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Abstract
Additive manufacturing (AM) also known as 3D printing (3DP) has become a popular technology with a wide range of 
applications, from which vat photopolymerization is a technique for producing nanocomposites with controlled mechani-
cal, thermal, and electrical properties. This technology uses a UV light laser to cure a liquid resin into a solid object, layer 
by layer, allowing complex three-dimensional (3D) objects with intricate details of manufacturing and excellent finishing. 
Nanocomposites produced by vat photopolymerization have been used in aerospace, automotive, and medical industries, 
due to their superior mechanical strength and dimensional accuracy. In this article, we will discuss the advantages and other 
aspects of nanocomposites made with vat photopolymerization, exploring potential applications, and discuss the research 
by different areas, such as their AM technologies and materials properties.

Keywords  Nanocomposite · 3D printing · Additive manufacture (AM) · Stereolithography (SLA) · Digital light 
processing (DLP)

1  Introduction

Nanocomposite materials belong to a category of composite 
materials in which at least one component has dimensions 
below 100 nm. These materials can be superior in their 
mechanical, electrical, and thermal properties with respect 
to their micro or macro materials, due to the unique proper-
ties at the nanoscale, such as high surface area and almost 
perfect crystal order. Some common types of nanocomposite 
materials include polymer matrix, metal matrix, and ceramic 
matrix nanocomposites [1], which are being researched for a 
wide range of applications, including electronics, aerospace, 
biomedical, and energy storage.

Nanomaterials display very distinct surface effects com-
pared to micro and bulk materials, primarily due for three 
reasons: (a) dispersed nanomaterials possess a significantly 
larger surface area and a higher particle count per unit 
mass, (b) the proportion of surface atoms in nanomaterials 
is greater, and (c) surface atoms in nanomaterials have fewer 
immediate neighbors. These differences lead to enhance 
chemical and physical properties useful for multiple appli-
cations [2]. Some of the key properties of nanomaterials 
include high surface area: due to their small size, nanoma-
terials have a large surface area relative to their volume, 
which can lead to increased reactivity and improved cata-
lytic activity. Increased strength and stiffness: due to their 
small size and the ability of atoms to bond more closely, the 
strength and stiffness of nanomaterials can be significantly 
higher than those of bulk materials. Improved electrical 
and thermal conductivity: the electrical and thermal con-
ductivity of nanomaterials can be much higher than those 
of bulk materials due to the increased surface area and the 
ability of electrons to move more freely at the nanoscale. 
Enhanced optical properties: the optical properties of nano-
materials, such as absorption, reflection, and transmission, 
can be significantly different from those of bulk materials 
due to the quantum confinement of electrons and photons 
at the nanoscale. Increased reactivity: the increased surface 
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area of nanomaterials can lead to increased reactivity with 
other materials, which can be useful in applications such as 
catalysis and sensing. Increased chemical reactivity: due to 
the high surface area and high surface energy, the chemical 
reactivity of nanoparticles can be much higher than that of 
bulk materials. Of course, that all these properties can be 
highly dependent on the specific material, size, shape, and 
surface chemistry.

In general, nanocomposites contain nanostructures such 
as those summarized in Fig. 1: nanowires, nanoparticles, 
graphene, nanoplatelets, carbon nanotubes, and nanofilms. 
Nowadays, there is a wide range of research in nanocompos-
ites, in fields such as, drug delivery [3, 4], tissue engineering 
[5, 6], and biosensing applications [7, 8]. In energy stor-
age, there are nanocomposites developed for use in batteries 
[9, 10], supercapacitors [11, 12], and fuel cells to improve 
energy storage capacity and performance [11, 13, 14]. In 
electronics, there are nanocomposites explored for use in 
electronic devices such as transistors [15, 16], solar cells [17, 
18], and sensors to improve their performance and reduce 
their cost [19, 20]. In environmental, there are nanocom-
posites for water filtration [21, 22], air purification [23, 24], 
and waste treatment [25, 26]. In aerospace, there are light-
weight nanocomposites [27, 28] and high-strength materials 
for aircraft and spacecraft [29, 30]. In automotive industry, 
there are lightweight nanocomposites [31, 32], high-strength 
materials [31, 33], and other developments aiming improved 
fuel efficiency [34, 35]. For textiles, there are nanocompos-
ites with improved flame-resistance [36], anti-bacterial, and 
UV-protection characteristics [37, 38]. In packaging, there 
are nanocomposites working as barrier films to improve the 
shelf life of food products [39, 40].

Recent research has extensively covered various facets of 
advanced nanocomposite materials and technologies. Xie 
et al. [41] introduced a carbon-based “meta-composite” to 
overcome limitations in unit size for metamaterials, show-
casing tunable electromagnetic properties. Li et al. [42] con-
centrated on synthesizing high-performance cobalt nickel 

bimetallic oxides to enhance electromagnetic wave absorp-
tion. Li et al. [43] introduced a hydrogel with capabilities for 
self-powered devices, with potential applications in wearable 
electronics. Wang et al. [44] conducted a comprehensive 
review of metal-organic frameworks and their magnetic 
composites for contaminant adsorption. Ruan et al. [45] 
delved into the role of microstructure design in optimizing 
electromagnetic interference shielding for biomass-derived 
carbon materials. Lin et al. [46] provided a summary of 
fabrication methods and recent progress in MXene/LDH 
composites for supercapacitors. Kang et al. [47] proposed a 
biochar-enhanced photocatalytic method for antibiotic treat-
ment in aqueous ecosystems. Chen et al. [48] investigated 
the effects of hydrophobic nano-silica and a β-nucleating 
agent on the crystallization and mechanical behaviors of 
polypropylene. de Macedo et al. [49] discussed kaolinite 
clay intercalation techniques for polymer nanocompos-
ites, and Wu et al. [50] reviewed metal nanoparticle com-
posites for non-enzymatic glucose detection. Lastly, Naik 
et al. [51, 52] emphasized the significance of composites in 
sectors like aerospace, automobile, and defense, underlin-
ing the importance of green technology for environmental 
sustainability.

Additive manufacturing (AM) is a set of fabrication tech-
nologies by which a 3D digital model is transformed into a 
real object by adding layer over layer in a computer-controlled 
process, and it is opposed to subtractive technologies such as 
traditional milling processes. AM also belongs to the so-called 
Industry 4.0. Also known as 3D printing, AM has the poten-
tial to disrupt traditional manufacturing methods by offering 
several advantages over them, such as injection molding, cast-
ing, and machining. Some remarkable benefits of this technol-
ogy are as follows:

1.	 Customization: AM allows for the rapid and cost-
effective production of customized parts and products, 
which can be difficult or impossible to achieve with 
traditional manufacturing methods [53, 54].

Fig. 1   Nanomaterials typi-
cal shape configuration, a 
nanowires, b nanoparticles, c 
graphene, d nanoplatelets, e 
carbon nanotubes, f nanofilm
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2.	 Speed: AM can produce parts and products quickly, 
which can be beneficial in applications where time-to-
market is critical [55].

3.	 Complex geometries: AM can create parts with complex 
geometries and internal structures that are difficult or 
impossible to produce with traditional manufacturing 
methods, enabling products with unique properties [56].

4.	 Material flexibility: AM allows the use of a wide range 
of materials, including but not limited to metals, plas-
tics, ceramics, and composites, which can be a limitation 
with traditional manufacturing methods [57].

5.	 Reduced waste: AM can reduce material waste by only 
using the exact amount of material needed to produce 
a part or product, as opposed to traditional manufactur-
ing methods which may require excess material to be 
removed [58, 59].

6.	 Reduced tooling costs: AM eliminates the need for 
costly tooling and molds, which are required in tradi-
tional manufacturing methods such as injection molding 
or CNC milling [60].

7.	 Faster changes: AM technologies can provide quicker 
adjustments in the final product as shown in the critical 
time of pandemic COVID 19, showing a high technol-
ogy adaptability [48].

However, it’s important to note that the displacement of 
traditional manufacturing methods by AM depends on the 
application and the specific product. For example, tradi-
tional manufacturing methods are still more cost-effective 
and efficient for the mass production of simple parts, while 
AM is still more suitable for low-volume, complex, and 
customized products.

AM enabled the democratization of production by mak-
ing the manufacture of certain objects accessible to com-
panies or individuals because limited access to manufac-
turing technologies or high production costs. On the other 
hand, the AM allowed the possibility of personalization 
(“customization”) of the product, since it allows adaption 
to the needs of each user, sufficiently competitive in terms 
of quality and price [61]. Likewise, AM has led to the 
increasing decentralization of production, in which large 
manufacturing centers seeks to reduce transportation costs 
and maximize scale economies. It is noteworthy that the 
advantages of AM on demand can be exploited not only by 
the final consumer but also by other actors within the sup-
ply chain, being particularly useful for users who can design 
their own solutions [62].

The restricted selection of available materials has been 
one of the main obstacles to the industrial use of 3D print-
ing resins. Initially, the materials available were acrylate 
oligomer-based resins, usually with low molecular weight, 
which were noted for their extreme brittleness and poor 
mechanical and thermal characteristics [63].

However, with the introduction of new technical resins 
with improved qualities created in recent years, this has 
significantly changed, and this technology is now in the 
limelight in numerous industries. The development of new 
resin-based 3D printing, have lowered prices and speed up 
the printing process, providing a competitive option that may 
even outperform existing AM processes in some production 
sectors. There are currently multiple options for high-quality 
light-curing resins on the market, compatible with both ste-
reolithography (SLA) and digital light processing (DLP). 
They stand out for combining little residue, little thermal 
expansion, and sufficient precision [64].

In both commercial and residential environments, 3D 
printing photocurable resin has been gaining ground to 
overtake fused deposition modeling (FDM) technology as 
the most common 3D printing method. This boom is the 
result of two significant elements: on one hand, 3D printing 
resin has become cheaper thanks to the development of new 
technologies, placing them in the same price range as FDM 
printers. On the other hand, new materials such as dental, 
flexible, or engineering resins have emerged, making pos-
sible to create resin components that were previously only 
feasible using FDM or selective laser sintering (SLS).

The main advantage of 3D printing with resins is the reso-
lution, which is usually 0.05 to 0.1 mm, while the resolution 
of FDM printing is usually 0.3 to 0.5 mm [65]. This makes 
resin printing with very good esthetic quality in comparison 
to other AM technologies, with very good surface finishing 
and degree of detail.

Additionally, in recent years, nanomaterials have attracted 
great interest, since extraordinary optical, magnetic, electri-
cal, and mechanical properties improved at this scale [66]. 
These emerging properties enable these materials to have 
potential applications in various fields such as electronics, 
medicine, biology, and energy production. In addition, nano-
materials can be classified according to the dimension of the 
structural elements that compose them: zero-dimensional 
(0D), one-dimensional (1D), two-dimensional (2D), and 
three-dimensional (3D) structures. Nanomaterials include 
0D quantum dots, 1D nanowires and nanofibers, 2D nano-
platelets, and 3D nanospheres, among others [67]. However, 
nanomaterials tend to agglomerate, which limits the use of 
their intrinsic properties and, consequently, their perfor-
mance in final applications. Nevertheless, many studies and 
strategies have recently been carried out to obtain increas-
ingly efficient and affordable materials [68]. An alternative 
that has been developed to take more efficient advantage of 
the excellent properties is by assembling them in 3D struc-
tures until obtaining macroscopic structures in the form of 
hydrogels, foams, sponges, aerogels, and nonwoven fabrics 
[69]. For this, various strategies have been implemented, 
such as the self-assembly method, electrospinning, emul-
sion, 3D printing, and spray drying [70].
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Similarly, current technological development points to 
a trend towards progressive miniaturization, and AM tech-
niques are proving to be a very effective tool for working at 
micro and nanoscale dimensions in crucial fields like artifi-
cial organs, microfluidics, microelectronic devices, scaffolds 
for tissue engineering, or devices for the controlled drug 
release [71, 72]. In recent years, the demand for increas-
ingly smaller devices has been growing exponentially, for 
applications involving micro engines and micromachines, 
medical micro inserts, and techniques for minimally invasive 
surgery [73].

3D printing is proving to be a very effective tool for the 
development of these technological advances, considering 
the trend towards progressive miniaturization. This technol-
ogy enables fabrication at scales below the micro and nano 
dimensions [74]. Similarly, the development of new mate-
rials with extremely precise characteristics and properties 
will be possible thanks to these new technologies, such as 
advanced textiles that allow the implementation of UV fil-
ters, antibacterial and/or repellent properties, and biodegrad-
able garments [75].

The present topic highlights the feasibility of exploring 
various active areas in nanocomposite research. These areas 
encompass a broad spectrum of studies, including investiga-
tions into the influence of hydrophobic nano-silica agents 
on the crystallization and mechanical properties of polypro-
pylene random copolymers [48]; the development of elec-
trostatic self-assembly strategies for combining cellulose 
nanofibers, MXene, and nickel chains to create highly sta-
ble and efficient systems for seawater evaporation [76]; the 
utilization of metal-organic frameworks and their magnetic 
composites for pollutant removal [44]; the exploration of 
polymer nanocomposites for non-enzymatic glucose detec-
tion [50]; and the advancement of high-performance con-
ducting nanocomposites featuring polyaniline with enhanced 
antimicrobial properties, specifically designed for biomedi-
cal applications [77]. Additionally, the research extends to 
bioinspired materials and processes [78], innovations in 
cements and ceramics fabrication utilizing additive manu-
facturing techniques [79–82], the investigation of circular 
materials [83, 84], and materials under hard conditions of 
high loading and high temperatures [85, 86].

Based on the above, this review aims to present recent 
advances in the development and use of novel composite 
materials based on the incorporation of nanoparticulate 
materials in photocurable 3D printing resins.

2 � Specific objectives of the review

The review of nanocomposites synthesized through vat 
polymerization comprises several noteworthy papers. For 
instance, Andjela et al. [87] have delved into the utilization 

of vat photopolymerization within the realm of dentistry. 
In a similar vein, Al Rashid et al. [88] conducted an analy-
sis focusing on the challenges and prospects inherent to vat 
polymerization techniques, shedding light on issues and 
gaps pertaining to polymeric composite materials and the 
vat polymerization process. Medellin et al. [89], on the other 
hand, offered insights into the influence of reinforcing mate-
rials on nanocomposite properties, also covering various 
preprocessing and post-processing methods. Furthermore, 
Taormina et al. [90] provided a comprehensive survey of the 
approaches employed for manufacturing components via vat 
photopolymerization (VP) processes. They also provided an 
extensive overview of additive manufacturing technologies 
and the diverse polymer-related technologies available.

This article provides an updated review of the advan-
tages of nanocomposites produced by VAT photopolymeri-
zation, analyzing their potential applications, research in 
various fields, and the properties of the materials obtained 
with this technique.

The specific objectives of this review are the following:

•	 Summarizing recent advances and research on diverse 
types of nanofiller materials, their characteristics, and 
applications

•	 Supplying comprehensive information on trends in devel-
oping new materials and their improved characteristics 
through incorporating nanomaterials

•	 Revealing recent advances in the development of polym-
erization processes

This document would provide a better understanding of 
the perspectives and trends on the application of nanomate-
rials in the development of new composite materials using 
AM techniques based on photocurable resins. In addition, 
provide original and creative suggestions based on recent 
findings that can be used in future research projects. This 
article will also serve as a reference point for experienced 
researchers to envision new possibilities for the creation and 
use of novel materials, allowing them to suggest future lines 
of research.

3 � Review methodology

3.1 � Sources of information and techniques 
of searching

The review was conducted following the guidelines and 
framework presented by Moher et al. [91] known as Pre-
ferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA). PRISMA is a well-accepted standard 
that aims to improve the reporting and quality of systematic 
reviews. The review followed the PRISMA approach, which 
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included conducting literature searches, selecting relevant 
articles, and extracting data. The PRISMA declaration web-
site provides standard flowcharts and additional resources 
for conducting comprehensive reviews [92].

3.2 � Keyword‑based search

From this preliminary search, it could be established that 
the potential use of nanoparticles in composite applications 
manufactured by AM methods is a growing topic of inter-
est in the scientific community. First-level databases (such 
as ScienceDirect or Scopus) compile a variety of studies 
about new materials and their applications; however, issues 
such as the associated health and environmental risks are 
little investigated.

All scientific data included in this study were collected 
using the PRISMA method. First, a literature search was 
performed using the combined results from the ScienceDi-
rect database. Additional results were retrieved using the 
Scopus database. Only articles in which the title, abstract 
and full paper were published in English were considered 
for this review. The keywords of the searches were “(vat 
photopolymerization) OR photopolymerization) AND nano-
composite.” The search was limited to only for research pub-
lications, leaving out review articles and book chapters. Rel-
evant literature related to the keywords served as the basis 
for this search. The chosen keyword combinations, such as 
“printing” OR “(SLA OR stereolithography)” OR “DLP” 
formed the basis of the search approach. These search terms 
were selected to look for more accurate data and informa-
tion on the procedures for creating materials using nano-
composites and their most current uses. Figure 2 shows the 
results of an initial query conducted to determine the annual 
publication count in the ScienceDirect (SD) database related 
to the subject of this review. The figure also illustrates the 
increasing interest and research activity in this field of study.

However, only studies published after 2012 were consid-
ered for this review, with a focus on those from the previous 

five years because the authors felt that they were the most 
pertinent for the current study.

3.3 � Article selection process

The second phase consisted of categorizing the published 
articles and eliminating irrelevant data. The results were 
analyzed by examining titles, abstracts, and full articles. The 
scope of the study was expanded to include only relevant 
publications and data published between 2012 and 2022 
were collated. Figure 3 shows the flow of information in 
the distinct phases of this systematic review.

3.3.1 � Review process

In the last review phase, the content of each published article 
was evaluated, and useful information was extracted from them.

4 � Vat photopolymerization (VPP)

Photopolymerization is a photochemical process that 
involves linking small monomers to form a chainlike poly-
mer with the aid of a catalyst. Adequate crosslinking of the 
polymers is necessary to prevent the polymerized molecules 
from dissolving back into the liquid monomers [93]. In the 
realm of 3D printing, photopolymerization offers a wide 
range of possibilities as it enables the solidification of liquid 
resin through radiation. This process utilizes photosensitive 
polymer resins that are selectively cured layer by layer using 
either a laser or digital light projection source [94].

VPP stands out as a highly favored 3D printing method 
among the different types of AM technologies. It has gar-
nered significant interest from a wide range of industries 
and fields. VPP involves the use of light to solidify or cure 
photocurable resin, also known as photoresist, in the process 
of creating three-dimensional objects [95]. The most popular 
methods for resin AM in terms of printing techniques are 
stereolithography (SLA), digital light processing (DLP), and 

Fig. 2   Research articles 
published per year in the SD 
database about this review
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liquid crystal display-light emitting diode (LED-LCD), due 
to their ability to produce high-precision, isotropic, and air-
tight components and prototypes using a variety of sophis-
ticated materials that enable the fabrication of fine details 
and a smooth surface finish [96].

Previously, these technologies were complex and expen-
sive, but today, desktop and small-format SLA and DLP 
3D printers produce industrial-quality parts at an affordable 
price and with unparalleled versatility, thanks to a wide vari-
ety of options of materials [97].

To produce very thin with these two methods, solid layers 
of plastic that overlap to form solid objects are based on the 
selective exposure of liquid resin to a light source (a laser in 
the case of SLA and a projector in the case of DLP). Despite 
having a very similar concept, these two methods can lead 
to completely different results [98].

4.1 � Stereolithography (SLA)

SLA is a 3D printing technique that uses a laser to con-
vert liquid resin into solid parts. Because it allows pre-
cise control of the dispersion of nanoparticles within a 
polymer matrix, it has become increasingly popular in 
the field of nanocomposites. As a result, the materials 
exhibit improved qualities, such as increased strength 
and toughness. SLA can also be used to create complex 
geometries and structures that are difficult to fabricate 

using conventional production processes. This makes it 
a method with great potential for creating sophisticated 
nanocomposites for various applications. In general, SLA 
has a UV laser light positioned with mirror galvanometers 
for scanning and producing the photopolymerization in a 
plane (see Fig. 4a). Some of the industries that find SLA 
particularly relevant and valuable include:

•	 Aerospace and defense: SLA is used for rapid prototyping, 
creating intricate components, and producing functional 
parts for aircraft and defense applications [99, 100].

•	 Automotive: SLA enables the production of high- 
precision prototypes, concept models, and customized 
parts for automotive design, testing, and manufactur-
ing [101, 102].

•	 Medical and healthcare: SLA is utilized for creating sur-
gical guides, patient-specific models, dental appliances, 
prosthetics, and other medical devices with intricate 
geometries and high accuracy [103, 104].

•	 Consumer products: SLA is employed in the develop-
ment of consumer goods such as electronics, household 
appliances, toys, and fashion accessories, enabling rapid 
prototyping and customization [105, 106].

•	 Industrial manufacturing: SLA finds applications in 
various industrial manufacturing processes, including 
creating molds, tooling, jigs, and fixtures with complex 
geometries and high precision [107, 108].

Fig. 3   Flow of information 
through the different phases of 
this systematic review
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•	 Engineering and architecture: SLA is used in the fields of 
engineering and architecture for creating detailed archi-
tectural models, prototypes, and scaled-down replicas 
[109, 110].

•	 Education and research: SLA is employed in educa-
tional institutions and research laboratories for teach-
ing, research projects, and exploring new applications 
of additive manufacturing [111, 112].

4.2 � Digital light processing (DLP)

DLP is a popular technique for creating parts with high 
resolution and fine details. DLP technology uses a digital 
light projector to cure liquid resin layer by layer, creating a 
solid object. The resolution of the final part is determined 
by the resolution of the projector, which can be as high as 
25 microns, creating of parts with very fine features. DLP 
is particularly useful for creating small, precise parts such 
as dental models, jewelry, and figurines. In addition, DLP 
is faster than some other 3D printing technologies such as 
FDM, which is an advantage for high-volume production of 
small parts. Figure 4b shows a projector illuminating a wide 
area, which enables faster printing speeds.

4.3 � Liquid crystal display‑light emitting diode 
(LED‑LCD)

LED-LCD technology emerged as an advancement over 
DLP technology and has largely supplanted it in contem-
porary times. The functionality of LED-LCD technology 
is like DLP, but instead of utilizing a digital micromirror 
device (DMD) to reflect light, it employs an LCD device 
where each pixel acts as a miniature window, controlling 
the passage or blocking of light. Refer to Fig. 4c for a 
visual representation.

One of the main advantages of LED-LCD technol-
ogy is its high printing speed and low cost. Furthermore, 

it surpasses DLP technology in two fundamental aspects. 
First, as mentioned earlier, the perpendicular projection 
avoids distortions that can occur due to the oblique projec-
tion provided by lenses used in DLP systems. Second, LCD 
devices not only block or allow light to pass through but 
can also filter it, independently varying the light intensity 
in each pixel. This enables the use of anti-aliasing processes 
that reduce the stair-step effect and achieve surface qualities 
very close to those obtained through SLA.

However, LED-LCD technology also has some draw-
backs. One of the main concerns is the high heat generated 
by the LED matrices used, which necessitates the implemen-
tation of effective cooling systems to prevent resin overheat-
ing during long printing sessions.

SLA and DLP are the most widely used resin 3D print-
ing technologies. This is in part because resin 3D printers 
are currently a popular option that allows producing high-
precision, isotropic, and hermetic parts, and prototypes with 
a portfolio of advanced materials for fine detail and smooth 
surface finish, as well as desktop and small-format SLA and 
DLP 3D printers that produce industrial quality parts at an 
affordable price.

5 � Examples of nanocomposites

5.1 � Nanofillers materials used in nanocomposites

Nanofillers, with particle sizes ranging from 1 to 100 nm, 
have garnered significant interest in the field of polymer 
composites. They offer unique properties and functionalities 
that can enhance the performance of polymer matrices. New 
nanofillers, including nanoclays and needle-shaped nanow-
hiskers, have emerged and are commercially available [113].

VPP can be greatly enhanced by the inclusion of nanofill-
ers in the photocurable resin. Nanofillers bring numerous 
benefits to VPP, improving the mechanical strength, ther-
mal stability, and dimensional accuracy of printed objects. 

Fig. 4   Widespread light-curing technologies, a SLA, b DLP, c LED-LCD
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Nanoparticles like nanoclays or nanosilica reinforce the 
resin matrix, resulting in higher tensile strength and reduced 
shrinkage. They also contribute to a better surface finish and 
reduced warping, enhancing the overall quality of the printed 
objects. Additionally, nanofillers can introduce additional 
functionalities such as electrical conductivity or unique 
optical properties, further expanding the range of applica-
tions for VPP technology. Achieving optimal performance 
requires proper dispersion and compatibility of the nano-
fillers, which can be achieved through surface modification 
techniques. By integrating nanofillers, VPP offers exciting 
possibilities to produce advanced 3D printed objects with 
enhanced properties, opening up new opportunities in vari-
ous industries.

Classifying nanoparticles based on their number of 
dimensions is a helpful approach, which extends the con-
cept of aspect ratio. Nanofillers can be categorized into three 
groups according to their dimensions: one-dimensional (1D), 
two-dimensional (2D), and three-dimensional (3d) nanofill-
ers [114]. 1D nanofillers, such as montmorillonite clay and 
nanographene platelets, possess shape-dependent charac-
teristics and find applications in microelectronics, biosen-
sors, sensors, and coatings [115]. 2D nanofillers, including 
carbon nanotubes and graphene, offer excellent mechanical 
properties, flame retardancy, and reinforcement capabili-
ties [116]. They are utilized in energy, sensors, electronics, 
and optoelectronics. 3D nanofillers, such as nanosilica and 
nanotitanium oxide, possess specific properties that make 
them valuable in various applications, including coatings, 
separation and purification, and biomedicine [115].

Hybrid polymer nanocomposites combine nanofillers 
from different sources to further enhance the properties of 
polymer matrices. Carbon-based nanofillers, such as gra-
phene and carbon nanotubes, are commonly used in these 
composite designs. Hybrid nanocomposites with multiple 
carbon-based fillers exhibit improved tribological proper-
ties, load-bearing capacity, wear resistance, and interfacial 
bonding strength. Adequate loading of nanofillers is crucial 
to minimize agglomeration and phase separation, ensuring 
longer wear life cycles [117].

Electrospun nanofibers, produced through the elec-
trospinning method, offer advantages such as continuity, 
controlled diameter/structure, and mass production capa-
bility. These nanofibers are emerging as reinforcing fillers 

in polymer matrix composites. Their performance strongly 
depends on the interphase strength, which is an important 
area of development and study [118].

Nanofillers play two crucial roles in polymer blends. 
First, they improve various properties such as mechanical 
strength, barrier properties, thermal stability, flame retar-
dancy, and electrical conductivity. Second, they modify the 
miscibility and morphology of polymer blends. The effec-
tiveness of nanoparticles in altering the blend’s properties 
depends on their localization, interactions with polymer 
components, and dispersion within the blend [118]. Some 
of the properties that can be improved with nanofillers are 
shown in Table 1. It should be noted that, when creating 
nanocomposites for specific applications, the integration of 
nanoparticles can also alter other characteristics of the final 
materials, such as their thermal and electrical properties.

5.1.1 � Graphene‑based nanocomposites

Graphene is a two-dimensional material with exceptional 
electrical conductivity and mechanical strength and has been 
incorporated into various polymer matrices to create gra-
phene-based nanocomposites. These nanocomposites have 
improved electrical conductivity [9], mechanical properties 
[129], thermal stability [130], and barrier properties [131].

5.1.2 � Carbon nanotube‑based nanocomposites

Carbon nanotubes (CNTs) have also been used to create 
nanocomposites with improved mechanical properties, elec-
trical conductivity, and thermal stability. CNTs can also con-
tribute with improved barrier properties [132] and enhanced 
electrical conductivity [133, 134].

5.1.3 � Metal nanoparticle‑based nanocomposites

Metal nanoparticles such as gold, silver, and copper are 
being used to create nanocomposites with improved elec-
trical conductivity, mechanical properties, and thermal sta-
bility [135–138]. Also, some of the most used nanofillers 
according to recent literature and their study topics identi-
fied in this review are shown in Table 2.

The use of polymeric nanomaterials also raises certain 
questions regarding the potential health and environmental 

Table 1   Nanofillers and 
enhanced properties when 
incorporated into a polymer 
matrix 

Nanofillers Enhanced properties References

Graphene fibers Improved strength, stiffness, and toughness [119, 120]
Carbon nanotubes Carbon nanotubes, stiffness, and toughness [121, 122]
Clay nanoparticles Improved mechanical behavior [123, 124]
Silica nanoparticles Improve the stiffness and toughness [125, 126]
Metal powders Improve mechanical and optical properties [127, 128]
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issues they may generate, and that further studies are 
required to understand and address these issues.

5.2 � Biodegradable polymers

Biodegradable polymers are a type of polymer that can 
be broken down by natural processes such as bacteria or 
enzymes. These materials are used in a variety of applica-
tions such as packaging, agriculture, and medicine. Biode-
gradable matrix polymers are designed to degrade into non-
toxic by-products and can be an environmentally friendly 
alternative to traditional plastics. Some examples of biode-
gradable matrix polymers include:

5.2.1 � Nanocellulose‑based nanocomposites

Nanocellulose is a natural material extracted from plant 
fibers and has been used to create nanocomposites with 
improved mechanical properties, barrier properties, and 
biodegradability [170, 171].

5.2.2 � Layered double hydroxide‑based  
nanocomposites (LDHs)

LDHs have been used to create nanocomposites with 
improved mechanical properties, thermal stability, and flame 
retardancy [172, 173]. Recent advances in nanocomposites 

Table 2   Nanofillers used in 
nanocomposites

Material Technique Study Ref.

ZnO DLP Influence of UV irradiation [139]
ZrO2 SLA Viscosity characterization [140]

Translucent and biocompatible resin [141]
Rheological properties [142]

TiO2 UV-DIW Performance of epoxy composites [143]
Silver SLA Enhance the thermal conductivity [144]

Thermal–mechanical properties [145]
DLP Electrically conductive resin [146]

Silica SLA Reinforcing and toughening [147]
Material viscosity [148]

Silica DLP Printing adaptability [149]
Temperature sensing [150]

Magnetic particles DLP fabrication of polymeric composites with embedded 
magnetic particles

[151]

Controlled production [152]
Control of magnetic microstructure [153]

Magnetic particles SLA Fabrication of functionally graded materials [154]
Hydroxyapatite DLP Fabrication of porous composite scaffold [155]
Hydroxyapatite SLA Bone reconstruction [156, 157]
Graphene SLA Exfoliation and dispersion in a vinyl monomer [158]

Viscoelastic and strain rate response [159]
Graphene DLP Friction and wear characteristics [160]

Controlled production of aligned polymer [152]
Nano-reinforcement polymeric matrix [161]

Cellulose SLA Reinforced medical-grade resin [162]
Mechanical reinforcement and thermal stabilization [163]

Cellulose DLP Development of natural-based composite [164]
Carbon nanotubes DLP Curing kinetics and printing parameters [165]

DLP Electrical properties [166]
DLP/SLA Electrically conductive resin [133]
DLP/SLA Sensitizers for the cure of epoxy resins [167]
SLA Electrical and mechanical tuning [168]

Nanoclays SLA Enhance the thermal conductivity [144]
Composites reinforced [169]
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demonstrate that it is possible to develop new materials with 
improved capabilities for various applications. However, it 
is essential to keep in mind that, when creating nanocom-
posites for specific applications, the type of nanoparticles 
used, their concentration, and the synthesis technique can 
have an impact on the final characteristics of the materials 
depending on the application.

5.3 � Trends in the development of new 
nanomaterials for VPP

The development of new nanomaterials for VPP has seen 
several advances in recent years. New nanomaterials have 
been developed for VPP to reduce costs and increase effi-
ciency. Some of these include the following.

5.3.1 � Improved mechanical characteristics

Recent development show nanomaterials that can be used 
to create parts with improved mechanical properties such 
as increased strength, stiffness, and toughness, for example, 
the incorporation of carbon nanotubes [174, 175], graphene 
[159, 176], and other nanomaterials to improve the mechani-
cal performance of printed objects [70, 177, 178].

Among the recently reported developments of materials 
with improvements in their mechanical properties, Hyun 
et al. [142] prepared UV-curable 3Y-ZrO2 zirconium nano-
particle resins with 50 volume % ceramic content for sup-
portless stereolithography printing. Based on the rheologi-
cal behavior of the ceramic nanocomposites such as photo 
curability, viscosity, fluidity, and printability, they obtained 
high relative densities (99.90%) and flexural strengths above 
930 MPa. On the other hand, Eng et al. [169] studied mont-
morillonite nanoclay fillers (plate-shaped) considering the 
dispersion, alignment, size, and charges of the nanoclays 
by dispersing them homogeneously in the photopolymer 
through various mixing processes, including sonification. 
In this study, the nanoclays were immobilized during pho-
topolymerization after ultraviolet (UV) exposure, thus main-
taining their orientation and alignment, which significantly 
improved their elongation (more than 100%), as well as 
their tensile strength and Young modulus. Similarly, Younes 
et al. [152] investigated nanocomposites with polymer fill-
ers and magnetic Fe3O4@graphene using the DLP method 
for the controlled production of highly aligned 3D printed 
nanocomposites, which showed a significant improvement 
in Young's modulus of the nanocomposites with 0.4–0.8 
wt.% Fe3O4@graphene of the printed parts by varying the 
angle of the magnetic field. In contrast, Dizon et al. [179] 
investigated the mechanical and swelling characteristics of 
silica/poly (ethylene glycol) diacrylate nanocomposites and 
contrasted them with unreinforced samples. They found that 

the addition of 1% SiO2 increased the poly (ethylene glycol-
tensile)’s and compressive strength by 30%.

Additionally, Taormina et  al. [180] investigated the 
possibility of generating silver nanoparticles (AgNPs) 
from a liquid system with a dispersed silver salt, which 
was reduced to metallic silver through a stereolithographic 
process. They reported that simultaneous photoinduced 
crosslinking of acrylic resin produces a thermosetting resin 
with significantly improved thermomechanical properties 
over unfilled resin, even at very low AgNP concentrations, 
achieving an improvement in Young’s modulus of over 
120%. Similarly, Feng et al. [176] developed A polyurethane 
resin, in which trimethylolpropane trimethacrylate was 
used as a diluent and phenylbis (2,4,6-trimethylbenzoyl)-
phosphine oxide (Irgacure 819) as a photoinitiator, achieving 
a 62% increase in tensile strength over samples fabricated 
by direct casting. Tsang et al. [181] studied the development 
of modified flexible polymeric nanocomposites based on 
graphene oxide/elastomer; however, the addition of graphene 
oxide resulted in a decrease in the mechanical strength, as 
well as in the elongation of the resulting nanocomposite. 
Correspondingly, the thermal properties were also negatively 
affected by the addition of graphene oxide. Similarly, Li 
et al. [182] characterized a photosensitive acrylate resin 
reinforced with graphene nanosheets, obtaining a composite 
material with better mechanical and thermal properties. 
Additionally, Hu et al. [144] employed nanofillers, such as 
silver, copper, halloysite, and other nanoclays, to increase 
the thermal conductivity of resins for stereolithography. 
The fillers were applied to a photopolymer resin, allowed to 
cure, and then assessed using scanning electron microscopy, 
contact angle, hardness, thermal conductivity, and 
mechanical characteristics. They found that the addition of 
3% by weight of halloysite nanoclay produced a 6% increase 
in the thermal conductivity of the resin.

5.3.2 � Improved electrical characteristics

The incorporation of conductive or semi-conductive nano-
particles such as graphene, carbon nanotubes, and metal 
nanoparticles into the polymer matrix is being explored 
to create parts with improved electrical properties [144, 
166, 183]. Nanocomposites made of a polymer matrix and 
nanoparticles can have enhanced electrical properties com-
pared to the pure polymer matrix. These properties can be 
achieved by incorporating nanoparticles made of conduc-
tive or semi-conductive materials such as carbon nano-
tubes (CNTs), graphene, or metal nanoparticles (such as 
gold or silver) into the polymer matrix. Carbon nanotubes, 
for example, have excellent electrical conductivity and can 
be used to create nanocomposites with improved electrical 
conductivity and thermal stability. Similarly, when used to 
improve the electrical characteristics of nanocomposites, 
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graphene, a two-dimensional material with exceptional 
electrical conductivity, can be used. Metal gold or silver 
nanoparticles can also be used to create conductive nano-
composites with improved electrical conductivity and 
mechanical properties. In this sense, several studies have 
recently been carried out in which carbon nanotubes are 
added to evaluate and optimize nanocomposite materials. 
In this sense, Lim et al. [133] studied the printing of poly-
meric compounds based on carbon nanotubes by applying 
a solution intercalation method to promote the dispersion 
of nanotubes, thus contributing to high electrical conduc-
tivity and precision in the stereolithography process. For 
their part, Chavez et al. [168] studied the dispersion of 
carbon nanotubes in polymers, assisted by an electric field, 
for three-dimensional fabrication using stereolithography 
techniques, obtaining a significant increase in electrical 
conductivity (26%). Additionally, Gonzalez et al. [166] 
developed photocurable acrylic formulations containing 
CNTs (up to 0.3% by weight) with improved electrical 
conductivity for the construction of 3D structures with 
electrical properties. Likewise, Charoeythornkhajhornchai 
et al. [143] studied the effect of coatings of the aromatic 
compound carbazole on nanoparticles of titanium dioxide 
(TiO2) as a photosensitizer, through their characteriza-
tion by their photo-absorbency, morphology, and surface 
properties, and used a UV curing technique to fabricate 
flexible epoxy composites/multi-walled carbon nanotubes 
(MWCNTs) which showed low thermal expansion with 
good electrical properties. Similarly, recent research has 
been carried out to improve the electrical conductivity of 
composite materials by adding other nanoparticulate mate-
rials. For instance, Tan et al. [146] created silver nanow-
ires (Ag NWs) and combined them with liquid thermo-
plastic polyurethane (TPU) resin to create an electrically 
conductive resin. Similarly, Moriche et al. [161] investi-
gated the photocuring-induced modifications of Bis-GMA/
TEGDMA by adding graphene nanoplatelets to electrically 
conductive nanocomposites.

5.3.3 � Enhanced optical properties

The most important optical properties of a polymer result-
ing from radical polymerization include its absorption and 
refraction characteristics, as well as its light transmission, 
reflection, and scattering features. These properties are 
determined by the type of monomers used in the polymeri-
zation process, the molar mass and molecular weight distri-
bution of the polymer, and the arrangement of the atoms and 
molecules in the polymer structure. For their part, research-
ers are exploring the use of metallic nanoparticles to create 
parts with increased transparency and color stability [184, 
185]. Likewise, the use of quantum dots to manipulate the 

electronic and optical properties of materials is also being 
investigated [186].

5.3.4 � Ceramic additive manufacturing

Ceramic additive manufacturing has evolved with the 
advancements in additive manufacturing technology [187]. 
This technology produces intricate ceramic structures that 
are challenging to produce via traditional milling processes. 
Moreover, it holds immense potential for integrating ceram-
ics with complex architectures, high-temperature resistance, 
exceptional wear resistance, and other functional properties 
into everyday applications. Currently, ceramic AM offers 
significant advantages, including high precision in forming, 
process flexibility, cost-effectiveness, and extensive research 
[188]. The fundamental principle of ceramic vat photopo-
lymerization involves the exposure of a high-solids ceramic 
paste to ultraviolet (UV) light, initiating the process of pho-
topolymerization. Following this, the green parts undergo 
post-processing steps such as debinding and sintering to 
achieve densification [189].

Harnessing the potential of light-curing for ceramics 
opens a multitude of possibilities across a broad spectrum of 
applications. Table 3 provides an overview of the broad ver-
satility of vat ceramic additive manufacturing, showing its 
suitability for various nanofillers in ceramic nanomaterials.

5.3.5 � Multi‑functionality

Researchers are exploring the development of nanocom-
posite materials that exhibit multiple functionalities such 
as improved mechanical properties, electrical conductivity, 
and thermal stability [17, 37]. These trends are driven by the 
growing demand for advanced materials with improved prop-
erties for various applications such as aerospace, automotive, 
healthcare, consumer goods, and the need to move towards 
more sustainable and environmentally friendly materials.

The development of composite materials with 
improved electrical, mechanical, and thermal properties 
for the development of materials for biomedical and den-
tal applications, and improvements in the polymerization 

Table 3   Fillers used in ceramic nanomaterials in VPP

Nanomaterial Functional properties Reference

SiO2 Optical properties [190]
Fe3O4 Piezoelectric properties [191]
SiC Mechanical strength [192]
Al2O3 Mechanical strength [135]
CaP Bone repair [193]
TiO2 Antibacterial [193, 194]
Bi0.5 Sb1.5 Te3 Thermoelectric [195]
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properties of composite materials are the most discussed 
topics in the field of applied nanocomposites, according 
to the literature review conducted for this study. Likewise, 
studies have been developed aimed at the elaboration of 
medicines for the controlled administration of drugs.

5.4 � Hazards associated with VPP processes

According to the present review, there is a gap in recent 
literature in relation to studies aimed at evaluating the risks 
associated with the extended use of VPP processes. How-
ever, some aspects that in the opinion of the authors should 
be considered when opting for the use of this technique.

VPP is a process in which monomers are polymerized 
in a liquid medium, typically using a photosensitizer and 
light as an initiator. Although this process has the poten-
tial to produce high-quality polymers with well-defined 
properties, it also presents some potential health and envi-
ronmental hazards.

Exposure to photosensitizers used in vat polymeriza-
tion, a potential health risk, can result in skin irritation 
and other adverse effects if not handled properly [196]. 
These chemicals can be toxic. Moreover, the process of 
vat polymerization generates harmful by-products such 
as formaldehyde and acrolein, which can be detrimental 
to human health if inhaled. Similarly, Xu et al. success-
fully demonstrated the viability of SLA 3D printing in 
creating modified-release tablets as oral dosage forms. 
However, it is crucial to note that these printed tablets do 
not degrade but maintain their structural integrity upon 
elimination from the body. This characteristic carries the 
potential risk of intestinal obstruction or raises concerns 
within specific patient populations [104].

Another potential environmental hazard is the release 
of harmful chemicals into the environment, especially if 
proper disposal methods are not followed. This can lead 
to soil, water contamination, and likewise damage wild-
life and ecosystems.

Furthermore, the process of 3D printing, particu-
larly with existing commercial DLP printers, generates 
substantial heat and light, which can contribute to the 
greenhouse effect and global warming. Additionally, the 
utilization of UV light or near-UV light as light sources 
in these printers poses potential hazards, such as DNA 
damage, particularly when employed in bioprinting appli-
cations [197].

It is important to note that the potential risks associated 
with VPP can be minimized by using proper handling and 
disposal methods, as well as by employing less harmful 
initiators and photosensitizers. In addition, research should 
focus on the development of alternative polymerization 

methods that are more sustainable and have a lower envi-
ronmental impact.

6 � Conclusion and perspective

Due to their distinct characteristics and prospective uses in a 
variety of disciplines, 3D printed polymer-based nanomate-
rials have received a lot of attention in the last years. In the 
present review, the most active research areas in the field of 
nanocomposite materials used in the VPP technique were 
addressed, considering the filler materials that have been 
reported in the literature, as well as their uses in different 
applications, the trends in the development of new materials, 
and the most recent studies aimed at improving the polym-
erization processes.

Nanofiller materials can be used to enhance the properties 
of the polymer, such as increasing its strength or thermal 
stability. A homogeneous distribution of nanofillers in VPP 
can be an effective way to improve the properties of polymer 
matrix composites.

This review has focused on advances and trends in the 
development of composite materials, envisioning those 
available in relation to the possibilities in the limited mate-
rials tested so far. This opens not only opportunities for 
new materials and parts made with SLA and DLP but also 
prospects for modification of manufacturing technology, 
modification of process parameters on a large scale, and 
new business.

However, in the opinion of the authors, there is still a 
need for studies to evaluate and to improve the safety of the 
commercially available resins, considering the exothermic 
nature of VPP processes. Another aspect that still needs to 
be explored in depth is related to the use of waste and the 
recycling of parts after their useful life, since the aspects of 
circularity and the life cycle of the products are aspects that 
must be considered from the preliminary stages of design, to 
avoid future problems of contamination and pollution of the 
environment. It is important to note that the use of polymer-
based nanomaterials also raises some concerns about their 
potential health and environmental risks, and more research 
is needed to understand and mitigate these risks. Another 
aspect that is not usually raised in evaluated works is related 
to the costs of raw materials and the manufacturing process, 
which is a fundamental aspect to evaluate the feasibility of 
future implementation.

Finally, although there are now many research and devel-
opments in 3D printing of nanocomposites, certainly it is a 
new are limitless of possibilities to explore, not only from 
the materials side point of view, but also from the manufac-
turing innovation, with high impact in electronics, medicine, 
energy, and armor, and transportation.
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