Skip to main content

Advertisement

Log in

A continuous interfacial bridging approach to fabricate ultrastrong hydroxylated carbon nanotubes intercalated MXene films with superior electromagnetic interference shielding and thermal dissipating properties

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

The emergence of transition metal carbides and nitrides (MXenes) addresses the rising demand for emerging yet favorable multifunctional materials for their utilization in flexible miniaturized electronics and beyond. However, MXenes pose a significant challenge due to their weak interfacial interactions, which result in inferior mechanical properties and structural integrity in MXene films. The continuous interfacial bridging approach involves incorporating hydrogen, ionic, and covalent bondings, and was developed to fabricate ultrastrong hydroxylated carbon nanotubes (HCNT) intercalated Ti3C2Tx MXene (MX) films (MX@HCNT) with superior mechanical properties, electromagnetic interference (EMI) shielding performance, and thermal conductivity. The MX@HCNT films with hydrogen bonding between MX and HCNT were fabricated by vacuum filtration method and were further crosslinked by a conductive Fe3+ ion (ionic bonding) and glutaraldehyde (GA, covalent bonding) molecules (MX@HCNT/Fe3+/GA). As a result, the continuous interfacial bridging approach facilitates the densification of MX nanosheets in the MX@HCNT/Fe3+/GA films. The resultant densified MX@HCNT/Fe3+/GA films with 50 wt% of HCNT exhibit significantly improved mechanical strength of 277 MPa, toughness of 5.5 MJ·m−3, EMI shielding effectiveness (EMI SE) of 71.9 dB, and an ultrahigh in-plane thermal conductivity of 106.8 W·m−1·K−1, making it effectively use in flexible devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Weng M, Liu S, Su J, Xu W, Huang J, Tan W, Liu Y, Min Y (2022) Hydrophobic and antimicrobial polyimide based composite phase change materials with thermal energy storage capacity, applied as multifunctional construction material. Eng Sci 19:301–311. https://doi.org/10.30919/es8e735

  2. Tang J, Chen Z, Ma Y, Zhang H (2022) Characterization of wicking performance for open rectangular microgrooves under planar ectrohydrodynamics effects in two-phase heat transfer devices. Eng Sci 19:100–113. https://doi.org/10.30919/es8d642

  3. Kan A, Zhang Q, Chen Z, Cao D (2022) Innovation on thermal conductivity measurement device of vacuum insulation panel with double hemispheres chambers. ES Energy Environ 15:28–33. https://doi.org/10.30919/esee8c545

  4. Mani D, Vu MC, Lim CS, Kim JB, Jeong TH, Kim HJ, Islam MA, Lim JH, Kim KM, Kim SR (2023) Stretching induced alignment of graphene nanoplatelets in polyurethane films for superior in-plane thermal conductivity and electromagnetic interference shielding. Carbon 201:568–576. https://doi.org/10.1016/j.carbon.2022.09.047

    Article  CAS  Google Scholar 

  5. Zhang Y, Ruan K, Zhou K, Gu J, Zhang Y, Ruan K, Gu J, Zhou K (2023) Controlled distributed Ti3C2Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv Mater 35:2211642. https://doi.org/10.1002/adma.202211642

    Article  CAS  Google Scholar 

  6. Wei B, Zhang L, Yang S (2021) Polymer composites with expanded graphite network with superior thermal conductivity and electromagnetic interference shielding performance. Chem Eng J 404:126437. https://doi.org/10.1016/j.cej.2020.126437

    Article  CAS  Google Scholar 

  7. Leng Z, Yang Z, Tang X, Helal MH, Qu Y, Xie P, El-Bahy ZM, Meng S, Ibrahim MM, Yu C, Algadi H, Liu C, Liu Y (2023) Progress in percolative composites with negative permittivity for applications in electromagnetic interference shielding and capacitors. Adv Compos Hybrid Mater 6:1–21. https://doi.org/10.1007/s42114-023-00778-2

    Article  CAS  Google Scholar 

  8. Liu H, Huang Z, Chen T, Su X, Liu Y, Fu R (2022) Construction of 3D MXene/Silver nanowires aerogels reinforced polymer composites for extraordinary electromagnetic interference shielding and thermal conductivity. Chem Eng J 427:131540. https://doi.org/10.1016/j.cej.2021.131540

    Article  CAS  Google Scholar 

  9. Yao B, Xu X, Li H, Han Z, Hao J, Yang G, Xie Z, Chen Y, Liu W, Wang Q, Wang H (2021) Soft liquid-metal/elastomer foam with compression-adjustable thermal conductivity and electromagnetic interference shielding. Chem Eng J 410:128288. https://doi.org/10.1016/j.cej.2020.128288

  10. Qu YP, Wu HK, Xie PT, Zeng N, Chen YL, Gong X, Yang JL, Peng Q, Xie Y, Qi XS (2023) Carbon nanotube-carbon black/CaCu3Ti4O12 ternary metacomposites with tunable negative permittivity and thermal conductivity fabricated by spark plasma sintering. Rare Met 42:4201–4211. https://doi.org/10.1007/S12598-023-02346-5

    Article  CAS  Google Scholar 

  11. Qu Y, Xie P, Zhou Y, Ding J, Chen Y, Gong X, Yang J, Peng Q, Qi X (2023) Graphitized-MWCNT/CaCu3Ti4O12 metacomposites for tunable ε′-negative and ε′ near-zero response with enhanced electromagnetic shielding. Ceram Int 49:37407–37414. https://doi.org/10.1016/j.ceramint.2023.09.066

    Article  CAS  Google Scholar 

  12. Jin X, Wang J, Dai L, Liu X, Li L, Yang Y, Cao Y, Wang W, Wu H, Guo S (2020) Flame-retardant poly(vinyl alcohol)/MXene multilayered films with outstanding electromagnetic interference shielding and thermal conductive performances. Chem Eng J 380:122475. https://doi.org/10.1016/j.cej.2019.122475

    Article  CAS  Google Scholar 

  13. Mani D, Vu MC, Anand S, Kim JB, Jeong TH, Kim IH, Seo BK, Islam MA, Kim SR (2023) Elongated liquid metal based self-healing polyurethane composites for tunable thermal conductivity and electromagnetic interference shielding. Comp Commun 44:101735. https://doi.org/10.1016/j.coco.2023.101735

    Article  Google Scholar 

  14. Kim J-B, Canh Vu M, Seo BK, Mani D, Anand S, Jeong T-H, Kim S-R (2023) Multilayered graphene fluoride and Ti3C2Tx MXene-based aramid nanofiber films with excellent thermal conductivity and electromagnetic interference shielding performance. Colloids Surf A Physicochem Eng Asp 133121. https://doi.org/10.1016/j.colsurfa.2023.133121

  15. Shahzad F, Alhabeb M, Hatter CB, Anasori B, Hong SM, Koo CM, Gogotsi Y (2016) Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353:1137–1140. https://doi.org/10.1126/science.aag2421

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Xiang Z, Shi Y, Zhu X, Cai L, Lu W (2021) Flexible and waterproof 2D/1D/0D construction of MXene-based nanocomposites for electromagnetic wave absorption, EMI shielding, and photothermal conversion. Nanomicro Lett 13:1–21. https://doi.org/10.1007/S40820-021-00673-9

    Article  ADS  Google Scholar 

  17. Qu Y, Wu J, Wang Z, Liu Y, Xie P, Wang Z, Tian J, Fan R (2021) Radio-frequency epsilon-negative property and diamagnetic response of percolative Ag/CCTO metacomposites. Scr Mater 203:114067. https://doi.org/10.1016/j.scriptamat.2021.114067

    Article  CAS  Google Scholar 

  18. Qu Y, Wang Z, Xie P, Wang Z, Fan R (2022) Ultraweakly and fine-tunable negative permittivity of polyaniline/nickel metacomposites with high-frequency diamagnetic response. Compos Sci Technol 217:109092. https://doi.org/10.1016/j.compscitech.2021.109092

    Article  CAS  Google Scholar 

  19. Li F, Wu N, Kimura H, Wang Y, Bin XuB, Wang D, Li Y, Algadi H, Guo Z, Du W, Hou C (2023) Initiating binary metal oxides microcubes electrsomagnetic wave absorber toward ultrabroad absorption bandwidth through interfacial and defects modulation. Nanomicro Lett 15:1–14. https://doi.org/10.1007/s40820-023-01197-0

    Article  ADS  CAS  Google Scholar 

  20. Li F, Li Q, Kimura H, Xie X, Zhang X, Wu N, Sun X, Bin XuB, Algadi H, Pashameah RA, Alanazi AK, Alzahrani E, Li H, Du W, Guo Z, Hou C (2023) Morphology controllable urchin-shaped bimetallic nickel-cobalt oxide/carbon composites with enhanced electromagnetic wave absorption performance. J Mater Sci Technol 148:250–259. https://doi.org/10.1016/j.jmst.2022.12.003

    Article  CAS  Google Scholar 

  21. Li F, Bi Z, Kimura H, Li H, Liu L, Xie X, Zhang X, Wang J, Sun X, Ma Z, Du W, Hou C (2023) Energy- and cost-efficient salt-assisted synthesis of nitrogen-doped porous carbon matrix decorated with nickel nanoparticles for superior electromagnetic wave absorption. Adv Compos Hybrid Mater 6:1–11. https://doi.org/10.1007/s42114-023-00710-8

    Article  CAS  Google Scholar 

  22. Wu N, Zhao B, Liu J, Li Y, Chen Y, Chen L, Wang M, Guo Z (2021) MOF-derived porous hollow Ni/C composites with optimized impedance matching as lightweight microwave absorption materials. Adv Compos Hybrid Mater 4:707–715. https://doi.org/10.1007/s42114-021-00307-z

    Article  CAS  Google Scholar 

  23. Zha XH, Zhou J, Zhou Y, Huang Q, He J, Francisco JS, Luo K, Du S (2016) Promising electron mobility and high thermal conductivity in Sc2CT2 (T = F, OH) MXenes. Nanoscale 8:6110–6117. https://doi.org/10.1039/c5nr08639f

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Li L, Cao Y, Liu X, Wang J, Yang Y, Wang W (2020) Multifunctional MXene-based fireproof electromagnetic shielding films with exceptional anisotropic heat dissipation capability and joule heating performance. ACS Appl Mater Interfaces 12:27350–27360. https://doi.org/10.1021/acsami.0c05692

    Article  CAS  PubMed  Google Scholar 

  25. Ma Z, Feng H, Feng Y, Ding X, Wang X, Wang W, Zhang X, Kong S, Lan X, Li Q (2022) An ultralight and thermally conductive Ti3C2Tx MXene–silver nanowire cellular composite film for high-performance electromagnetic interference shielding. J Mater Chem C 10:14169–14179. https://doi.org/10.1039/d2tc02856e

    Article  CAS  Google Scholar 

  26. Jiao E, Wu K, Liu Y, Zhang H, Zheng H, Xu C, Shi J, Lu M (2022) Nacre-like robust cellulose nanofibers/MXene films with high thermal conductivity and improved electrical insulation by nanodiamond. J Mater Sci 57:2584–2596. https://doi.org/10.1007/S10853-021-06676-6

  27. Balandin AA (2011) Thermal properties of graphene and nanostructured carbon materials. Nat Mater 10:569–581. https://doi.org/10.1038/nmat3064

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Earp B, Dunn D, Phillips J, Agrawal R, Ansell T, Aceves P, De Rosa I, Xin W, Luhrs C (2020) Enhancement of electrical conductivity of carbon nanotube sheets through copper addition using reduction expansion synthesis. Mater Res Bull 131:110969. https://doi.org/10.1016/j.materresbull.2020.110969

    Article  CAS  Google Scholar 

  29. Sahoo NG, Rana S, Cho JW, Li L, Chan SH (2010) Polymer nanocomposites based on functionalized carbon nanotubes. Prog Polym Sci 35:837–867. https://doi.org/10.1016/j.progpolymsci.2010.03.002

    Article  CAS  Google Scholar 

  30. Wan S, Li X, Chen Y, Liu N, Wang S, Du Y, Xu Z, Deng X, Dou S, Jiang L, Cheng Q (2022) Ultrastrong MXene films via the synergy of intercalating small flakes and interfacial bridging. Nat Commun 13:7340. https://doi.org/10.1038/s41467-022-35226-0

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wan S, Li X, Chen Y, Liu N, Du Y, Dou S, Jiang L, Cheng Q (2021) High-strength scalable MXene films through bridging-induced densification. Science 374:96–99. https://doi.org/10.1126/science.abg2026

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Wang J, Jiang D, Zhang Y, Du Y, Sun Y, Jiang M, Xu J, Liu J (2024) High-strength nacre-like composite films based on pre-polymerised polydopamine and polyethyleneimine cross-linked MXene layers via multi-bonding interactions. J Colloid Interface Sci 653:229–237. https://doi.org/10.1016/j.jcis.2023.09.074

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Wu N, Zeng Z, Kummer N, Han D, Zenobi R, Nyström G (2021) Ultrafine cellulose nanofiber-assisted physical and chemical cross-linking of MXene sheets for electromagnetic interference shielding. Small Methods 5:2100889. https://doi.org/10.1002/smtd.202100889

    Article  CAS  Google Scholar 

  34. Usman KAS, Zhang J, Hegh DY, Rashed AO, Jiang D, Lynch PA, Mota-Santiago P, Jarvis KL, Qin S, Prime EL, Naebe M, Henderson LC, Razal JM (2021) Sequentially bridged Ti3C2Tx MXene sheets for high performance applications. Adv Mater Interfaces 8:2002043. https://doi.org/10.1002/admi.202002043

    Article  CAS  Google Scholar 

  35. Ling Z, Ren CE, Zhao MQ, Yang J, Giammarco JM, Qiu J, Barsoum MW, Gogotsi Y (2014) Flexible and conductive MXene films and nanocomposites with high capacitance. Proc Natl Acad Sci 111:16676–16681. https://doi.org/10.1073/pnas.1414215111

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu Z, Zhang Y, Bin ZH, Dai Y, Liu J, Li X, Yu ZZ (2020) Electrically conductive aluminum ion-reinforced MXene films for efficient electromagnetic interference shielding. J Mater Chem C 8:1673–1678. https://doi.org/10.1039/c9tc06304h

    Article  CAS  Google Scholar 

  37. Deng Y, Shang T, Wu Z, Tao Y, Luo C, Liang J, Han D, Lyu R, Qi C, Lv W, Kang F, Yang Q-H, Deng Y, Luo C, Lyu R, Lv W, Kang F, Shang T, Wu Z, Tao Y, Liang J, Han D, Qi C, Yang Q (2019) Fast gelation of Ti3C2Tx MXene initiated by metal ions. Adv Mater 31:1902432. https://doi.org/10.1002/adma.201902432

    Article  CAS  Google Scholar 

  38. Li B, Wu N, Yang Y, Pan F, Wang C, Wang G, Xiao L, Liu W, Liu J (2022) Graphene oxide-assisted multiple cross-linking of resistant, and multifunctional films. Adv Funct Mater 33:2213357. https://doi.org/10.1002/adfm.202213357

    Article  CAS  Google Scholar 

  39. Wan S, Li X, Wang Y, Chen Y, Xie X, Yang R, Tomsia AP, Jiang L, Cheng Q (2020) Strong sequentially bridged MXene sheets. Proc Natl Acad Sci 117:27154–27161. https://doi.org/10.1073/pnas.2009432117

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhou T, Wu C, Wang Y, Tomsia AP, Li M, Saiz E, Fang S, Baughman RH, Jiang L, Cheng Q (2020) Super-tough MXene-functionalized graphene sheets Nat Commun 11:1–11. https://doi.org/10.1038/s41467-020-15991-6

    Article  CAS  Google Scholar 

  41. Ma Y, Liu N, Li L, Hu X, Zou Z, Wang J, Luo S, Gao Y (2017) A highly flexible and sensitive piezoresistive sensor based on MXene with greatly changed interlayer distances. Nat Commun 8:1–8. https://doi.org/10.1038/s41467-017-01136-9

    Article  ADS  CAS  Google Scholar 

  42. Shi X, Wang H, Xie X, Xue Q, Zhang J, Kang S, Wang C, Liang J, Chen Y (2019) Bioinspired ultrasensitive and stretchable MXene-based strain sensor via nacre-mimetic microscale “brick-and-mortar” architecture. ACS Nano 13:649–659. https://doi.org/10.1021/acsnano.8b07805

    Article  CAS  PubMed  Google Scholar 

  43. Zhou T, Yu Y, He B, Wang Z, Xiong T, Wang Z, Liu Y, Xin J, Qi M, Zhang H, Zhou X, Gao L, Cheng Q, Wei L (2022). Ultra-compact MXene fibers by continuous and controllable synergy of interfacial interactions and thermal drawing-induced stresses. https://doi.org/10.1038/s41467-022-32361-6

    Article  Google Scholar 

  44. Zhou B, Li Y, Li Z, Ma J, Zhou K, Liu C, Shen C, Feng Y (2021) Fire/heat-resistant, anti-corrosion and folding Ti2C3Tx MXene/single-walled carbon nanotube films for extreme-environmental EMI shielding and solar-thermal conversion applications. J Mater Chem C Mater 9:10425–10434. https://doi.org/10.1039/d1tc00289a

    Article  CAS  Google Scholar 

  45. Cao WT, Chen FF, Zhu YJ, Zhang YG, Jiang YY, Ma MG, Chen F (2018) Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties. ACS Nano 12:4583–4593. https://doi.org/10.1021/acsnano.8b00997

    Article  CAS  PubMed  Google Scholar 

  46. Wu N, Zeng Z, Kummer N, Han D, Zenobi R, Nyström G (2021) Ultrafine cellulose nanofiber‐assisted physical and chemical cross‐linking of MXene sheets for electromagnetic interference shielding. Small Methods 5: 2100889. https://doi.org/10.1002/smtd.202100889

  47. Wang X-Y, Liao S-Y, Wan Y-J, Huang H-P, Li X-M, Hu Y-G, Zhu P-L, Sun R, Wong C-P (2022) Near-field and far-field EMI shielding response of lightweight and flexible MXene-decorated polyester textiles. Mater Today Phys 23:100644

    Article  CAS  Google Scholar 

  48. Liang L, Yao C, Yan X, Feng Y, Hao X, Zhou B, Wang Y, Ma J, Liu C, Shen C (2021) High-efficiency electromagnetic interference shielding capability of magnetic Ti3C2Tx MXene/CNT composite film. J Mater Chem A 9:24560–24570

    Article  CAS  Google Scholar 

  49. Anand S, Vu MC, Mani D, Kim JB, Jeong TH, Islam MA, Kim SR (2023) Dual 3D networks of graphene derivatives-based polydimethylsiloxane composites for electrical insulating electronic packaging materials with outstanding electromagnetic interference shielding and thermal dissipation performances. Chem Eng J 462:142017. https://doi.org/10.1016/j.cej.2023.142017

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Basic Science Program (No. 2022R1A2C2009700) through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT, the Basic Science Research Capacity Enhancement Project (National Research Facilities and Equipment Center) through the Korea Basic Science Institute funded by the Ministry of Education (No. 2019R1A6C1010047), and the Industrial Strategic Technology Development Program (No. 20013248) through Korea Evaluation Institute of Industrial Technology funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: S.A., M.C.V., and S.R.K.; Investigation: S.A., M.C.V., J.B.K., J.C.W., and T.H.J.; Writing-original draft preparation: S.A.; Writing-review and editing: D.K.M and S.R.K.; Supervision: S.R.K.; Formal Analysis: W.K.C. and J.C.W; Funding acquisition: S.R.K.

Corresponding author

Correspondence to Sung-Ryong Kim.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2997 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anand, S., Vu, M.C., Mani, D. et al. A continuous interfacial bridging approach to fabricate ultrastrong hydroxylated carbon nanotubes intercalated MXene films with superior electromagnetic interference shielding and thermal dissipating properties. Adv Compos Hybrid Mater 7, 33 (2024). https://doi.org/10.1007/s42114-024-00842-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-024-00842-5

Keywords

Navigation