Skip to main content

Advertisement

Log in

Biosynthesizing lignin dehydrogenation polymer to fabricate hybrid hydrogel composite with hyaluronic acid for cartilage repair

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Lignin possesses a number of functional groups including phenolic hydroxyl and methoxy groups, which grant its bioactivity for the fabrication of bio-polymer-based composites in bone tissue engineering applications. However, the heterogeneity of natural lignin limits its use in biomedicine. In the present study, a bio-enzyme approach was proposed to synthesize lignin-dehydrogenated polymers from the precursors of arabinogalactan (DHP-A) and xylose (DHP-X), which possess more homogeneous substructures with appropriate functional groups. Both DHP-A and DHP-X showed excellent in vitro abilities for regulating biocompatibility, “pre-oxidation,” and chondrogenic differentiation, in which DHP-A possessed cartilage repair ability due to its abundant content of phenolic hydroxyl groups (3.00 mmol g−1). Hence, DHP-A was hybridized with hyaluronic acid (HA) to prepare a hydrogel (DHP-HA) composite, which exhibited the compressive strength and modulus of 810 kPa and 310 kPa, respectively. Notably, these properties closely resemble those of articular cartilage, which typically ranges from 320 to 810 kPa. The application of DHP-HA hydrogel composite in a rat cartilage defect model in vivo revealed that it promoted the regeneration of hyaline cartilage rather than hypertrophic cartilage, which could heal 66.22–79.26% of the cartilage defects compared to the control group. Pre-oxidation of DHP-A elicits a mechanism that activates the oxidative stress system, leading to an augmented stress response and consequent increase in stress resistance. This study introduces a pioneering enzymatic synthesis technique to prepare the biologically active lignin for creating bio-polymer-based composites, demonstrating its potential as an innovative avenue for therapeutic cartilage regeneration.

Graphical Abstract

Bioenzymatically synthesized lignin dehydrogenation polymers to hybridize with hyaluronic acid to prepare hydrogel composites for promoting cartilage defect repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, Prof. Caoxing Huang upon reasonable request.

References

  1. Yang S, Shi C, Qu K, Sun Z, Li H, Xu B, Huang Z, Guo Z (2023) Electrostatic self-assembly cellulose nanofibers/MXene/nickel chains for highly stable and efficient seawater evaporation and purification. Carbon Lett. https://doi.org/10.1007/s42823-023-00540-0

    Article  Google Scholar 

  2. Ruan J, Chang Z, Rong H, Alomar TS, Zhu D, AlMasoud N, Liao Y, Zhao R, Zhao X, Li Y, Xu B, Guo Z, El-Bahy ZM, Li H, Zhang X, Ge S (2023) High-conductivity nickel shells encapsulated wood-derived porous carbon for improved electromagnetic interference shielding. Carbon 213:118208. https://doi.org/10.1016/j.carbon.2023.118208

    Article  CAS  Google Scholar 

  3. Lian M, Huang Y, Liu Y, Jiang D, Wu Z, Li B, Xu Q, Murugadoss V, Jiang Q, Huang M, Guo Z (2022) An overview of regenerable wood-based composites: preparation and applications for flame retardancy, enhanced mechanical properties, biomimicry, and transparency energy saving. Adv Compos Hybrid Mater 5:1612–1657. https://doi.org/10.1007/s42114-022-00475-6

    Article  Google Scholar 

  4. Wang X, Shen Y, Xu S, Huang C, Lai C, Yong Q, Chu F, Algadi H, Zhang D, Lu C, Wang J (2023) Lignin in situ self-assembly facilitates biomimetic multiphase structure for fabricating ultra-strong and tough ionic conductors for wearable pressure and strain sensors. Adv Compos Hybrid Mater 6(3):84. https://doi.org/10.1007/s42114-023-00658-9

    Article  CAS  Google Scholar 

  5. Lai C, Jia Y, Yang C, Chen L, Shi H, Yong Q (2020) Incorporating lignin into polyethylene glycol enhanced its performance for promoting enzymatic hydrolysis of hardwood. ACS Sustain Chem Eng 8(4):1797–1804. https://doi.org/10.1021/acssuschemeng.9b05724

    Article  CAS  Google Scholar 

  6. Zheng L, Lu G, Pei W, Yan W, Li Y, Zhang L, Huang C, Jiang Q (2021) Understanding the relationship between the structural properties of lignin and their biological activities. Int J Biol Macromol 190:291–300. https://doi.org/10.1016/j.ijbiomac.2021.08.168

    Article  CAS  Google Scholar 

  7. Deng J, Gu J, Zhao X, Yan B, Wang L, Ji G, Huang C (2023) Improving the protective ability of lignin against vascular and neurological development in BPAF-induced zebrafish by high-pressure homogenization technology. Int J Biol Macromol 231:123356. https://doi.org/10.1016/j.ijbiomac.2023.123356

    Article  CAS  Google Scholar 

  8. Pei W, Deng J, Wang P, Wang X, Zheng L, Zhang Y, Huang C (2022) Sustainable lignin and lignin-derived compounds as potential therapeutic agents for degenerative orthopaedic diseases: A systemic review. Int J Biol Macromol 212:547–560. https://doi.org/10.1016/j.ijbiomac.2022.05.152

    Article  CAS  Google Scholar 

  9. Lu Z, Liu S, Le Y, Qin Z, He M, Xu F, Zhu Y, Zhao J, Mao C, Zheng L (2019) An injectable collagen-genipin-carbon dot hydrogel combined with photodynamic therapy to enhance chondrogenesis. Biomaterials 218:119190. https://doi.org/10.1016/j.biomaterials.2019.05.001

    Article  CAS  Google Scholar 

  10. Abbina S, Vappala S, Kumar P, Siren EMJ, La CC, Abbasi U, Brooks DE, Kizhakkedathu JN (2017) Hyperbranched polyglycerols: recent advances in synthesis, biocompatibility and biomedical applications. J Mater Chem B 5:9249–9277. https://doi.org/10.1039/c7tb02515g

    Article  CAS  Google Scholar 

  11. Wei X, Cui S, Xie Y (2022) Synthesis and antibacterial properties of oligomeric dehydrogenation polymer from lignin precursors. Molecules 27(5):1466. https://doi.org/10.3390/molecules27051466

    Article  CAS  Google Scholar 

  12. Ullah I, Chen Z, Xie Y, Khan SS, Singh S, Yu C, Cheng G (2022) Recent advances in biological activities of lignin and emerging biomedical applications: a short review. Int J Biol Macromol 208:819–832. https://doi.org/10.1016/j.ijbiomac.2022.03.182

    Article  CAS  Google Scholar 

  13. Xie Y, Jiang C, Chen X, Wu H, Bi S (2020) Preparation of oligomeric phenolic compounds (DHPs) from coniferin and syringin and characterization of their anticancer properties. Bioresources 15:1791–1809. https://doi.org/10.15376/biores.15.1.1791-1809

  14. Liang R, Zhao J, Li B, Cai P, Loh XJ, Xu C, Cheng P, Kai D, Zheng L (2020) Implantable and degradable antioxidant poly (ε-caprolactone)-lignin nanofiber membrane for effective osteoarthritis treatment. Biomaterials 230:119601. https://doi.org/10.1016/j.biomaterials.2019.119601

    Article  CAS  Google Scholar 

  15. Guo X, Ma Y, Min Y, Sun J, Shi X, Gao G, Sun L, Wang J (2023) Progress and prospect of technical and regulatory challenges on tissue-engineered cartilage as therapeutic combination product. Bioact Mater 20:501–518. https://doi.org/10.1016/j.bioactmat.2022.06.015

    Article  CAS  Google Scholar 

  16. Liu J, Chen E, Wu Y, Yang H, Huang K, Chang G, Pan X, Huang K, He Z, Lei M (2022) Silver nanosheets doped polyvinyl alcohol hydrogel piezoresistive bifunctional sensor with a wide range and high resolution for human motion detection. Adv Compos Hybrid Mater 5:1196–1205. https://doi.org/10.1007/s42114-022-00472-9

    Article  CAS  Google Scholar 

  17. Wu Y, Chen E, Weng X, He Z, Chang G, Pan X, Liu J, Huang K, Huang K, Lei M (2022) Conductive polyvinyl alcohol/silver nanoparticles hydrogel sensor with large draw ratio, high sensitivity and high stability for human behavior monitoring. Eng Sci 18:113–120. https://doi.org/10.30919/es8d659

  18. Cheng K, Zou L, Chang B, Liu X, Shi H, Li T, Yang Q, Guo Z, Liu C, Shen C (2022) Mechanically robust and conductive poly(acrylamide) nanocomposite hydrogel by the synergistic effect of vinyl hybrid silica nanoparticle and polypyrrole for human motion sensing. Adv Compos Hybrid Mater 5:2834–2846. https://doi.org/10.1007/s42114-022-00465-8

    Article  CAS  Google Scholar 

  19. Sidheekha MP, Shabeeba A, Rajan L, Thayyil MS, Ismail YA (2023) Conducting polymer/hydrogel hybrid free-standing electrodes for flexible supercapacitors capable of self-sensing working conditions: large-scale fabrication through facile and low-cost route. Eng Sci 23:890. https://doi.org/10.30919/es890

  20. Li T, Wei H, Zhang Y, Wan T, Cui D, Zhao S, Zhang T, Ji Y, Algadi H, Guo Z, Chu L, Cheng B (2023) Sodium alginate reinforced polyacrylamide/xanthan gum double network ionic hydrogels for stress sensing and self-powered wearable device applications. Carbohydr Polym 309:120678. https://doi.org/10.1016/j.carbpol.2023.120678

    Article  CAS  Google Scholar 

  21. Tang S, Chi K, Xu H, Yong Q, Yang J, Catchmark JM (2021) A covalently cross-linked hyaluronic acid/bacterial cellulose composite hydrogel for potential biological applications. Carbohydr Polym 252:117123. https://doi.org/10.1016/j.carbpol.2020.117123

    Article  CAS  Google Scholar 

  22. Huang C, He J, Narron R, Wang Y, Yong Q (2017) Characterization of kraft lignin fractions obtained by sequential ultrafiltration and their potential application as a biobased component in blends with polyethylene. ACS Sustain Chem Eng 5:11770–11779. https://doi.org/10.1021/acssuschemeng.7b03415

    Article  CAS  Google Scholar 

  23. Guerra A, Filpponen I, Lucia LA, Argyropoulos DS (2006) Comparative evaluation of three lignin isolation protocols for various wood species. J Agric Food Chem 54(26):9696–9705. https://doi.org/10.1021/jf062433c

    Article  CAS  Google Scholar 

  24. Wei X, Liu Y, Luo Y, Shen Z, Wang S, Li M, Zhang L (2021) Effect of organosolv extraction on the structure and antioxidant activity of eucalyptus kraft lignin. Int J Biol Macromol 187:462–470. https://doi.org/10.1016/j.ijbiomac.2021.07.082

    Article  CAS  Google Scholar 

  25. Wang S, Shen Q, Su S, Lin J, Song G (2022) The temptation from homogeneous linear catechyl lignin. Trends Chem 4:948–961. https://doi.org/10.1016/j.trechm.2022.07.008

    Article  CAS  Google Scholar 

  26. Yang G, An X, Yang S (2021) The effect of ball milling time on the isolation of lignin in the cell wall of different biomass. Front Bioeng Biotechnol 9:807625. https://doi.org/10.3389/fbioe.2021.807625

    Article  Google Scholar 

  27. Ran F, Li C, Hao Z, Zhang X, Dai L, Si C, Shen Z, Qiu Z, Wang J (2022) Combined bactericidal process of lignin and silver in a hybrid nanoparticle on E. coli. Adv Compos Hybrid Mater 5:1841–1851. https://doi.org/10.1007/s42114-022-00460-z

    Article  CAS  Google Scholar 

  28. Mu L, Dong Y, Li L, Gu X, Shi Y (2021) Achieving high value utilization of bio-oil from lignin targeting for advanced lubrication. Eng Sci 11:72–80. https://doi.org/10.30919/esmm5f1146

  29. Culebras M, Collins GA, Beaucamp A, Geaney H, Collins MN (2022) Lignin/Si hybrid carbon nanofibers towards highly efficient sustainable Li-ion anode materials. Eng Sci 17:195–203. https://doi.org/10.30919/es8d608

  30. Yang W, Fortunati E, Gao D, Balestra GM, Giovanale G, He X, Torre L, Kenny JM, Puglia D (2018) Valorization of acid isolated high yield lignin nanoparticles as innovative antioxidant/antimicrobial organic materials. ACS Sustain Chem Eng 6:3502–3514. https://doi.org/10.1021/acssuschemeng.7b03782

    Article  CAS  Google Scholar 

  31. Mendes L, de Freitas V, Baptista P, Carvalho M (2011) Comparative antihemolytic and radical scavenging activities of strawberry tree (Arbutus unedo L.) leaf and fruit. Food Chem Toxicol 49:2285–2291. https://doi.org/10.1016/j.fct.2011.06.028

    Article  CAS  Google Scholar 

  32. Dandona P, Ghanim H, Brooks DP (2007) Antioxidant activity of carvedilol in cardiovascular disease. J Hypertens 25:731–741. https://doi.org/10.1097/HJH.0b013e3280127948

    Article  CAS  Google Scholar 

  33. Sun Y, Yuan Y, Wu W, Lei L, Zhang L (2021) The effects of locomotion on bone marrow mesenchymal stem cell fate: insight into mechanical regulation and bone formation. Cell Biosci 11:88. https://doi.org/10.1186/s13578-021-00601-9

    Article  Google Scholar 

  34. Toosi S, Naderi-Meshkin H, Kalalinia F, Peivandi MT, Khani HH, Bahrami AR, Heirani-Tabasi A, Mirahmadi M, Behravan J (2016) Comparative characteristics of mesenchymal stem cells derived from reamer-irrigator-aspirator, iliac crest bone marrow, and adipose tissue. Cell Mol Biol 62:68–74. https://doi.org/10.14715/cmb/2016.62.10.11

  35. Irawan V, Sung TC, Higuchi A, Ikoma T (2018) Collagen scaffolds in cartilage tissue engineering and relevant approaches for future development. Tissue Eng Regen Med 15:673–697. https://doi.org/10.1007/s13770-018-0135-9

    Article  CAS  Google Scholar 

  36. Bai Y, Gong X, Dou C, Cao Z, Dong S (2019) Redox control of chondrocyte differentiation and chondrogenesis. Free Radic Biol Med 132:83–89. https://doi.org/10.1016/j.freeradbiomed.2018.10.443

    Article  CAS  Google Scholar 

  37. Heywood HK, Lee DA (2017) Bioenergetic reprogramming of articular chondrocytes by exposure to exogenous and endogenous reactive oxygen species and its role in the anabolic response to low oxygen. J Tissue Eng Regen Med 11:2286–2294. https://doi.org/10.1002/term.2126

    Article  CAS  Google Scholar 

  38. Kim KS, Choi HW, Yoon HE, Kim IY (2010) Reactive oxygen species generated by NADPH oxidase 2 and 4 are required for chondrogenic differentiation. J Biol Chem 285:40294–40302. https://doi.org/10.1074/jbc.M110.126821

    Article  CAS  Google Scholar 

  39. He S, Liu A, Zhang J, Liu J, Shao W (2022) Preparation of ε-polylysine and hyaluronic acid self-assembled microspheres loaded bacterial cellulose aerogels with excellent antibacterial activity. Colloid Surface A 654:130114. https://doi.org/10.1016/j.colsurfa.2022.130114

    Article  CAS  Google Scholar 

  40. Serafin A, Culebras M, Oliveira JM, Koffler J, Collins MN (2023) 3D printable electroconductive gelatin-hyaluronic acid materials containing polypyrrole nanoparticles for electroactive tissue engineering. Adv Compos Hybrid Mater 6:109. https://doi.org/10.1007/s42114-023-00665-w

    Article  CAS  Google Scholar 

  41. Liu K, Liu W, Li W, Duan Y, Zhou K, Zhang S, Ni S, Xu T, Si C (2022) Strong and highly conductive cellulose nanofibril/silver nanowires nanopaper for high performance electromagnetic interference shielding. Adv Compos Hybrid Mater 5(2):1078–1089. https://doi.org/10.1007/s42114-022-00425-2

    Article  CAS  Google Scholar 

  42. Zhu EQ, Xu GF, Sun SF, Yang J, Yang HY, Wang DW, Guo ZH, Shi ZJ, Deng J (2021) Rosin acid modification of bamboo powder and thermoplasticity of its products based on hydrothermal pretreatment. Adv Compos Hybrid Mater 4:584–590. https://doi.org/10.1007/s42114-021-00266-5

    Article  CAS  Google Scholar 

  43. Li Q, Gao Z, Chen Y, Guan MX (2017) The role of mitochondria in osteogenic, adipogenic and chondrogenic differentiation of mesenchymal stem cells. Protein Cell 8:439–445. https://doi.org/10.1007/s13238-017-0385-7

    Article  CAS  Google Scholar 

  44. Maceda A, Terrazas T (2022) Fluorescence microscopy methods for the analysis and characterization of lignin. Polymers 14(5):961. https://doi.org/10.3390/polym14050961

    Article  CAS  Google Scholar 

  45. Wang X, Zhang Y, Luo J, Xu T, Si C, Oscanoa AJC, Tang D, Zhu L, Wang P, Huang C (2023) Printability of hybridized composite from maleic acid-treated bacterial cellulose with gelatin for bone tissue regeneration. Adv Compos Hybrid Mater 6:134. https://doi.org/10.1007/s42114-023-00711-7

    Article  CAS  Google Scholar 

  46. Liu L, Bai L, Tripathi A, Yu J, Wang Z, Borghei M, Fan Y, Rojas OJ (2019) High axial ratio nanochitins for ultrastrong and shape-recoverable hydrogels and cryogels via ice templating. ACS Nano 13:2927–2935. https://doi.org/10.1021/acsnano.8b07235

    Article  CAS  Google Scholar 

  47. Pan P, Geng Y, Hu L, Liu Q, Liu M, Cheng M, Chen L, Chen J (2022) Biologically enhanced 3D printed micro-nano hybrid scaffolds doped with abalone shell for bone regeneration. Adv Compos Hybrid Mater 6:10. https://doi.org/10.1007/s42114-022-00593-1

    Article  CAS  Google Scholar 

  48. Bian L, Zhai DY, Mauck RL, Burdick JA (2011) Coculture of human mesenchymal stem cells and articular chondrocytes reduces hypertrophy and enhances functional properties of engineered cartilage. Tissue Eng Part A 17:1137–1145. https://doi.org/10.1089/ten.TEA.2010.0531

    Article  CAS  Google Scholar 

  49. Korhonen RK, Laasanen MS, Toyras J, Rieppo J, Hirvonen J, Helminen HJ, Jurvelin JS (2002) Comparison of the equilibrium response of articular cartilage in unconfined compression, confined compression and indentation. J Biomech 35:903–909. https://doi.org/10.1016/S0021-9290(02)00052-0

    Article  CAS  Google Scholar 

  50. Lee F, Chung JE, Kurisawa M (2009) An injectable hyaluronic acid-tyramine hydrogel system for protein delivery. J Control Release 134:186–193. https://doi.org/10.1016/j.jconrel.2008.11.028

    Article  CAS  Google Scholar 

  51. Chen K, Chen X, Han X, Fu Y (2020) A comparison study on the release kinetics and mechanism of bovine serum albumin and nanoencapsulated albumin from hydrogel networks. Int J Biol Macromol 163:1291–1300. https://doi.org/10.1016/j.ijbiomac.2020.07.043

    Article  CAS  Google Scholar 

  52. Qiao Z, Tang J, Yue B, Wang J, Zhang J, Xuan L, Dai C, Li S, Li M, Xu C, Dai K, Wang Y (2020) Human adipose-derived mesenchymal progenitor cells plus microfracture and hyaluronic acid for cartilage repair: a Phase IIa trial. Future Med 15:1193–1214. https://doi.org/10.2217/rme-2019-0068

    Article  CAS  Google Scholar 

  53. Yan L, Liu G, Wu X (2021) The umbilical cord mesenchymal stem cell-derived exosomal lncRNA H19 improves osteochondral activity through miR-29b-3p/FoxO3 axis. Clin Transl Med 11:e255. https://doi.org/10.1002/ctm2.255

    Article  CAS  Google Scholar 

  54. Liang R, Yang X, Yew PYM, Sugiarto S, Zhu Q, Zhao J, Loh XJ, Zheng L, Kai D (2022) PLA-lignin nanofibers as antioxidant biomaterials for cartilage regeneration and osteoarthritis treatment. J Nanobiotechnology 20:327. https://doi.org/10.1186/s12951-022-01534-2

    Article  CAS  Google Scholar 

Download references

Funding

This work was funded by the China Postdoctoral Science Foundation (Grant No. 2022M722769) for Dr. Liming Zheng. Prof. Caoxing Huang thanks Alexander von Humboldt Foundation for supporting his research stay in University of Göttingen. Yifei Zhan thanks CSC for financial support of his PhD study in University of Göttingen.

Author information

Authors and Affiliations

Authors

Contributions

Wenhui Pei, Yalikun Yusufu, and Yifei Zhan wrote the main manuscript text. Peng Wang, Liming Zheng, Kai Zhang, and Caoxing Huang conceived the idea and designed the research. Xucai Wang revised the manuscript. Jian Gan designed all the schematic diagram in this works. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Liming Zheng, Peng Wang, Kai Zhang or Caoxing Huang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 423 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pei, W., Yusufu, Y., Zhan, Y. et al. Biosynthesizing lignin dehydrogenation polymer to fabricate hybrid hydrogel composite with hyaluronic acid for cartilage repair. Adv Compos Hybrid Mater 6, 180 (2023). https://doi.org/10.1007/s42114-023-00758-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-023-00758-6

Keywords

Navigation