Skip to main content
Log in

Carboxymethyl chitosan promotes biofilm-formation of Cryptococcus laurentii to improve biocontrol efficacy against Penicillium expansum in grapefruit

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

The synergistic effectiveness of the yeast Cryptococcus laurentii cultured with carboxymethyl chitosan (CMCS) at different concentrations was studied in controlling Penicillium expansum in postharvest grapefruit and exploring the biofilm formation mechanism. The current research results indicate that 0.5% (w/v) CMCS-treated C. laurentii for 72 h could suppress Penicillium expansum conidia germination and hyphal growth in vitro on grapefruit, and its biocontrol efficacy had been significantly enhanced. Moreover, population number of C. laurentii induced by low CMCS level in vitro was obviously increased by changing the budding capacity of yeast. In in vitro experiments, CMCS-C. laurentii adhered to the orifice plate, having a strong biofilm-forming ability, and accompanied by the production of extracellular secretions. Furthermore, the monosaccharide composition of extracellular polysaccharides of yeast by inducing treatment was determined. Among these, compared with C. laurentii, the contents, such as Ara, Gal, Xyl, Man, and Glc-UA, all were increased. Adhesive substances wrapped on the surface of yeast and accompanied by a thin reticular structure were further observed by scanning electron microscopy. Meanwhile, we identified that C. laurentii tightly adhered to the hyphae indicating that the induction treatment effectively inhibits the pathogen development. In comparison to the control fruit, 0.5% (w/v) CMCS-cultured yeast resulted in noticeably synergistic effects that greatly decreased the grapefruit blue mould decay rate and lesion diameter. A new idea was presented in this study to enhance the biocontrol properties of antagonistic yeast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. El-Otmani M, Ait-Oubahou A, Zacarías L (2011) Citrus spp.: orange, mandarin, tangerine, clementine, grapefruit, pomelo, lemon and lime. In Postharvest biology and technology of tropical and subtropical fruits 437–516e. https://doi.org/10.1533/9780857092762.437

  2. Deng J, Kong S, Wang F, Liu Y, Jiao J, Lu Y, Zhang F, Wu J, Wang L, Li X (2020) Identification of a new Bacillus sonorensis strain KLBC GS-3 as a biocontrol agent for postharvest green mould in grapefruit. Biol Control 151:104393. https://doi.org/10.1016/j.biocontrol.2020.104393

  3. Bi W, Wang R, Yang Y, Wang Y, Ma Z, Wang Q, Zhang D (2021) Pantoea vagans strain BWL1 controls blue mold in mandarin fruit by inhibiting ergosterol biosynthesis in Penicillium expansum. Biol Control 161;104639. https://doi.org/10.1016/j.biocontrol.2021.104639

  4. Saleh I, Goktepe I (2019) The characteristics, occurrence, and toxicological effects of patulin. Food Chem Toxicol 129:301–311. https://doi.org/10.1016/j.fct.2019.04.036

    Article  CAS  PubMed  Google Scholar 

  5. Duanis-Assaf D, Alkan N, Shimshoni JA (2023) Phenyl tetramethyl cyclopropane carboxamide class: new broad-spectrum postharvest fungicides. Food Control 154:110041. https://doi.org/10.1016/j.foodcont.2023.110041

    Article  Google Scholar 

  6. Alimadadi N, Pourvali Z, Nasr S, Fazeli SAS (2023) Screening of antagonistic yeast strains for postharvest control of Penicillium expansum causing blue mold decay in table grape. Fungal Biol 127:901–908. https://doi.org/10.1016/j.funbio.2023.01.003

  7. Godana EA, Yang Q, Wang K, Zhang H, Zhang X, Zhao L, Abdelhai MH, Guillaume Legrand NN (2020) Bio-control activity of Pichia anomala supplemented with chitosan against Penicillium expansum in postharvest grapes and its possible inhibition mechanism. Lwt 124:109188. https://doi.org/10.1016/j.lwt.2020.109188

  8. Cao B, Li H, Tian S, Qin G (2012) Boron improves the biocontrol activity of Cryptococcus laurentii against Penicillium expansum in jujube fruit. Postharvest Biol Tec 68:16–21. https://doi.org/10.1016/j.postharvbio.2012.01.008

    Article  CAS  Google Scholar 

  9. Yu T, Yu C, Lu H, Zunun M, Chen F, Zhou T, Sheng K, Zheng X (2012) Effect of Cryptococcus laurentii and calcium chloride on control of Penicillium expansum and Botrytis cinerea infections in pear fruit. Biol Control 61:169–175. https://doi.org/10.1016/j.biocontrol.2012.01.012

    Article  CAS  Google Scholar 

  10. Deng J, Li W, Ma D, Liu Y, Yang H, Lin J, Song G, Naik N, Guo Z, Wang F (2021) Synergistic effect of carboxymethylcellulose and Cryptococcus laurentii on suppressing green mould of postharvest grapefruit and its mechanism. Int J Biol Macromol 181: 253–262. https://doi.org/10.1016/j.ijbiomac.2021.03.155

  11. Lai J, Cao X, Yu T, Wang Q, Zhang Y, Zheng X, Lu H (2018) Effect of Cryptococcus laurentii on inducing disease resistance in cherry tomato fruit with focus on the expression of defense-related genes. Food Chem 254:208–216. https://doi.org/10.1016/j.foodchem.2018.01.100

    Article  CAS  PubMed  Google Scholar 

  12. Bautista-Rosales PU, Calderon-Santoyo M, Servín-Villegas R, Ochoa-Álvarez NA, Vázquez-Juárez R, Ragazzo-Sánchez JA (2014) Biocontrol action mechanisms of Cryptococcus laurentii on Colletotrichum gloeosporioides of mango. Crop Prot 65:194–201. https://doi.org/10.1016/j.cropro.2014.07.019

    Article  Google Scholar 

  13. Zhang X, Sun Y, Yang Q, Chen L, Li W, Zhang H (2015) Control of postharvest black rot caused by Alternaria alternata in strawberries by the combination of Cryptococcus laurentii and benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester. Biol Control 90:96–101. https://doi.org/10.1016/j.biocontrol.2015.05.018

    Article  CAS  Google Scholar 

  14. Guo J, Fang W, Lu H, Zhu R, Lu L, Zheng X, Yu T (2014) Inhibition of green mold disease in mandarins by preventive applications of methyl jasmonate and antagonistic yeast Cryptococcus laurentii. Postharvest Biol Tec 88:72–78. https://doi.org/10.1016/j.postharvbio.2013.09.008

    Article  CAS  Google Scholar 

  15. Ma Y, Wu M, Qin X, Dong Q, Li Z (2023) Antimicrobial function of yeast against pathogenic and spoilage microorganisms via either antagonism or encapsulation: a review. Food Microbiol 112:104242. https://doi.org/10.1016/j.fm.2023.104242

  16. Li BQ, Zhou ZW, Tian SP (2008) Combined effects of endo- and exogenous trehalose on stress tolerance and biocontrol efficacy of two antagonistic yeasts. Biol Control 46:187–193. https://doi.org/10.1016/j.biocontrol.2008.04.011

    Article  CAS  Google Scholar 

  17. Fu D, Zeng L, Zheng X, Yu T (2015) Effect of β-glucan on stress tolerances and biocontrol efficacy of Cryptococcus laurentii against Penicillium expansum in pear fruit. Biol Control 60:669–679. https://doi.org/10.1007/s10526-015-9670-7

    Article  CAS  Google Scholar 

  18. Gu N, Zhang X, Gu X, Zhao L, Dhanasekaran S, Qian X, Zhang H (2020) Proteomic analysis reveals the mechanisms involved in the enhanced biocontrol efficacy of Rhodotorula mucilaginosa induced by chitosan. Biol Control 149:104325. https://doi.org/10.1016/j.biocontrol.2020.104325

  19. Deng Q, Lei X, Zhang H, Deng L, Yi L, Zeng K (2022) Phenylalanine promotes biofilm formation of Meyerozyma caribbica to improve biocontrol efficacy against jujube black spot rot. J Fungi (Basel) 8:1313. https://doi.org/10.3390/JOF8121313

    Article  CAS  PubMed  Google Scholar 

  20. Lei X, Deng B, Ruan C, Deng L, Zeng K (2022) Phenylethanol as a quorum sensing molecule to promote biofilm formation of the antagonistic yeast Debaryomyces nepalensis for the control of black spot rot on jujube. Postharvest Biol Tec 185:111788. https://doi.org/10.1016/J.POSTHARVBIO.2021.111788

  21. Zhou H, Ngolong Ngea G L, Godana E A, Gu X, Li B, Zhao L, Zhang X, Zhang H (2023) Combined application of oligochitosan and Pichia carrbbica improves the disease resistance of postharvest tomato fruits. Biol Control 186:105331. https://doi.org/10.1016/J.BIOCONTROL.2023.105331

  22. Wang F, Deng J, Jiao J, Lu Y, Yang L, Shi Z (2019) The combined effects of carboxymethyl chitosan and Cryptococcus laurentii treatment on postharvest blue mold caused by Penicillium italicum in grapefruit fruit. Sci Hortic-Amsterdam 253:35–41. https://doi.org/10.1016/j.scienta.2019.04.031

    Article  CAS  Google Scholar 

  23. Qin G Z, Tian S P, Xu Y, Wan Y K (2003) Enhancement of biocontrol efficacy of antagonistic yeasts by salicylic acid in sweet cherry fruit. Physiol Mol Plant P 62:147–154. https://doi.org/10.1016/S0885-5765(03)00046-8

  24. Zhang X, Zhou H, Han Z, Huang W, Gu X, Li B, Zhao L, Zhou S, Zhang H (2022) Pichia caribbica combined with oligochitosan controlling black spot of tomatoes and the regulation on ROS metabolism of the fruits. Biol Control 176:105109. https://doi.org/10.1016/J.BIOCONTROL.2022.105109

  25. Hu W, Godana EA, Xu M, Yang Q, Dhanasekaran S, Zhang H (2021) Transcriptome characterization and expression profiles of disease defense-related genes of table grapes in response to Pichia anomala induced with chitosan. Foods 10:1451. https://doi.org/10.3390/FOODS10071451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gu N, Zhang X, Gu X, Zhao L, Godana EA, Xu M, Zhang H (2021) Transcriptomic and proteomic analysis of the mechanisms involved in enhanced disease resistance of strawberries induced by Rhodotorula mucilaginosa cultured with chitosan. Postharvest Biol Technol 172:111355. https://doi.org/10.1016/j.postharvbio.2020.111355

    Article  CAS  Google Scholar 

  27. Xiao J., Zhao L., Bai Y., Lin R., Legrand Ngolong Ngea G., Dhanasekaran S., Li B., Gu X., Zhang X. and Zhang H. (2022) The biocontrol efficacy of Sporidiobolus pararoseus Y16 cultured with gamma-aminobutyric acid and its effects on the resistant substances of postharvest grapes. Biol Control 169:104900. https://doi.org/10.1016/J.BIOCONTROL.2022.104900

  28. Zhao L, He F, Li B, Gu X, Zhang X, Dhanasekaran S, Zhang H (2022) Transcriptomic analysis of the mechanisms involved in enhanced antagonistic efficacy of Meyerozyma guilliermondii by methyl jasmonate and disease resistance of postharvest apples. Lwt 160:113323. https://doi.org/10.1016/j.lwt.2022.113323

    Article  CAS  Google Scholar 

  29. He F, Zhao L, Zheng X, Abdelhai M H, Boateng N S, Zhang X, Zhang H (2020) Investigating the effect of methyl jasmonate on the biocontrol activity of Meyerozyma guilliermondii against blue mold decay of apples and the possible mechanisms involved. Physiol Mol Plant P 109:101454. https://doi.org/10.1016/j.pmpp.2019.101454

  30. Zhang X, Gu N, Zhou Y, Godana EA, Dhanasekaran S, Gu X, Zhao L, Zhang H (2021) Transcriptome analysis reveals the mechanisms involved in the enhanced antagonistic efficacy of Rhodotorula mucilaginosa induced by chitosan. Lwt 142:110992. https://doi.org/10.1016/J.LWT.2021.110992

  31. Zhao L, Zhou Y, Liang L, Dhanasekaran S, Zhang X, Yang X, Wu M, Song Y, Zhang H (2023) Proteomic analysis reveals the mechanisms of improved biocontrol efficacy of Sporidiobolus pararoseus Y16 induced by γ-aminobutyric acid. Biol Control 185:105313. https://doi.org/10.1016/J.BIOCONTROL.2023.105313

  32. Zhao L, Shu Y, Xiao J, Lin R, Abiso Godana E, Zhang X, Zhang H (2022) Transcriptome analysis reveals mechanisms involved in the enhanced antagonistic efficacy of Sporidiobolus pararoseus Y16 treated by γ-aminobutyric acid. Biol Control 176:105089. https://doi.org/10.1016/J.BIOCONTROL.2022.105089

  33. Pu L, Jingfan F, Kai C, Chao-an L, Yunjiang C (2014) Phenylethanol promotes adhesion and biofilm formation of the antagonistic yeast Kloeckera apiculata for the control of blue mold on citrus. FEMS Yeast Res 14:536–546. https://doi.org/10.1111/1567-1364.12139

    Article  CAS  PubMed  Google Scholar 

  34. Olanipekun EO, Ayodele O, Olatunde OC, Olusegun SJ (2021) Comparative studies of chitosan and carboxymethyl chitosan doped with nickel and copper: characterization and antibacterial potential. Int J Biol Macromol 183:1971–1977. https://doi.org/10.1016/j.ijbiomac.2021.05.162

    Article  CAS  PubMed  Google Scholar 

  35. Zhang M, Yang M, Woo M W, Li Y, Han W, Dang X (2021) High-mechanical strength carboxymethyl chitosan-based hydrogel film for antibacterial wound dressing. Carbohyd Polym 256:117590. https://doi.org/10.1016/j.carbpol.2020.117590

  36. Sela A, Shkuri N, Tish N, Vinokur Y, Rodov V, Poverenov E (2023) Carboxymethyl chitosan-quercetin conjugate: a sustainable one-step synthesis and use for food preservation. Carbohyd Polym 316:121084. https://doi.org/10.1016/j.carbpol.2023.121084

  37. Liu C, Yuan B, Guo M, Yang Q, Nguyen TT, Ji X (2021) Effect of sodium lignosulfonate on bonding strength and chemical structure of a lignosulfonate/chitosan-glutaraldehyde medium-density fiberboard adhesive. Adv Compos Hybrid Ma 4:1176–1184. https://doi.org/10.1007/s42114-021-00351-9

  38. Xiao L, Xu W, Huang L, Liu J, Yang G (2022) Nanocomposite pastes of gelatin and cyclodextrin-grafted chitosan nanoparticles as potential postoperative tumor therapy. Adv Compos Hybrid Ma 6. https://doi.org/10.1007/s42114-022-00575-3

  39. Pu L, Zhang J, Jiresse NKL, Gao Y, Zhou H, Naik N, Gao P, Guo Z (2021) N-doped MXene derived from chitosan for the highly effective electrochemical properties as supercapacitor. Adv Compos Hybrid Ma 5:356–369. https://doi.org/10.1007/s42114-021-00371-5

    Article  CAS  Google Scholar 

  40. Cen C, Wang F, Wang Y, Li H, Fu L, Li Y, Chen J, Wang Y (2023) Design and characterization of an antibacterial film composited by hydroxyethyl cellulose (HEC), carboxymethyl chitosan (CMCS), and nano ZnO for food packaging. Int J Biol Macromol 231:123203. https://doi.org/10.1016/j.ijbiomac.2023.123203

  41. He X, Li S, Shen R, Ma Y, Zhang L, Sheng X, Chen Y, Xie D, Huang J (2022) A high-performance waterborne polymeric composite coating with long-term anti-corrosive property based on phosphorylation of chitosan-functionalized Ti3C2Tx MXene. Adv Compos Hybrid Ma 5:1699–1711. https://doi.org/10.1007/s42114-021-00392-0

    Article  CAS  Google Scholar 

  42. Zhou W, He Y, Liu F, Liao L, Huang X, Li R, Zou Y, Zhou L, Zou L, Liu Y, Ruan R, Li J (2021) Carboxymethyl chitosan-pullulan edible films enriched with galangal essential oil: characterization and application in mango preservation. Carbohyd Polym 256:117579. https://doi.org/10.1016/j.carbpol.2020.117579

  43. Benhabiles MS, Tazdait D, Abdi N, Lounici H, Drouiche N, Goosen MFA, Mameri N (2013) Assessment of coating tomato fruit with shrimp shell chitosan and N, O-carboxymethyl chitosan on postharvest preservation. J Food Meas Charact 7:66–74. https://doi.org/10.1007/s11694-013-9140-9

    Article  Google Scholar 

  44. Li R, Chen C, Chen M, Wu R, Sun Y, Zhu B, Yao Z (2023) Fabrication of carboxymethyl chitosan/oxidized carboxymethyl cellulose composite film and its assessment for coating preservation of strawberry. J Food Sci 88:1865–1878. https://doi.org/10.1111/1750-3841.16547

    Article  CAS  PubMed  Google Scholar 

  45. Laverty DJ, Kury AL, Kuksin D, Pirani A, Flanagan K, Chan LL-Y (2013) Automated quantification of budding Saccharomyces cerevisiae using a novel image cytometry method. J Ind Microbiol Biot 40:581–588. https://doi.org/10.1007/s10295-013-1263-9

    Article  CAS  Google Scholar 

  46. Liu Y, Yao S, Deng L, Ming J, Zeng K (2019) Different mechanisms of action of isolated epiphytic yeasts against Penicillium digitatum and Penicillium italicum on citrus fruit. Postharvest Biol Tec 152:100–110. https://doi.org/10.1016/j.postharvbio.2019.03.002

    Article  Google Scholar 

  47. Zhu M, Huang R, Wen P, Song Y, He B, Tan J, Hao H, Wang H (2021) Structural characterization and immunological activity of pectin polysaccharide from kiwano (Cucumis metuliferus) peels. Carbohyd Polym 254:117371. https://doi.org/10.1016/j.carbpol.2020.117371

    Article  CAS  Google Scholar 

  48. Hrubanova K, Samek O, Haronikova A, Bernatova S, Zemanek P, Marova I, Krzyzanek V (2016) Morphological and production changes in stressed red yeasts monitored using SEM and Raman spectroscopy. Microsc Microanal 22:1146–1147. https://doi.org/10.1017/S1431927616006577

    Article  ADS  Google Scholar 

  49. Pan H, Zhong C, Wang Z, Deng L, Li W, Zhao J, Long CA, Li L (2022) Biocontrol ability and action mechanism of Meyerozyma guilliermondii 37 on soft rot control of postharvest kiwifruit. Microorganisms 10:2143. https://doi.org/10.3390/MICROORGANISMS10112143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang S, Ruan C, Yi L, Deng L, Yao S, Zeng K (2020) Biocontrol ability and action mechanism of Metschnikowia citriensis against Geotrichum citri-aurantii causing sour rot of postharvest citrus fruit. Food Microbiol 87:103375. https://doi.org/10.1016/j.fm.2019.103375

    Article  CAS  PubMed  Google Scholar 

  51. Snyder M, Madden K (1998) Cell polarity and morphogenesis in budding yeast. Annu Rev Microbiol 52:687–744. https://doi.org/10.1146/annurev.micro.52.1.687

    Article  PubMed  Google Scholar 

  52. Casamayor A, Snyder M (2002) Bud-site selection and cell polarity in budding yeast. Curr Opin Microbiol 5:179–186. https://doi.org/10.1016/S1369-5274(02)00300-4

    Article  CAS  PubMed  Google Scholar 

  53. Yu T, Yu C, Chen F, Sheng K, Zhou T, Zunun M, Abudu O, Yang S, Zheng X (2012) Integrated control of blue mold in pear fruit by combined application of chitosan, a biocontrol yeast and calcium chloride. Postharvest Biol Tec 69:49–53. https://doi.org/10.1016/j.postharvbio.2012.02.007

    Article  CAS  Google Scholar 

  54. Wang Z, Li J, Liu J, Tian X, Zhang D, Wang Q (2021) Management of blue mold (Penicillium italicum) on mandarin fruit with a combination of the yeast, Meyerozyma guilliermondii and an alginate oligosaccharide. Biol Control 152:104451. https://doi.org/10.1016/j.biocontrol.2020.104451

    Article  CAS  Google Scholar 

  55. Zhang X, Gu N, Zhou Y, Godana EA, Dhanasekaran S, Gu X, Zhao L, Zhang H (2021) Transcriptome analysis reveals the mechanisms involved in the enhanced antagonistic efficacy of Rhodotorula mucilaginosa induced by chitosan. LWT 142:110992. https://doi.org/10.1016/j.lwt.2021.110992

    Article  CAS  Google Scholar 

  56. Zhao L, Wang Y, Wang Y, Li B, Zhang H (2020) Effect of β-glucan on the biocontrol efficacy of Cryptococcus podzolicus against postharvest decay of pears and the possible mechanisms involved. Postharvest Biol Tec 160:111057. https://doi.org/10.1016/j.postharvbio.2019.111057

    Article  CAS  Google Scholar 

  57. Wang C, Chen Y, Chen S, Min Y, Tang Y, Ma X, Li H, Li J, Liu Z (2023) Spraying chitosan on cassava roots reduces postharvest deterioration by promoting wound healing and inducing disease resistance. Carbohyd Polym 318:121133. https://doi.org/10.1016/j.carbpol.2023.121133

    Article  CAS  Google Scholar 

  58. Nie X, Zhang C, Jiang C, Zhang R, Guo F, Fan X (2019) Trehalose increases the oxidative stress tolerance and biocontrol efficacy of Candida oleophila in the microenvironment of pear wounds. Biol Control 132:23–28. https://doi.org/10.1016/j.biocontrol.2019.01.015

    Article  CAS  Google Scholar 

  59. Chen O, Yi L, Deng L, Ruan C, Zeng K (2020) Screening antagonistic yeasts against citrus green mold and the possible biocontrol mechanisms of Pichia galeiformis (BAF03). J Sci Food Agric 100:3812–3821. https://doi.org/10.1002/jsfa.10407

    Article  CAS  PubMed  Google Scholar 

  60. Zhou Y, Zhang L, Zeng K (2016) Efficacy of Pichia membranaefaciens combined with chitosan against Colletotrichum gloeosporioides in citrus fruits and possible modes of action. Biol Control 96:39–47. https://doi.org/10.1016/j.biocontrol.2016.02.001

    Article  CAS  Google Scholar 

  61. Costerton JW, Cheng KJ, Geesey GG, Ladd TI, Nickel JC, Dasgupta M, Marrie TJ (1987) Bacterial biofilms in nature and disease. Annu Rev Microbiol 41:435–464. https://doi.org/10.1146/annurev.mi.41.100187.002251

    Article  CAS  PubMed  Google Scholar 

  62. Czaczyk K, Myszka KJ (2007) Biosynthesis of extracellular polymeric substances (EPS) and its role in microbial biofilm formation. Pol J Environ Stud 16:799–806

    CAS  Google Scholar 

  63. Freimoser FM, Rueda-Mejia MP, Tilocca B, Migheli Q (2019) Biocontrol yeasts: mechanisms and applications. World J Microb Biot 35:154. https://doi.org/10.1007/s11274-019-2728-4

  64. Flemming HC, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623-633. https://doi.org/10.1038/nrmicro2415

    Article  Google Scholar 

  65. Zara G, Budroni M, Mannazzu I, Fancello F, Zara S (2020) Yeast biofilm in food realms: occurrence and control. World J Microb Biot 36:134. https://doi.org/10.1007/s11274-020-02911-5

  66. Dave SR,Vaishnav AM, Upadhyay KH, TipreDR (2016) Microbial exopolysaccharide - an inevitable product for living beings and environment. J Bacteriol Mycol Open Access 2:109–111. https://doi.org/10.15406/jbmoa.2016.02.00034

  67. Martinez LR, Casadevall A (2007) Cryptococcus neoformans biofilm formation depends on surface support and carbon source and reduces fungal cell susceptibility to heat, cold, and UV light. Appl Environ Microb 73:4592–4601. https://doi.org/10.1128/aem.02506-06

    Article  ADS  CAS  Google Scholar 

  68. Breierová E, Hromádková Z, Stratilová E, Sasinková V, Ebringerová A (2005) Effect of salt stress on the production and properties of extracellular polysaccharides produced by Cryptococcus laurentii. Z Naturforsch C 60:444–450. https://doi.org/10.1515/znc-2005-5-613

    Article  PubMed  Google Scholar 

  69. Pavlova K, Rusinova-Videva S, Kuncheva M, Kratchanova M, Gocheva M, Dimitrova SJ (2011) Synthesis and characterization of an exopolysaccharide by Antarctic yeast strain Cryptococcus laurentii AL 100. Appl Biochem Biotech 163:1038–1052. https://doi.org/10.1007/s12010-010-9107-9

    Article  CAS  Google Scholar 

  70. Bahat-Samet E, Castro-Sowinski S, Okon Y (2004) Arabinose content of extracellular polysaccharide plays a role in cell aggregation of Azospirillum brasilense. Fems Microbiol Lett 237:195–203. https://doi.org/10.1111/j.1574-6968.2004.tb09696.x

    Article  CAS  PubMed  Google Scholar 

  71. Visick KL, Quirke KP, McEwen SM (2013) Arabinose induces pellicle formation by Vibrio fischeri. Appl Environ Microb 79:2069–2080. https://doi.org/10.1128/AEM.03526-12

    Article  ADS  CAS  Google Scholar 

  72. Beauregard PB, Chai Y, Vlamakis H, Losick R, Koler R (2013) Bacillus subtilis biofilm induction by plant polysaccharides. P Natl Acad Sci 110:E1621–E1630. https://doi.org/10.1073/pnas.1218984110

    Article  ADS  Google Scholar 

  73. Xu Z, Xie J, Zhang H, Wang D, Shen Q, Zhang R (2019) Enhanced control of plant wilt disease by a xylose-inducible degQ gene engineered into Bacillus velezensis strain SQR9XYQ. Biol Control 109:36–43. https://doi.org/10.1094/PHYTO-02-18-0048-R

    Article  CAS  Google Scholar 

  74. Mojica K, Elsey D, Cooney MJ (2007) Quantitative analysis of biofilm EPS uronic acid content. J Microbiol Meth 71:61–65. https://doi.org/10.1016/j.mimet.2007.07.010

    Article  CAS  Google Scholar 

Download references

Funding

This work obtained the financial support of the National Natural Science Foundation of China (NO. 31960326, 32160394), the Joint Special Project for Agriculture of Yunnan Province (202101BD070001-065), the “High-level Talents Training Support Program” of Yunnan Province (YNWR-QNBJ-2020-205), and the Young and Middle-aged Academic and Technical Leaders Reserve Talent Program of Yunnan Province (202105AC160045).

Author information

Authors and Affiliations

Authors

Contributions

H-yW: investigation, formal analysis, visualization, original draft writing. FW: resources, methodology, writing—review and editing. LY: visualization, formal analysis. LC: methodology, formal analysis. J-rT: methodology, formal analysis. YL: methodology, data curation. DL: formal analysis, investigation. ZT: methodology, formal analysis. HA: formal analysis, investigation. JD: conceptualization, supervision, validation, writing—review and editing, funding acquisition.

Corresponding author

Correspondence to Jia Deng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• CMCS at low concentration (0.5% w/v) significantly promoted the growth of C. laurentii after 24 h of culture in YM medium, and the budding percentage was greatest at an induction culture time of 72 h.

• CMCS-C. laurentii can form biofilms with better stability and adhesion properties which provided a thin network among C. laurentii or attached the surface of C. laurentii

• The biofilm formation capacity of CMCS-C. laurentii was promoted by secreting more EPS, thus enhancing the adhesion to P. expansum mycelium.

• The synergistic antibacterial effect by C. laurentii cultured with CMCS was enhanced in vivo and in vitro.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Hy., Wang, F., Yang, L. et al. Carboxymethyl chitosan promotes biofilm-formation of Cryptococcus laurentii to improve biocontrol efficacy against Penicillium expansum in grapefruit. Adv Compos Hybrid Mater 7, 23 (2024). https://doi.org/10.1007/s42114-023-00828-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-023-00828-9

Keywords

Navigation