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Abstract
Carbon materials have emerged as a rapidly advancing category of high-performance materials that have garnered significant 
attention across various scientific and technological disciplines. Their exceptional biochemical properties render them highly 
suitable for diverse biomedical applications, including implantation, artificial joints, bioimaging, tissue and bone engineer-
ing, and scaffold fabrication. However, a more systematic approach is required to fully exploit the potential of carbon-based 
materials in the biomedical realm, necessitating extensive and collaborative research to address the existing challenges, 
which comprehensive long-term stability studies, the surface properties and investigate the toxicity of biomedical materi-
als. This review paper aims to provide a comprehensive overview of carbon materials, elucidating their inherent advantages 
and highlighting their increasingly prominent role in biomedical applications. After a brief introduction of carbonaceous 
materials, we discuss innovative deposition strategies that can be utilized to artificially replicate desired properties, such as 
biocompatibility and toxicology, within complex structures. Further, this paper serves as a valuable resource to harness the 
potential of carbon materials in the realm of biomedical applications. Last, we conclude with a discussion on the significance 
of continuous exploration in propelling further advancements within this captivating field.
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1 Introduction

In recent years, significant progress has occurred in the field 
of biomedical materials and technologies, establishing a 
robust foundation for forthcoming advancements and prac-
tical applications [1, 2]. Within the expanding landscape of 
academic inquiry, carbon-based materials, including carbon 
dots, carbon nanotubes (CNTs), graphene, carbon nanofib-
ers (CNFs), and MXenes, have emerged as key focal points, 

presenting themselves as promising candidates for future 
material design and utilization [3].

Carbon dots, characterized as zero-dimensional (0D) 
materials with singular domains of small size (typically 1 
to 30 nm in diameter), have garnered significant attention 
due to their low toxicity, facile surface functionalization, 
diverse raw material sources, cost-effectiveness, excellent 
fluorescence stability, adjustable emission wavelength, and 
biocompatibility [4–10]. CNTs, classified as 1D materials 
based on the number of graphene layers comprising the tube, 
exhibit significant promise as optical tags (nanoprobe labels) 
or contrast agents in various biomedical imaging techniques. 
These include applications in Raman spectroscopy, near-
infrared (NIR) fluorescence imaging, and photoacoustic 
imaging across a diverse range of biological specimens, pre-
dominantly observed in the case of single-walled nanotubes. 
Furthermore, the tubular architecture affords a versatile 
platform for drug encapsulation, thereby enabling precise 
control over drug release kinetics and targeted therapeutic 
interventions in the realm of medical treatments [11–15].

Graphene consists of single-atom-thick sheets of 
 sp2-bonded carbon atoms closely packed into a 2D 
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honeycomb lattice. Graphene and its derivatives, such as 
graphene oxide (GO) and reduced graphene oxide (rGO),  
exhibit unique properties including large surface area, strong 
laser absorption property, high elasticity, good charge-transfer  
ability, and ferromagnetic properties [16–19]. In addition, 
graphene’s excellent electrical conductivity makes it an 
ideal material for biosensors. Functionalized graphene can 
be employed to detect specific biomolecules with high sen-
sitivity, enabling early diagnosis of diseases. GO also serves 
as contrast agents in various imaging techniques, including 
magnetic resonance imaging (MRI) and photoacoustic imag-
ing, providing enhanced contrast for more accurate diagnos-
tics [20, 21].

CNFs are nanoscale materials characterized by a fibrous 
structure primarily composed of carbon atoms. Their exten-
sive application as reinforcing elements in tissue engineer-
ing scaffolds is attributed to their impressive mechanical 
strength, electrical conductivity, and structural integrity. 
This utilization enhances cell adhesion and contributes to 
the regeneration of tissues, exemplified in applications like 
artificial teeth and hip joints. In these contexts, CNFs are 
progressively supplanting metal materials, addressing con-
cerns such as corrosion and diminished impact resistance 
associated with traditional metals [22–28].

MXenes are a unique class of 2D materials comprised 
of transition metal carbides, nitrides, or carbonitrides with 
a general formula of Mn+1Xn (n = 1–3), where “M” repre-
sents an early transition metal and “X” denotes carbon or 
nitrogen. This combination of complete metal atomic layers 
and abundant surface functional groups enables MXenes to 
possess both metallic conductivity and hydrophilic proper-
ties [29–31]. These materials exhibit a thickness of less than 
1 nm due to their limited number of atomic layers. Their 
nanoscale size allows for prolonged circulation within 
biological systems while also introducing unique charac-
teristics, such as enhanced molecular interactions and size-
dependent luminescence [32–34]. MXenes present promis-
ing possibilities for highly sensitive disease diagnosis and 
efficient treatment.

Distinguished by their unique attributes, the burgeoning 
interest in carbon-based materials as reinforcements for bio-
medical applications has been rapidly growing, positioning 
them particularly well for pivotal roles in various biomedical 
applications. Notably, carbon materials display a reduced 
propensity for eliciting immune responses compared to alter-
native materials, such as metal nanoparticles—a critical fea-
ture for sustained biological interactions, especially in the 
realm of implantable organ devices [35–38].

Moreover, carbon-based materials and their hybrid metal/
polymer/ceramic nanocomposites demonstrate significant 
potential across a broad spectrum of biomedical applica-
tions. The collaborative interaction among these constituents 
establishes a synergistic relationship, augmenting the overall 

strength of the produced nanocomposites. Carbon-based 
materials assume a pivotal role in enhancing the chemical 
and mechanical properties of the hybrid nanocomposites, 
capitalizing on their diminutive size, expansive surface area, 
and surface modification capabilities. The polymer matrix 
serves the crucial function of maintaining an optimal dis-
tance between the carbon materials, preventing agglom-
eration. Concurrently, the amalgamation of ceramics with 
carbon materials facilitates the concurrent existence of 
photoluminescence and magnetic properties, contributing 
to wear resistance and dispersion control. Simultaneously, 
metal nanoparticles enhance the mechanical properties, ther-
mal stability, and electrical conductivity within the hybrid 
nanocomposites. This precise control at the nanoscale ren-
ders them versatile for specific and sophisticated biomedical 
applications, such as highly controlled drug delivery sys-
tems, tissue engineering, medical imaging, implant coatings, 
diagnostic tools, and biosensors [39, 40]. An exemplary 
illustration of their capabilities lies in advanced designs 
enabling precise drug transport to targeted areas within the 
body, thereby enhancing efficacy, minimizing side effects, 
and enabling controlled release—a transformative paradigm 
in disease treatment. These adaptable materials manifest in 
various formats, including films, nanofibers, hydrogels, and 
3D porous structures, extending their utility across a diverse 
range of biomedical applications [41, 42].

However, certain nanoparticles, such as CNTs and 
MXenes, continue to pose challenges due to their inherent 
toxicity. Overcoming these challenges necessitates precise 
functionalization, sophisticated dispersion methods, or tar-
geted modifications aligned with specific biomedical goals. 
Various techniques, such as electrospinning, microsphere 
fabrication, nanocomposite synthesis, hydrogel formulation, 
deposition coating, and 3D printing, have also been widely 
acknowledged for their potential in augmenting biomedi-
cal applications. Furthermore, strict adherence to preclini-
cal safety pharmacology guidelines set forth by regulatory 
bodies such as the Food and Drug Administration (FDA), 
the International Conference on Harmonization (ICH), 
and the European Medicines Agency (EMA) is imperative 
[43–51]. Achieving enduring biocompatibility emerges as a 
pivotal milestone for the widespread acceptance and seam-
less integration of carbonaceous nanomaterials in biomedi-
cal applications.

This article presents a systematic and thorough analysis 
of carbon-based materials and deposition techniques used 
for biomedical applications, encompassing methods such as 
chemical vapor deposition (CVD), plasma-enhanced chemi-
cal vapor deposition (PECVD), ion-beam (IB), electrospin-
ning, 3D printing, diamond-like carbon (DLC) coating, and 
hydrogel fabrication. Historically, the scientific literature 
has predominantly focused on either the investigation of 
carbon-based materials or the exploration of deposition 
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methodologies in isolation. However, this paper aims to 
bridge this gap by providing comprehensive insights into 
both the materials and techniques, with a specific emphasis 
on their application in the biomedical field. By undertak-
ing this study, our objective is to contribute to the existing 
knowledge base by offering valuable guidance on the selec-
tion of suitable carbon allotropes and deposition techniques 
for biomedical applications. The scope and structure of the 
review are shown in a schematic diagram in Fig. 1.

2  Carbon‑based materials  
for biomedical applications

Carbon materials have expanded the horizons of research 
in biomedical applications, encompassing fields such 
as tissue engineering and bioimaging. Carbon materials 
inherently possess a diverse range of properties, which 
can be substantially amplified through nanostructure 
engineering and appropriate surface functionalization, 
further enhancing their contributions to these domains. 
The details of the different nanostructured carbon materi-
als and the latest research are discussed in the subsequent 
sections of this review.

2.1  Carbon quantum dots (CQDs)  
and their composites

Carbon quantum dots (CQDs) have drawn great attraction 
and play a pivotal role in biomedical applications. CQDs are 
highly sensitive to changes in their local environment, mak-
ing them ideal for biosensing applications. CQDs exhibit 
strong and tunable fluorescence properties, rendering them 
indispensable for use as imaging agents, particularly in live-
cell imaging and the monitoring of cellular processes. Fur-
thermore, they have the capability to transform absorbed 

light into thermal energy, a phenomenon referred to as 
photothermal conversion. This attribute is strategically uti-
lized in photothermal therapy, where CQDs are employed 
to selectively eliminate cancer cells by delivering controlled 
heat upon laser irradiation [52–54]. CQDs are emerging as 
a promising alternative to semiconductor QDs known for 
stable fluorescence. Unlike semiconductor QDs with high 
toxicity due to heavy metals, CQDs offer biocompatible, 
cost-effective, and chemically inert fluorescent solutions for 
clinical applications [55].

Tian et al. introduced a one-pot strategy for the synthesis 
of targeting agent functionalized graphitic carbon nitride 
quantum dots (CNQDs), as shown in Fig. 2a−e [56]. The 
resulting FA-CNQDs exhibited several desirable characteris-
tics, including intense fluorescence, stable colloidal proper-
ties, and biocompatibility in vitro and in vivo. Moreover, the 
FA-CNQDs demonstrated exceptional capabilities for tar-
geted fluorescence imaging and penetration of multicellular 
spheroids that overexpress FA receptors. This strategy holds 
promise for extensive applications in diverse functionalized 
CNQDs, spanning device development, sensing, and bio-
imaging. Moreover, the study’s exploration of in vivo bio-
compatibility holds the potential to propel CNQDs further 
in the field of biomedicine. Wang et al. proposed a feasible 
atomic-hybridization strategy for attaching CQDs onto the 
surface of ZnO microspheres (Fig. 2f−k) [57]. By breaking 
the C = O bonds in the CQDs and subsequent orbital hybridi-
zation of Zn-3d orbital and C-2p, the researchers achieved 
efficient carrier recombination and the emergence of mag-
netism at room temperature. Also, the HEI-OC-1 cells are 
cultured in a medium containing varying concentrations of 
CQDs/ZnO (20, 40, 60, 80, and 100 ppm) for a duration of 
24 h. The findings illustrated in Fig. 2j reveal that cellular 
viability can be sustained at a high level of bioactivity, irre-
spective of the concentration of CQDs/ZnO. The fluores-
cence image of cells colored with bioprobes in Fig. 2k also 

Fig. 1  Graphical illustration of the review papers
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confirms that almost all the cells retain their activity after 
incubation with CQDs/ZnO sample at 100 ppm. Thus, the 
bioprobes proposed, comprising CQD/ZnO hybrid materials, 
can be evaluated to confirm the absence of cytotoxicity. This 

assessment underscores their enhanced biocompatibility and 
suitability for biological applications. These properties, 
including biocompatibility and electronic modulation, unveil 
exciting prospects for seamlessly integrating fluorescence 

Fig. 2  A TEM image of FA-CNQDs. b Cell viabilities of HepG2 
cells treated with different concentrations of FA-CNQDs and 
CNQDs, respectively, for 24  h, by CCK-8 assay. c H&E-stained 
major organs collected from mice post-intraperitoneal administration 
of 0.1 mL of 1 mg/mL nanomaterials every other day for 2 weeks. d 
Flow cytometry analysis of the apoptosis of HepG2 cells subjected to 
the treatments of CNQDs and FA-CNQDs with concentration of 200 
µg/mL. e CLSM images of HepG2 cells after incubation with FA-

CNQDs for 2 h. Excitation wavelength = 405 nm, scale bar = 100 µm. 
Reproduced with permission from [56], Copyright 2022, Elsevier. f 
Schematic of CQDs/ZNO. g FESEM image of CQDs/ZnO sample. 
h M − H curves of the ZnO and CQDs/ZnO at room temperature. i 
The orbital-resolved DOS for C element at CQDs/ZnO. j Cell viabil-
ity of HEI-OC-1 cells treated with different concentrations of CQDs/
ZnO. k Fluorescence image of cells stained with CQDs/ZnO sample. 
Reproduced with permission from [57], Copyright 2023, Wiley–VCH
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optical imaging (FOI) and magnetic resonance imaging 
(MRI) technologies, thus enabling precise clinical diagnoses 
and surgical procedures with utmost accuracy.

2.2  Carbon nanotube (CNT) and their composites

CNTs are composed of three carbon atoms coordinated in 
a pyramidal fashion, transitioning from  sp3 hybridization 
to  sp2 hybridization [58]. Normally, CNTs are available in 
the form of SWCNTs (single layer, a diameter of smaller 
than 20 nm) and MWCNTs (multiple layer, a diameter 
greater than 30 nm) [59, 60]. MWCNTs and SWCNTs 
play complementary roles in biomedical applications, 
with MWCNTs providing structural support and controlled 
release, such as suppression of uncontrolled cell growth in 

the biomedicine, while SWCNTs excel in precision target-
ing and cellular imaging applications [61–63].

Zadeh et al. reported the electrospun polyurethane (PU)/
MWCNT composites with varying amounts of CNTs but 
consistent fiber diameter for potential biomedical applica-
tions (Fig. 3a−c) [64]. The authors showed that adding 
CNTs caused an increase in crystallinity percentage, water 
absorption ratio, Young’s modulus, toughness, conductiv-
ity, degradation time in an accelerated medium, clotting 
time, and human umbilical vein endothelial cell adhesion. 
Moreover, no significant cytotoxicity was observed for 
7-day extracts of all samples.

Suo et al. prepared a MWCNT/chitosan/sodium alginate 
(CNT/CS/AL) ternary composite hydrogel via 3D print-
ing technology for porous scaffolds (Fig. 3d, e) [65]. The 

Fig. 3  A Comparison of the integrity of different samples before and 
after 48 days of immersion in  CoCl2. b HUVEC proliferation on the 
electrospun mats according to the content of CNTs and tissue culture 
plate as a control for 7 days. c Cell viability percentage after 7 days 
of culture. Reproduced with permission from [64], Copyright 2021, 
Elsevier. d Scaffold and SEM images of the 3D-printed CNT/CS/
AL composite scaffold. e Cell viability and proliferation. Reproduced 
with permission from [65], Copyright 2023, Wiley–VCH. f SEM 

images of MG63 cells seeded on PHB-starch-1%MWNT electrospun 
scaffolds at days 1 and 7. g Remaining weight and h the pH of incu-
bated PBS of PHB-S and PHB-S-1%MWCNT electrospun scaffolds 
(statistical difference with *p < 0.05). i Cell viability as indicated with 
MTT assay of MG-63 cells seeded on PHB-S, PHB-S-1%MWCNT 
electrospun scaffolds, and control group at days 1, 3, and 7 (statistical 
difference with **p < 0.01). Reproduced with permission from [66], 
Copyright 2022, Elsevier
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study investigated its impact on human periodontal ligament 
cell (hPDLC) proliferation and its antibacterial properties 
against Porphyromonas gingivalis. The results demonstrated 
the successful fabrication of CNT/CS/AL porous composite 
scaffolds with uniform pores, and the scaffold’s degradation 
rate and swelling degree decreased as the CNT concentration 
increased. Additionally, the CNT/CS/AL scaffold exhibited 
excellent biocompatibility, promoting hPDLC proliferation, 
with the 0.5% CNT/CS/AL scaffold showing the highest bio-
compatibility among the tested concentrations Furthermore, 
in vitro antibacterial experiments revealed that the CNT/
CS/AL scaffold exhibited bacteriostatic effects on P. gingi-
valis, with increased antimicrobial activity observed when 
the CNT concentration exceeded 0.5%, resulting in the inac-
tivation of approximately 30% of the bacteria.

Asl et al. developed electrospun nanocomposite scaffolds 
using a combination of polyhydroxybutyrate (PHB), starch, 
and MWCNTs, as depicted in Fig. 3f and g [66]. The pre-
pared scaffolds underwent comprehensive characterization, 
including assessments of their morphology, porosity, thermal 
and mechanical properties, biodegradability, bioactivity, and 
their impact on cell function. The results revealed that the 
scaffold incorporating 1 wt% MWCNTs exhibited the small-
est fiber diameter (124 ± 44 nm), with a porosity exceeding 
80% and the highest tensile strength (24.37 ± 0.22 MPa). The 
addition of MWNTs positively influenced surface rough-
ness (Ra) and hydrophilicity. Scanning electron microscopy 
(SEM) revealed the formation of calcium phosphate deposits 
on scaffold surfaces after immersion in simulated body fluid 
(SBF), a finding confirmed by energy-dispersive spectrom-
etry (EDS) and X-ray diffraction (XRD) analysis. Moreover, 
MG63 cells demonstrated robust growth on the MWCNT-
containing scaffold, exhibiting increased cell viability, alka-
line phosphatase (ALP) secretion, calcium deposition, and 
gene expression compared to scaffolds lacking MWCNTs.

2.3  Carbon nanofiber (CNF)‑reinforced composites

Carbon fibers are strong and thin fibers made primarily of 
carbon atoms. Carbon fiber-reinforced composites are used 
in orthopedic implants, such as bone plates, screws, and 
artificial joints due to their exceptional strength-to-weight 
ratio [67–69]. These materials offer excellent strength and 
durability while being lightweight and biocompatible mak-
ing them suitable for load-bearing applications, such as a 
support for dental crowns and bridges [70–73].

Feng et al. explored a composite material consisting of 
polyether ether ketone (PEEK), zinc oxide nanoparticles 
(ZnO), and short carbon fibers (SCFs) for an artificial joint 
material, as shown in Fig. 4a−c [23]. ZnO-modified short 
carbon fiber (SCF) powder was incorporated into PEEK 
through a melt-blending process, followed by injection 
molding. This approach aimed to enhance both the wear 

resistance and antibacterial characteristics of PEEK. The 
findings revealed that the resulting PEEK/ZnO-SCF com-
posite exhibited a dense microstructure, with the addition 
of ZnO facilitating the integration of SCF and PEEK. The 
addition of SCF could improve the mechanical properties of 
the resultant composites. The PEEK/ZnO-SCF composite 
showed good antibacterial activity against Escherichia coli 
and Staphylococcus aureus and had good biocompatibility.

Paz-González et al. developed a structural composite 
using 3D printed-polylactic acid (PLA) and carbon fiber 
laminates (PLA/CFRC, Fig. 4d−f) with a potential appli-
cation in implant prosthetics [24]. The composite showed 
good cytocompatibility with more than 80% cell viability, 
a tensile modulus of 19.3 ± 0.5 GPa, and tensile strength 
of 238.91 ± 25.95 MPa, with mechanical properties closely 
analogous to bone. The findings indicate that the suggested 
PLA/CFRC composite holds promise as a potential material 
for manufacturing femoral stem hip prostheses.

2.4  Graphene and their composites

Graphene, a single layer of carbon atoms arranged in a 
two-dimensional honeycomb lattice, possesses exceptional 
properties, including outstanding electrical and thermal 
conductivity, mechanical strength, and a substantial surface 
area [74–76]. The graphene family encompasses various 
materials, including few-layer graphene (2 − 5 layers), mul-
tilayer graphene (2 − 10 layers), and graphene oxide (GO), 
each exhibiting distinct lateral dimensions, thicknesses, and 
functionalities [77]. While ideally single-layer graphene pre-
sents limitations for widespread biomedical applications, 
such as challenges in scalable synthesis, poor dispersibility 
in aqueous solutions, and concerns about biocompatibility 
and toxicity [78–80], other members of the graphene fam-
ily, particularly GO, have gained prominence as preferred 
materials in biomedical research [81–85].

Li et al. reported GO coated-sulfonated carbon fiber/
polyetheretherketone (PEEK) composites for mechani-
cal and biological properties, as shown in Fig. 5a−c [81]. 
The fabricated GO-sulfonated carbon fiber/PEEK compos-
ites exhibited a three-dimensional porous structure with 
a bioactive GO coating. Both in vitro and in vivo assess-
ments, using the cell counting kit-8 (CCK-8) and histologi-
cal examination of hematoxylin and eosin (H&E)-stained 
sections, respectively, demonstrated the biocompatibility 
and non-toxic nature of these composites In addition, the 
composites showed increased apatite deposition in the SBF 
test, upregulated expression of osteogenic genes by reverse 
transcription-PCR (RT-PCR), and better osseointegration 
by micro-computed tomography (micro-CT) analysis after 
surface modification, including ALP, Runt-related transcrip-
tion factor 2 (Runx-2), Col-I, and OC. The results suggested 
that these materials hold promise for use in biomedical 
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engineering applications, particularly as bone implants and 
tissue engineering scaffolds.

Razzaghi et al. examined the effect of graphene in 
electrospun PU nanocomposites mats grafted with poly-
caprolactone (PCL)-functionalized GO nanosheets, as 
shown in Fig.  5d−g [84]. The inclusion of graphene 
nanosheets in the nanocomposites improved electron 

signal diffusion, enhancing 3T3 fibroblast cell prolif-
eration, attachment, and viability on PU-graphene and 
PU/reduced polycaprolactone-grafted graphene oxide 
(GPCL) nanofiber mats. Furthermore, GPCL nanosheets, 
being highly compatible with the PU matrix, bolstered 
the mechanical properties of the PU-GPCL nanofiber 
mats. Overall, graphene nanosheets increased the nano-

Fig. 4  A Synthesis of ZnO-SCF: micromorphology of ZnO-SCF 
composite powder and EDS of ZnO-SCF composite powder. b Live/
dead staining image: PEEK composite material and pure PEEK. c 
SEM images after XLPE wear: PEEK/ZnO-SCF. d PEEK/ZnO-SCF 
composites with different contents were cultured with E. coli and S. 
aureus for 24 h and e diameter of the inhibition zone. Reproduced 
with permission from [23], Copyright 2022, ACS. f PLA/CFRC spec-

imen. g Prototype stem, PLA (layer, 1, 2, and 3), CFRC (layer, 2 and 
4). h Percentage of cell viability (MTT) in peripheral blood mononu-
clear cells and L929 fibroblast cells. Both cells were exposed for 24 
h to PLA, PLA/CFRC, and CFRC surfaces. All measurements were 
made in triplicate (average ± standard deviation). Reproduced with 
permission from [24], Copyright 2023, Elsevier
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composites’ thermal stability, mechanical strength, and  
biocompatibility.

Jyoti et al. fabricated GO-CNT-hydroxyapatite (GCNT-
HAP) hybrid composites for biomedical applications 
(Fig. 5h, i) [85]. The inclusion of GCNTs significantly 
improved the nanoindentation hardness and Young’s modu-
lus of HAP composites compared to other carbon nanofillers 
and pristine HAP. In vitro cytotoxicity testing on MDCK 
cells indicated that GCNT-HAP composites with 2% GCNT 
filler exhibited enhanced cell viability, compatibility, and 
proliferation compared to other materials, suggesting their 

potential for implantable medical devices and tissue engi-
neering scaffolds.

2.5  MXene and their composites

MXenes are emerging materials for biomedical applica-
tions due to their unique properties. Their 2D structure 
with high surface area allows for efficient drug delivery 
and biomolecule adsorption. MXenes possess not only 
excellent electrical conductivity, ideal for biosensors and 
bioelectrodes, but also tunable optical properties including 

Fig. 5  A Surface morphology of GO-SCF/PEEK composites before 
and after SBF immersion observed by SEM. b In  vitro cytotoxicity 
of the PEEK and CF/PEEK composites with and without surface 
modification for 1 day, 4 days, and 7 days by CCK-8 assay, *p < 0.05. 
c Histological evaluation of viscera extracted from rats which are 
implanted with GO-SCF/PEEK composites including hearts, lungs, 
spleens, and kidneys. Reproduced with permission from [81], Cop-
yright 2022, Elsevier. d Electrospun nanofiber mat (PU-GPCL). 
e In  vitro degradation of electrospun nanofiber mats in PBS for 8 

weeks. f Results of MTT assay after 3 and 10 days (a) and optical 
microscopy images of 3T3 fibroblast cells cultured in control and g 
PU-G0.5, PU-G1, PU-GPCL, and PU-GPCL1. Reproduced with per-
mission from [84], Copyright 2021, Elsevier. h SEM of GCNT-HAP 
composites at different magnifications. i Cell viability analysis, the 
cells are incubated for 1, 3, and 5 days and comparison of all the fill-
ers reinforced HAP composites. Reproduced with permission from 
[85], Copyright 2021, Elsevier
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photoluminescence and light absorption, making them suit-
able contrast agents for various imaging techniques [86, 
87]. Their hydrophilic nature enables easy dispersion in 
aqueous solutions, essential for biomedical compatibility. 
Moreover, MXenes can be engineered to have antibacterial 
properties, making them promising candidates for infection-
resistant coatings on medical devices and implants [88–90]. 
However, the long-term biosafety of MXenes has yet to  
be systematically assessed. Although several studies have 
demonstrated the general biocompatibility of currently avail-
able MXenes for biomedical applications, with some even 
showing in vivo biodegradability, most of these studies have 
been limited to cell experiments or short-term hematological  
assays [91–93].

Neubertova et al. functionalized  Ti3C2T flakes with dieth-
ylenetriaminepentaacetic acid (DTPA) as a chelating agent 
and then further complexed with gadolinium  (Gd3+) ions 
(Fig. 6a−c) [94]. This covalent functionalization process 
resulted in a paramagnetic response in the  Ti3C2T flakes, 
which are intrinsically diamagnetic, rendering the flakes 
suitable for T1-MRI because Gd is the powerful contrast 
agent for this imaging modality. Additionally, this technique 
provided surface protection against oxidation when exposed 
to phosphate buffer saline and blood serum, enhancing cyto-
compatibility. The study showcased the high photothermal 
conversion efficiency of MXene-Gd composites, highlight-
ing their potential in photothermal therapy. This research 
expanded the range of bioapplications for MXenes by intro-
ducing an MRI contrast agent and advancing covalent func-
tionalization strategies for these materials.

Chen et al. developed a versatile all-nanofiber sensor 
using MXene and modified styrene–butadiene–styrene 
(SBS) nanofibers (Fig. 6d−f) [95]. They functionalized 
SBS by introducing quaternary ammonium groups (NSBS) 
via thiol-ene click chemistry, improving hydrophilicity and 
mechanical properties. MXene nanosheets were then elec-
trostatically adsorbed onto NSBS nanofibers. This MXene/
NSBS sensor displayed a high sensitivity of 62,194 in the 
wide detection range of 300% and excellent stability of 3000 
cycles and was applied for wireless detection of human joint 
motion, pulse, and electrocardiogram (ECG) signals. The 
MXene/NSBS electrodes also exhibited reliable temperature 
response and thermal management.

Diedkova et al. immobilized MXenes onto electrospun 
polycaprolactone (PCL) membranes (Fig. 6g−i) [96]. They 
utilized positron annihilation analysis and complementary 
techniques to study defect structure and porosity in the 
nanofiber scaffolds. The composite scaffolds displayed 
conductivity across a broad temperature range, indicating 
their potential as conductive biomaterials. They examined 
MXene’s electronic structure and layer defects, correlating 
these features with in vitro biological properties and bac-
terial adhesion tests. The results revealed that double and 

triple MXene coatings facilitated cell attachment and pro-
liferation and showed mild antibacterial effects. Overall, 
the PCL-MXene composite exhibited distinct advantages 
in tissue engineering, underlining its potential as a conduc-
tive biomaterial.

3  Deposition techniques  
for biomedical applications

The choice of coating techniques depends on factors, such 
as substrate material, intended applications, and desired 
coating layer thickness. The following sections offer a com-
prehensive overview of the diverse coating technologies 
employed, detailing their processes and the current research 
status in this field.

3.1  Chemical vapor deposition (CVD)

CVD has gained recognition as a promising technology in 
medical applications, particularly for enhancing medical 
device coatings and drug delivery systems [97–99]. Through 
the deposition of thin and uniform films onto implant sur-
faces, CVD improves biocompatibility and reduces the risk 
of rejection [100–102]. Additionally, CVD has been used in 
the development of drug delivery systems, where a thin film 
is deposited onto a substrate and loaded with therapeutic 
agents. This allows for the controlled release of medication 
over an extended period, enabling sustained drug delivery 
[103]. Over the years, CVD has been extensively employed 
to coat the surfaces of medical devices with diverse materi-
als, including carbon-based materials, resulting in remark-
able improvements in device performance [104–106]. While 
there are a few elements from the periodic table, such as 
noble gases, halogens, actinides, and alkali metals, that can-
not be deposited using CVD, it remains a highly effective 
method for depositing multidirectional and assorted coatings 
[107–109].

Kheradmandfard et al. enhanced wear resistance of bio-
medical β-type titanium alloy by coating biocompatible 
multilayer silicon (Si)/DLC nanocomposites (Fig. 7a−c) 
[110]. When the coating was applied to titanium alloy 
surface, the wear resistance properties were improved 
exceptionally (6.2 ×  10−10  mm3  N−1  mm−1). The wear 
track depth after 1 million wear cycles was only 220 nm, 
compared to the full coating thickness of 370 nm. Cell 
culture tests demonstrated that Si/DLC multilayer nano-
composite coating (MNC) samples exhibited better bio-
compatibility than the Ti–29Nb–13Ta‒4.6Zr (TNTZ) 
alloy samples. A quantitative analysis revealed that 60% 
of the Si/DLC MNC sample surface was covered by cells, 
approximately double that of the TNTZ alloy sample. In 
addition, no dead cells were observed in the Si/DLC MNC 
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samples, indicating that the Si/DLC MNC samples exhib-
ited no toxic effects against the MC3T3 cells. The findings 
indicate that the Si/DLC nanocomposite coating obtained 
through CVD significantly improved the wear resistance 
of the TNTZ alloy, establishing its potential as an ideal 
choice for biomedical applications demanding exceptional 
wear resistance.

Mansurnezhad et al. harnessed the initiated chemical 
vapor deposition (iCVD) technique to coat poly(ethylene 

glycol dimethacrylate) (pEGDMA) onto the surface of elec-
trospun graphene nanofibers (GNFs) (Fig. 7d–f) [111]. This 
process resulted in the creation of an ultrathin layer, denoted 
as iCVD-GNFs, which established covalent bonds with 
gelatin chains. A comprehensive assessment of iCVD-GNF 
performance was undertaken, including morphological and 
chemical analyses that verified the existence of the ultrathin 
layer and its bonding to the nanofibers. In vitro biodegra-
dability tests revealed that iCVD-GNFs maintained their 

Fig. 6  A Schematic representation of MXene flake functionalization 
with DTPA and subsequent chelation with  Gd3+ ions. b Cell viabil-
ity, measured after the cultivation of MRC-5 cells and c the L929 
cell line with different concentrations (and corresponding lateral 
flakes size measured by DLS) of “fresh” MXene previously stored 
in MXene and MXene-Gd flakes for 72 h (pristine MXene, unlike 
MXene-Gd, undergoes oxidation and is designated MXene (ox)). 
Reproduced with permission from [94], Copyright 2022, Elsevier. d 
Preparation of MXene/NSBS nanofibrous membranes. Biocompat-
ibility evaluation: e fluorescence microscopy images of L929 cells on 

days 1, 3, and 5 for the control and MXene/NSBS sample. f Optical 
density values of CCK-8 assay. Reproduced with permission from 
[95], Copyright 2023, Elsevier. g Round membranes (Ø 5 mm) were 
glued onto adhesive paper and photographed in the daylight; zero cor-
responds to the as-spun PCL membrane, and 1, 2, 3, and 4 indicate 
the PCL–MX-1 to PCL–MX-4 samples, respectively. h Suggested 
positron interaction model with the PCL–MXene composite. i CCK-8 
assay data on the proliferation of human dermal fibroblasts during the 
7-day experiment. Reproduced with permission from [96], Copyright 
2023, ACS
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morphology significantly even after 14 days of immersion 
and retained their structural integrity for 31 days, mitigating 
the typical problem of rapid dissolution in GNFs. Further-
more, cytocompatibility assessments using human fibroblast 
cells (hFC) in in vitro cell culture studies demonstrated that 
iCVD-GNFs were compatible with the cells and enhanced 
cell proliferation compared to a control group cultured on 
tissue culture plates (TCP). These results underscore the 
potential of iCVD-GNFs for applications in biomedicine, 
including tissue engineering scaffolds and wound dressings.

3.2  Plasma‑enhanced chemical vapor  
deposition (PECVD)

PECVD, an advanced iteration of CVD, was developed to 
tackle the issue of elevated coating temperatures that could 
compromise the integrity of certain materials, rendering them 
unsuitable for conventional CVD processes [112–114]. In 

contrast to CVD, PECVD enables the deposition of thin films 
at significantly reduced temperatures, making it applicable 
to a broader range of materials, both organic and inorganic. 
This is achieved by harnessing electrical energy to create a 
plasma that ionizes natural gas, generating free radicals that 
polymerize to create the deposition layer [115, 116].

PECVD is frequently employed for coating biomedical 
implants, using precursor gases like silane  (SiH4), meth-
ane  (CH4), and phosphine  (PH3) to deposit nitrogen (N)-
doped hydrogenated amorphous SiC (a-SiC:H) coatings 
[117–119]. These PECVD coatings have been extensively 
researched and proven to be non-cytotoxic and biocompat-
ible across various biomedical applications [120, 121]. In 
summary, PECVD is an effective technique for coating bio-
medical devices and implants, enabling improvements in 
their mechanical and biocompatibility properties, and holds 
great promise in advancing the field of biomedical materi-
als research.

Fig. 7  A HR-TEM of the Si/DLC MNC. b Fluorescent microscopic 
images of live (green)/dead (red) staining of MC3T3 cells on the Si/
DLC MNC on the TNTZ samples after 1 day and 4 days of culture. 
c MC3T3 cell proliferation on the TNTZ and Si/DLC MNC on the 
TNTZ samples (n = 3, **indicates p-value < 0.01). d Hardness and 
elastic modulus. Reproduced with permission from [110], Copyright 
2022, Elsevier. e Schematic illustrations of iCVD-GNFs. f MTS assay 

for the iCVD-GNFs and TCP as control. g Weight loss percentage of 
the CVD-GNFs upon immersion in 37 °C PBS as a function of time. 
h FE-SEM image of hFC on the surface of the CVD-GNFs after 2 
days of cell seeding. i Water uptake percentage of the CVD-GNFs 
versus time. Reproduced with permission from [111], Copyright 
2020, Elsevier
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Zhang et al. introduced vertical graphene (VG) on medi-
cal-grade titanium (VG@Ti) surfaces by PECVD (Fig. 8a−c) 
[114]. The study conducted a comprehensive investigation 
into the physicochemical properties, photothermal effects, 
antibacterial activities, and biocompatibility of VG@Ti. The 
results revealed that the thickness of the VG film increased 
with higher reaction temperatures. Graphene films exhib-
ited a vertical loading on medical-grade titanium, leading to 

improved corrosion resistance, hydrophobicity, and enhanced 
antibacterial performance against both Gram-positive S. aureus 
and Gram-negative E. coli when exposed to NIR light (808 nm 
at 0.8 W  cm–2). Notably, under NIR light (808 nm) at 0.8 W 
 cm–2 for 10 min. Furthermore, VG coatings on the titanium 
surface displayed no discernible cytotoxicity toward osteoblast 
cells. In vivo results confirmed the efficient antibacterial prop-
erties of VG under NIR light without any evident toxicity.

Fig. 8  A Cross-section morphologies of VG@Ti-650 and VG@
Ti-750. b Fluorescent images of live/dead cell staining of MC3T3-
E1 cells cultured on various sample surfaces for 4 days. c Cell prolif-
eration of MC3T3-E1 cells cultured on various samples. Reproduced 
with permission from [114], Copyright 2022, Elsevier. d Cross-
sectional morphology of SiN-DLC film. e Fluorescence images of 
MC3T3-E1 mouse osteoblasts grown on SiN-DLC film and stained 
using the live/dead kit assay, showing viable (green) and dead (red) 
cells. f Results of cytotoxicity measurement by the enzyme-labeled 
method; compared to the control group: * indicates p < 0.05, ** indi-

cates p < 0.01, and *** indicates p < 0.001. Reproduced with permis-
sion from [122], Copyright ACS, Elsevier. g PECVD system. h Effect 
of bare and DLC-coated SS304 samples on A172 human glioblas-
toma cell viability as assessed by the MTT reduction test and mor-
phological aspect of the human glioblastoma cells grown on DLC-
coated SS304. The results were calculated as percentages relative to 
the control (untreated cells), considering the mean and the standard 
error of the mean (n = 4 per group). Reproduced with permission 
from [123], Copyright 2019, IOP Science
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Wei et al. deposited Si-incorporated diamond-like-carbon  
(Si-DLC) and Si/N-incorporated DLC (SiN-DLC) as a 
protective film for  Ti6Al4V artificial implants via PECVD 
method (Fig. 8d−f) [122]. The study found that the as-
deposited DLC film had a thickness of approximately 2 µm, 
and the SiN-DLC film exhibited the lowest surface rough-
ness Ra (53.0 ± 3.6 nm) compared to  Ti6Al4V and DLC 
films. SiN-DLC showed superior mechanical properties to 
 Ti6Al4V, especially in terms of resistance to plastic defor-
mation. It also displayed excellent adhesive strength(> 13 
N) with  Ti6Al4V, a critical requirement for use in liquid 
environments. In both simulated body fluid (SBF) and SBF 
containing bovine serum albumin (BSA), the SiN-DLC film 
exhibited significantly lower friction coefficients and wear 
rates compared to  Ti6Al4V, demonstrating superior tribo-
logical properties (0.072 and 1.82 (×  10–7)  mm3  N–1  m–1, 
respectively). Moreover, Si-DLC and SiN-DLC films pos-
sessed similar corrosion resistance but surpassing  Ti6Al4V. 
The cytotoxicity tests revealed that the SiN-DLC film nota-
bly enhanced cell viability and promoted cell proliferation 
to a certain extent.

Oliveira et al. deposited a DLC film with 20% hydrogen 
and 80% carbon onto 304 stainless steel (SS304) surface 
using PECVD technique (Fig. 8g, h) [123]. Tribocorrosion 
tests were performed after immersion in SBF, demonstrating 
that the DLC film reduced SS304 corrosion susceptibility by 
59-fold compared to the untreated surface, enhancing corro-
sion protection. Evaluations with A172 glial cells indicated 
that the DLC film did not exhibit genotoxicity or cytotoxic-
ity. Moreover, A172 cells exposed to DLC-coated SS304 for 
24 h did not show any cytotoxicity or genotoxicity compared 
to untreated cells. These findings shed light on the tribocor-
rosion behavior of the DLC film, encompassing wear rate, 
friction coefficient, and corrosion resistance in SBF, offer-
ing insights for the development of advanced DLC-coated 
implants in biomedical applications.

3.3  Ion‑beam (IB)

The use of ion-beam (IB) deposition has arisen as a promis-
ing technology for improving biomedical coatings, primar-
ily by enhancing surface selectivity and biocompatibility 
through precise surface modifications [124–126]. This grow-
ing interest in IB is driven by several key factors. Firstly, it 
addresses shortcomings in metallic orthopedic grafts used 
in the replacement of long bones and cartilage, such as high 
friction resistance and limited biocompatibility [127–129]. 
Secondly, as biomaterials expand beyond traditional met-
als, ceramics, and polymers to biological materials [36, 130, 
131], IB offers a means to modify their properties effec-
tively [132]. Lastly, IB in conjunction with plasma treatment 
enhances biomaterials by providing superior surface selec-
tivity compared to conventional simple etching processes 

[133–135]. In summary, IB deposition is a powerful tech-
nique for creating biomedical coatings, offering substantial 
potential for advancing biomedical materials research.

Liu et al. employed a one-step IB method to create a 
highly biocompatible micropatterned surface on diamond-
like carbon (DLC) to enhance surface properties at the 
nanoscale level (Fig. 9a−c) [136]. Increasing the dose of 
IB irradiation raised the  sp3 C − N content on the DLC sur-
face, positively impacting biocompatibility. The adhesion of 
MC3T3 osteoblasts increased from 32 to 86% at an irradia-
tion dose of 8 ×  1015 ions  cm−2. However, the micropattern 
hindered osteoblast adhesion by physically constraining cell 
expansion and extension. The micropattern with a depth of 
37 nm exhibited favorable friction properties, reducing the 
coefficient of friction by 21% at higher speeds. These find-
ings underscore IB irradiation’s effectiveness in enhancing 
biotribological properties and biocompatibility of DLC 
coatings, making them more suitable for various biomedi-
cal applications, including orthopedic implants, cardiovas-
cular devices, and dental materials. Penkov et al. utilized IB 
irradiation to enhance the biocompatibility of DLC-based 
nanocomposite coatings (Fig. 9d−f) [137]. Optimal irradia-
tion conditions were determined through molecular dynam-
ics simulations, and subsequent experiments validated these 
conditions, establishing a correlation between surface modi-
fications and biomedical properties. The irradiation process 
resulted in the creation of a surface layer with low density 
and reduced DLC sp3 content, with these structural and 
chemical changes being largely independent of the initial sp3 
content and irradiation energy. Importantly, IB irradiation 
significantly improved the biocompatibility of DLC-based 
nanocomposite coatings. When irradiated with 1 keV He 
ions at a dose of 4.2 ×  1015 ions  cm−2, the adhesion of MG63 
cells increased dramatically from 10 to approximately 100%.

4  Industrial trend of carbon‑based materials 
for biomedical applications

In the academic and industrial arenas, the increasing promi-
nence of carbon-based composites in biomedical applications 
is indisputable. In recent years, there has been a promising 
industrial trend toward utilizing carbon-based composites in 
biomedical applications, aligning with the goal of advanc-
ing safer and more effective medical treatments and devices. 
The regulatory pathway for medical devices is a meticulous 
and varied process influenced by product characteristics 
and regulatory frameworks. This sequence outlines the pro-
gression from initial classification and preclinical testing to 
clinical trials, regulatory submissions, and post-market sur-
veillance, ensuring that medical devices meet stringent stand-
ards for safety and efficacy. Particularly in the context of the 
USA and the US Food and Drug Administration (FDA), the 
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process begins with classifying the medical device based on 
its intended use, potential risks, and indications for use, fol-
lowed by preclinical testing. Subsequently, an Investigational 
Device Exemption (IDE) application is submitted for FDA 
permission to conduct clinical trials. The clinical trials pro-
gressively assess the safety and effectiveness of the medical 
device in human subjects. The premarket submission, incor-
porating data from preclinical testing and clinical trials, along 
with details regarding the device’s design and manufacturing, 
is then submitted to the FDA for regulatory review. After 
the FDA’s decision, post-market surveillance then ensures 
continuous monitoring of device performance, with ongo-
ing data continuous monitoring of device performance, with 
ongoing data related to adverse events, malfunctions, and 
long-term outcomes, contributing to the ongoing evalua-
tion and enhancement of the device’s overall reliability and 
safety profile [138]. This section provides several instances 
of commercial products incorporating carbon-based materi-
als in various biomedical domains.

CarboFix Orthopedics Ltd., an industry trailblazer, has 
effectively brought carbon fiber-reinforced polymers to the 
market for use in orthopedic implants and devices [139]. 
These implants utilize continuous carbon fibers, arranged 
both in a unidirectional, longitudinal orientation and heli-
cal/diagonal configurations. Notably, the composite material 
closely approximates the modulus of elasticity of cortical 
bone, potentially expediting fracture healing and reducing 
the risk of stress risers and secondary fractures. Moreover, 
CarboFix implants offer the unique advantage of radiolu-
cency, enhancing their utility during surgical procedures and 
follow-up assessments. This exceptional composite material 
allows for MRI and CT scans with minimal to no artifacts, 
improving soft tissue visualization and facilitating radia-
tion therapy with minimal backscatter. CarboFix nails and 
plates also exhibit outstanding fatigue resistance, provid-
ing vital support to patients with delayed union and those 
undergoing oncological treatment. The CarboFix implants 
portfolio encompasses a diverse range of options, including 

Fig. 9  A Schematic illustration of the IB irradiation process. b 
Nanoindentation load displacement and c hardness and modulus for 
the DLC coatings under negative bias voltage of 0, –20, –40, –60, 
and –80 V, respectively. c Surface topographies of as-coated DLC 
and DLC coating after irradiation by N ions under irradiation dose 
of 2 ×  1015, 4 ×  1015, and 8 ×  1015 ions/cm2. e Optical images of the 
MC3T3 cells on the IB-irradiated DLC under ion doses of 2 ×  1015, 
4 ×  1015, and 8 ×  1015 ions/cm2 and as-coated DLC. f Cell coverage 
for as-coated DLC, patterned DLC, and irradiated DLC as a function 

of irradiation dose. Reproduced with permission from [136], Copy-
right 2022, Springer. d Changes in diamond structure under irradia-
tion at 1 keV with neutral He after different irradiation doses (side 
view). Red arrows indicate the initial direction of ions, and  sp3 bonds 
are shown in red, and  sp2 bonds in blue. e Si/DLC coating irradiated 
by 1 keV He ions at a dose of 4.2 ×  1015 ions/cm2. f Cell coverage as a 
function of irradiation dose for 1 keV He ions. Reproduced with per-
mission from [137], Copyright 2019, Elsevier
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intramedullary nails for the humerus, tibia, and femur, an 
ankle arthrodesis nail, and plates designed for the distal 
femur, proximal tibia, distal radius, proximal humerus, distal 
fibula, among other configurations (Fig. 10a).

Carbon Medical Technologies Inc. has made signifi-
cant contributions in academia and the professional sphere 
through its pioneering pyrolytic carbon-coating technology 
[140]. This innovation has resulted in various biomedical 
products, including injectable bulking agents, implant-
able tissue markers for biopsy site identification, and fidu-
cial markers for radiation therapy treatment, as shown in 
Fig. 10b. Notably, Durasphere, one of their products, show-
cases the practical application of this technology. Duras-
phere is an injectable bulking agent containing pyrolytic 

carbon-coated graphite beads suspended in a water-based 
carrier gel with beta-glucan. It is used for conditions such 
as stress urinary incontinence, fecal incontinence, gastroe-
sophageal reflux, and vesicoureteral reflux. Durasphere is 
highly biocompatible and can be administered in a simple 
office-based procedure, typically taking less than 30 min. 
These innovations illustrate the synergy between advanced 
technology and clinical practice, advancing the field of bio-
medical materials.

Bio-medical Carbon Technology Ltd. specializes in 
advanced wound care solutions, particularly carbon fiber 
wound dressings [141]. Notably, their recent innovation, 
KoCarbon®, represents a new generation of activated car-
bon fiber dressings, validated through clinical trials for 

Fig. 10  The contemporary 
industrial focus on the advance-
ment of carbon-based materi-
als and their applications in 
the biomedical domain. a The 
CarboFix implants portfolio 
(CarboFix Orthopedics Ltd.). 
b Biopsy site identification 
and fiducial markers tailored 
for radiation therapy treatment 
(Carbon Medical Technologies 
Inc.). c Commercial product of 
carbon fibers wound dressings 
(Bio-medical Carbon Technol-
ogy Ltd.). d Dental CNT X-ray 
Tube (Vatech Inc.). e Graphene-
based neural probes and head 
stages for bio-signal amplifica-
tion and acquisition systems 
(Guger technology medical 
engineering GmbH). Repro-
duced with permission from 
[139–143]
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their remarkable ability to absorb bacteria and endotoxins 
(Fig. 10c). The KoCarbon® Medical Bandage™, a product 
designed for post-surgical wounds, exhibits a sophisticated 
three-layer structure. The first layer, composed of PET non-
woven fabric, serves as a porous medium, facilitating the 
exchange of air between the wound and the external environ-
ment. The second layer features carbon fiber fabric, func-
tioning as an absorption layer capable of swiftly absorbing 
blood exudate and bacteria from the wound, thereby mitigat-
ing wound odors and creating an antimicrobial environment. 
The third layer consists of a PE that prevents wound adhe-
sion and secondary injuries. Incorporating carbon fiber into 
wound dressings advances wound care technology, enhancing 
healing and infection control and reducing post-surgical com-
plications. These innovations exemplify the synergy between 
materials science and healthcare, leading to improved patient 
outcomes and advancements in wound care.

Vatech Inc. has pioneered the integration of CNT technol-
ogy into a dental digital X-ray generator for dental imaging 
sectors [142]. Traditionally, the X-ray market has relied on 
analog thermoelectric tubes made of metals. The conven-
tional method involves applying high voltage exceeding 
2300° to a metal wire filament, requiring a warm-up period 
and emitting radiation, leading to pre-image radiation expo-
sure for patients and medical personnel. In contrast, CNT 
X-ray tubes, functioning as generators, are a paradigm shift 
with reduced dimensions and weight compared to analog 
counterparts using filaments. This characteristic facilitates 
their incorporation into ultra-lightweight X-ray equipment, 
thereby enabling the acquisition of high-resolution images. 
Notably, the X-ray dose is digitally adjustable down to  
microseconds, offering precise control and mitigating radia-
tion exposure to the human body. The EzRay Air series,  
featuring CNT X-ray tubes (Fig. 10d), stands out by instantly 
managing X-rays through digital electrical signals, elimi-
nating the need for unwarranted exposure during the X-ray 
preparation phase, and ensuring an efficient and streamlined 
imaging process. In addition to operational efficiency, the 
EzRay Air series delivers high-quality images. Its design ena-
bles miniaturization and weight reduction, making it more 
compact and lighter than conventional market products. This 
technological leap forward in dental radiography aligns with 
contemporary standards of precision, safety, and efficiency.

G.tec medical engineering GmbH leads in brain-computer  
interface (BCI) and bio-signal processing technologies, 
distinguished by its utilization of graphene transistors 
(Fig. 10e) [143]. Their offerings include bio-signal ampli-
fiers, invasive/non-invasive stimulators, wearable Electro-
encephalogram (EEG) headsets, and Conformité Europée-
nne (CE)-certified, FDA-cleared user-ready applications. 
Applied in hospital and rehabilitation settings, these appli-
cations aid in stroke rehabilitation, neurological assessment, 
communication facilitation for coma/locked-in patients, and 

pre- and intraoperative brain mapping in neurosurgical pro-
cedures. Their advancements encompass graphene-based 
neural probes and headstages designed for comprehensive 
amplification, recording, and analysis within living organ-
isms or cellular environments. Ongoing research explores 
enhancing electrical stimulation to neuronal circuits using 
graphene, particularly for conditions like blindness or Par-
kinson’s disease.

5  Summary and future directions

Carbon-based materials and their composites hold remark-
able promise across various biomedical domains, owing 
to their exceptional attributes. These include substantial 
specific surface areas, high hydrophilicity, adaptable layer 
thickness, modifiable structures, and a diverse range of com-
positions. Notably, carbon-based materials, such as graphene 
quantum dots, exhibit an impressive level of biocompatibil-
ity, minimizing undesirable reactions when interfacing with 
biological systems. Their noteworthy surface area-to-volume 
ratio facilitates efficient drug delivery, thus amplifying ther-
apeutic effectiveness. Furthermore, the exceptional electri-
cal conductivity inherent to carbon materials empowers the 
development of bioelectrodes and biosensors, enabling pre-
cise monitoring of physiological parameters. Additionally, 
the tunable mechanical properties of carbon-based materi-
als render them highly suitable for an array of applications, 
including implants, artificial joints, bone engineering, and 
scaffold reinforcement.

Notwithstanding the advantages, it is crucial to recog-
nize that the adoption of carbon materials in biomedical 
applications necessitates comprehensive long-term stabil-
ity studies to ensure their reliability and safety—substantial  
research has been conducted but this field is still in its early 
stages. Looking ahead for these carbon-based materials and 
coating techniques in biomedical applications, the future 
direction encompasses a multifaceted approach. It begins 
with the imperative of conducting comprehensive, long-
term, in vivo safety assessments to ensure the sustained 
well-being of patients. Simultaneously, the focus extends to 
innovation, with a goal to develop multifunctional materials, 
such as hybrid metal/polymer/ceramic nanocomposites, that 
transcend conventional roles and offer versatile solutions in 
diagnostics and therapeutics. In this context, a meticulous 
understanding of surface properties through detailed char-
acterization is emphasized, aiming to tailor materials for 
specific biomedical applications, optimize performance, and 
predict biological responses accurately. Also, establishing 
industry standards emerges as a pivotal step, involving the 
definition and implementation of guidelines governing man-
ufacturing processes, quality control, and safety protocols. 
Collectively, this comprehensive strategy seeks to advance 
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the field, ensuring the responsible and effective utilization 
of carbon-based materials in the evolving landscape of bio-
medical science.

1. Comprehensive long-term stability studies are urgently 
needed for emerging carbon-based materials. For 
instance, MXenes, which have garnered substantial 
attention for potential biomedical applications, exhibit 
initial signs of low toxicity. However, a systematic 
exploration of their toxicity, environmental impact, and 
effects on human health is lacking, leaving the underly-
ing mechanisms unclear. To fully harness the potential 
of MXenes in biomedicine, addressing these challenges 
through further research is imperative.

2. Although extensive research has probed the safety of 
carbon-based materials, it is essential to acknowledge 
that many biocompatibility studies have relatively short 
durations compared to human lifespans. To obtain a 
comprehensive understanding of long-term effects, in-
depth and extended studies focusing on biocompatibility 
and toxicity are imperative for accurately evaluating the 
safety and potential risks associated with the biomedi-
cal use of carbon-based materials. From these, a robust 
assessment of long-term biocompatibility and toxicity 
profiles can be achieved, offering vital insights for the 
development of safe and effective biomedical materials 
and devices.

3. The characterization and comprehension of surface 
properties in carbon-based materials remain domains 
necessitating extensive investigation. Specifically, there 
is a pressing requirement for a systematic exploration 
of how surface properties influence the stability of 
carbon-based materials in aqueous solutions and com-
prehensive studies on surface modification techniques. 
These inquiries are pivotal in facilitating the expansion 
of carbon-based materials’ applications by providing 
heightened control over their surface attributes. Notably, 
within the context of medical markers, proficient surface 
engineering holds the potential to significantly enhance 
their performance.

4. Securing the effective functionality and stability of bio-
medical coatings mandates a thorough and prolonged 
biotribological evaluation. The substantial threat posed 
to the performance of coatings by wear and degrada-
tion, exacerbated by the absence of replenishment 
mechanisms, has constrained the range of applicable 
coatings. To address this challenge, the application of 
accelerated wear testing methods facilitates the simula-
tion of extended usage within a condensed timeframe. 
Researchers employ multi-modal characterization tech-
niques for a thorough assessment of coating surfaces 
over time, alongside long-term in vivo studies that allow 
the observation of materials’ performance within liv-

ing organisms. Integration of smart sensors facilitates 
continuous monitoring of factors like friction and wear. 
Furthermore, real-time insights into the wear and deg-
radation of biomedical coatings are gained through con-
tinuous monitoring and data collection systems. This 
multifaceted approach contributes to a nuanced under-
standing of the long-term behavior and performance of 
biomedical materials.

5. The establishment of carbon-based materials for bio-
medical applications relevant to clinical and industry 
standards emerges as a pivotal imperative. The signifi-
cance of this endeavor lies in its capacity to ensure con-
sistency, safety, and efficacy across diverse applications. 
Standardization not only fosters regulatory compliance 
but also engenders a framework for rigorous evaluation, 
comparability, and interoperability within the realm of 
biomedical technologies. By delineating clear and com-
prehensive standards, the biomedical community can 
navigate the challenges associated with the integration 
of carbon-based materials, fostering advancements that 
are not only scientifically robust but also ethically and 
clinically sound. Standardization efforts are poised to 
facilitate the seamless translation of research innova-
tions into clinical practice, thereby promoting the reli-
ability and reproducibility of outcomes in the biomedi-
cal applications.

This review offers a comprehensive exploration of car-
bon materials, emphasizing their growing significance in 
biomedicine and innovative deposition techniques to attain 
specific properties. Additionally, we scrutinized various 
products employing carbon-based composites. While the 
widespread adoption of carbon materials in biomedical 
applications is still in its early commercial stages, notewor-
thy successes have been witnessed in products like carbon 
fiber wound dressings. Therefore, a profound understand-
ing of the unique properties of diverse carbon materials 
and their strategic integration within the biomedical sec-
tor holds the potential to unlock further advancements in 
tailored biomedical solutions. These attributes underscore 
the diverse advantages of carbon materials in advancing 
biomedical technologies.
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