi.org/10.1007/s42114-024-00851-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-024-00851-4

Keywords

Navigation