Skip to main content

Advertisement

Log in

Recent progress in textile-based triboelectric force sensors for wearable electronics

  • Review
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Force sensors based on triboelectric nanogenerator (TENG) technology show promising applications in wearable electronics due to the significant advantages in biomechanical energy harvesting and self-powered sensing capabilities. Meanwhile, textiles are considered the ideal design platform for wearable electronics owing to the superiorities in breathability, wearability, as well as large-area availability. Integrating TENG technology with modern textile processes, the textile-based triboelectric force sensors (tTEFSs) have procured immense interest in the past decade. In the current review, we provide an overview of the state-of-the-art progress in tTEFSs with various working modes, including vertical contact-separation mode, single electrode mode, lateral sliding mode, and freestanding mode. Based on structural characteristics and fabrication techniques, the tTEFSs can be divided into three categories, including one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) tTEFSs. For each category, recent progress in the structural designs, preparation methods, working principles, and applications are systematically summarized. In addition, we also comprehensively introduce strategies adopted in recent years to further enhance output performance of tTEFSs, including surface chemical modification, designing physical microstructure, enhancing dielectric properties, and combined method. The effect of each enhancement strategy is discussed to provide researchers with guidance for designing tTEFSs with excellent output performance. Finally, the potential difficulties and current challenges that hinder the practical applications of tTEFSs are discussed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Pyo S, Lee J, Bae K, Sim S, Kim J (2021) Recent progress in flexible tactile sensors for human-interactive systems: from sensors to advanced applications. Adv Mater 33:e2005902. https://doi.org/10.1002/adma.202005902

  2. Meng K, Xiao X, Wei W, Chen G, Nashalian A, Shen S, Xiao X, Chen J (2022) Wearable pressure sensors for pulse wave monitoring. Adv Mater 34:e2109357. https://doi.org/10.1002/adma.202109357

  3. Zhao Z, Xia K, Hou Y, Zhang Q, Ye Z, Lu J (2021) Designing flexible, smart and self-sustainable supercapacitors for portable/wearable electronics: from conductive polymers. Chem Soc Rev 50:12702–12743. https://doi.org/10.1039/d1cs00800e

    Article  CAS  Google Scholar 

  4. Ha KH, Huh H, Li Z, Lu N (2022) Soft capacitive pressure sensors: trends, challenges, and perspectives. ACS Nano 16:3442–3448. https://doi.org/10.1021/acsnano.2c00308

    Article  CAS  Google Scholar 

  5. Chen JW, Zhu YT, Chang XH, Pan D, Song G, Guo ZH, Naik N (2021) Recent progress in essential functions of soft electronic skin. Adv Funct Mater 31:2104686. https://doi.org/10.1002/Adfm.202104686

    Article  CAS  Google Scholar 

  6. Chen J, Yu Q, Cui X, Dong M, Zhang J, Wang C, Fan J, Zhu Y, Guo Z (2019) An overview of stretchable strain sensors from conductive polymer nanocomposites. J Mater Chem C 7:11710–11730. https://doi.org/10.1039/c9tc03655e

    Article  CAS  Google Scholar 

  7. Dong K, Peng X, Wang Z L (2020) Fiber/fabric-based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence. Adv Mater 32:e1902549. https://doi.org/10.1002/adma.201902549

  8. Xiong J, Chen J, Lee PS (2021) Functional fibers and fabrics for soft robotics, wearables, and human-robot interface. Adv Mater 33:e2002640. https://doi.org/10.1002/adma.202002640

  9. Liu X, Miao J, Fan Q, Zhang W, Zuo X, Tian M, Zhu S, Zhang X, Qu L (2022) Recent progress on smart fiber and textile based wearable strain sensors: materials, fabrications and applications. Adv Fiber Mater 4:361–389. https://doi.org/10.1007/s42765-021-00126-3

    Article  CAS  Google Scholar 

  10. Liu Z, Zhu T, Wang J, Zheng Z, Li Y, Li J, Lai Y (2022) Functionalized fiber-based strain sensors: pathway to next-generation wearable electronics. Nano-micro Lett 14:61. https://doi.org/10.1007/s40820-022-00806-8

    Article  CAS  Google Scholar 

  11. Zhang D, Yin R, Zheng Y, Li Q, Liu H, Liu C, Shen C (2022) Multifunctional MXene/CNTs based flexible electronic textile with excellent strain sensing, electromagnetic interference shielding and joule heating performances. Chem Eng J 438:135587. https://doi.org/10.1016/j.cej.2022.135587

  12. Dong K, Peng X, Cheng R, Ning C, Jiang Y, Zhang Y, Wang ZL (2022) Advances in high-performance autonomous energy and self-powered sensing textiles with novel 3D fabric structures. Adv Mater 34:e2109355. https://doi.org/10.1002/adma.202109355

  13. Zheng Y, Yin R, Zhao Y, Liu H, Zhang D, Shi X, Zhang B, Liu C, Shen C (2021) Conductive MXene/cotton fabric based pressure sensor with both high sensitivity and wide sensing range for human motion detection and e-skin. Chem Eng J 420:127720. https://doi.org/10.1016/j.cej.2020.127720

  14. He M, Du WN, Feng YM, Li SJ, Wang W, Zhang X, Yu AF, Wan LY, Zhai JY (2021) Flexible and stretchable triboelectric nanogenerator fabric for biomechanical energy harvesting and self-powered dual-mode human motion monitoring. Nano Energy 86:106058. https://doi.org/10.1016/J.Nanoen.2021.106058

  15. Chen J, Wang F, Zhu G, Wang C, Cui X, Xi M, Chang X, Zhu Y (2021) Breathable strain/temperature sensor based on fibrous networks of ionogels capable of monitoring human motion, respiration, and proximity. ACS Appl Mater Interfaces 13:51567–51577. https://doi.org/10.1021/acsami.1c16733

    Article  CAS  Google Scholar 

  16. Cui X, Huang F, Zhang X, Song P, Zheng H, Chevali V, Wang H, Xu Z (2022) Flexible pressure sensors via engineering microstructures for wearable human-machine interaction and health monitoring applications. iScience 25:104148. https://doi.org/10.1016/j.isci.2022.104148

  17. Ruth SRA, Feig VR, Tran H, Bao ZN (2020) Microengineering pressure sensor active layers for improved performance. Adv Funct Mater 30:2003491. https://doi.org/10.1002/Adfm.202003491

    Article  CAS  Google Scholar 

  18. Niu H, Zhang H, Yue W, Gao S, Kan H, Zhang C, Zhang C, Pang J, Lou Z, Wang L, Li Y, Liu H, Shen G (2021) Micro-nano processing of active layers in flexible tactile sensors via template methods: a review. Small 17:e2100804. https://doi.org/10.1002/smll.202100804

  19. Huang L, Chen J, Xu Y, Hu D, Cui X, Shi D, Zhu Y (2021) Three-dimensional light-weight piezoresistive sensors based on conductive polyurethane sponges coated with hybrid CNT/CB nanoparticles. Appl Surf Sci 548:149268. https://doi.org/10.1016/j.apsusc.2021.149268

  20. Cui X, Jiang Y, Hu L, Cao M, Xie H, Zhang X, Huang F, Xu Z, Zhu Y (2023) Synergistically microstructured flexible pressure sensors with high sensitivity and ultrawide linear range for full-range human physiological monitoring. Adv Mater Technol 8:2200609. https://doi.org/10.1002/admt.202200609

    Article  Google Scholar 

  21. Cui X, Jiang Y, Xu Z, Xi M, Jiang Y, Song P, Zhao Y, Wang H (2021) Stretchable strain sensors with dentate groove structure for enhanced sensing recoverability. Compos Part B 211:108641. https://doi.org/10.1016/j.compositesb.2021.108641

  22. Zhang X, Lu L, Wang W, Zhao N, He P, Liu J, Yang B (2022) Flexible pressure sensors with combined spraying and self-diffusion of carbon nanotubes. ACS Appl Mater Interfaces 14:38409–38420. https://doi.org/10.1021/acsami.2c12240

    Article  CAS  Google Scholar 

  23. Jiang N, Li H, Hu D, Xu Y, Hu Y, Zhu Y, Han X, Zhao G, Chen J, Chang X, Xi M, Yuan Q (2021) Stretchable strain and temperature sensor based on fibrous polyurethane film saturated with ionic liquid. Compos Commun 27:100845. https://doi.org/10.1016/j.coco.2021.100845

  24. Peng M, Li X, Liu Y, Chen J, Chang X, Zhu Y (2023) Flexible multisensory sensor based on hierarchically porous ionic liquids/thermoplastic polyurethane composites. Appl Surf Sci 610:155516. https://doi.org/10.1016/j.apsusc.2022.155516

  25. Zhang Y, Yang J, Hou X, Li G, Wang L, Bai N, Cai M, Zhao L, Wang Y, Zhang J, Chen K, Wu X, Yang C, Dai Y, Zhang Z, Guo CF (2022) Highly stable flexible pressure sensors with a quasi-homogeneous composition and interlinked interfaces. Nat Commun 13:1317. https://doi.org/10.1038/s41467-022-29093-y

    Article  CAS  Google Scholar 

  26. Cui X, Chen J, Wu W, Liu Y, Li H, Xu Z, Zhu Y (2022) Flexible and breathable all-nanofiber iontronic pressure sensors with ultraviolet shielding and antibacterial performances for wearable electronics. Nano Energy 95:107022. https://doi.org/10.1016/j.nanoen.2022.107022

  27. Yu P, Li X, Li H, Fan Y, Cao J, Wang H, Guo Z, Zhao X, Wang Z, Zhu G (2021) All-fabric ultrathin capacitive sensor with high pressure sensitivity and broad detection range for electronic skin. ACS Appl Mater Interfaces 13:24062–24069. https://doi.org/10.1021/acsami.1c05478

    Article  CAS  Google Scholar 

  28. Li L, Zhu G, Wang J, Chen J, Zhao G, Zhu Y (2023) A flexible and ultrasensitive interfacial iontronic multisensory sensor with an array of unique “cup-shaped” microcolumns for detecting pressure and temperature. Nano Energy 105:108012. https://doi.org/10.1016/j.nanoen.2022.108012

  29. Chen L, Chang X, Wang H, Chen J, Zhu Y (2022) Stretchable and transparent multimodal electronic-skin sensors in detecting strain, temperature, and humidity. Nano Energy 96:107077. https://doi.org/10.1016/j.nanoen.2022.107077

  30. Wang J, Cui X, Song Y, Chen J, Zhu Y (2023) Flexible iontronic sensors with high-precision and high-sensitivity detection for pressure and temperature. Compos Commun 39:101544. https://doi.org/10.1016/j.coco.2023.101544

  31. Chen J, Zhu G, Wang J, Chang X, Zhu Y (2023) Multifunctional iontronic sensor based on liquid metal-filled ho llow ionogel fibers in detecting pressure, temperature, and proximity. ACS Appl Mater Interfaces 15:7485–7495. https://doi.org/10.1021/acsami.2c22835

    Article  CAS  Google Scholar 

  32. Luo X, Zhu L, Wang YC, Li J, Nie J, Wang ZL (2021) A flexible multifunctional triboelectric nanogenerator based on MXene/PVA hydrogel. Adv Funct Mater 31:2104928. https://doi.org/10.1002/adfm.202104928

    Article  CAS  Google Scholar 

  33. Su Y, Chen G, Chen C, Gong Q, Xie G, Yao M, Tai H, Jiang Y, Chen J (2021) Self-powered respiration monitoring enabled by a triboelectric nanogenerator. Adv Mater 33:e2101262. https://doi.org/10.1002/adma.202101262

  34. Ning C, Cheng R, Jiang Y, Sheng F, Yi J, Shen S, Zhang Y, Peng X, Dong K, Wang ZL (2022) Helical fiber strain sensors based on triboelectric nanogenerators for self-powered human respiratory monitoring. ACS Nano 16:2811–2821. https://doi.org/10.1021/acsnano.1c09792

    Article  CAS  Google Scholar 

  35. Yin RY, Wang DP, Zhao SF, Lou Z, Shen GZ (2021) Wearable sensors-enabled human-machine interaction systems: from design to application. Adv Funct Mater 31:2008936. https://doi.org/10.1002/Adfm.202008936

    Article  CAS  Google Scholar 

  36. Luo J, Gao W, Wang ZL (2021) The triboelectric nanogenerator as an innovative technology toward intelligent sports. Adv Mater 33:e2004178. https://doi.org/10.1002/adma.202004178

  37. Zhou KK, Zhao Y, Sun XP, Yuan ZQ, Zheng GQ, Dai K, Mi LW, Pan CF, Liu CT, Shen CY (2020) Ultra-stretchable triboelectric nanogenerator as high-sensitive and self-powered electronic skins for energy harvesting and tactile sensing. Nano Energy 70:104546. https://doi.org/10.1016/J.Nanoen.2020.104546

  38. Wang HS, Hong SK, Han JH, Jung YH, Jeong HK, Im TH, Jeong CK, Lee BY, Kim G, Yoo CD, Lee KJ (2021) Biomimetic and flexible piezoelectric mobile acoustic sensors with multiresonant ultrathin structures for machine learning biometrics. Sci Adv 7:eabe5683. https://doi.org/10.1126/sciadv.abe5683

  39. Guan X, Xu B, Gong J (2020) Hierarchically architected polydopamine modified BaTiO3@P(VDF-TrFE) nanocomposite fiber mats for flexible piezoelectric nanogenerators and self-powered sensors. Nano Energy 70:104516. https://doi.org/10.1016/j.nanoen.2020.104516

  40. Lin W, Wang B, Peng G, Shan Y, Hu H, Yang Z (2021) Skin-inspired piezoelectric tactile sensor array with crosstalk-free row+column electrodes for spatiotemporally distinguishing diverse stimuli. Adv Sci 8:2002817. https://doi.org/10.1002/advs.202002817

    Article  CAS  Google Scholar 

  41. Wang S, Shao H-Q, Liu Y, Tang C-Y, Zhao X, Ke K, Bao R-Y, Yang M-B, Yang W (2021) Boosting piezoelectric response of PVDF-TrFE via MXene for self-powered linear pressure sensor. Compos Sci Technol 202:108600. https://doi.org/10.1016/j.compscitech.2020.108600

  42. Qin Y, Mo J, Liu Y, Zhang S, Wang J, Fu Q, Wang S, Nie S (2022) Stretchable triboelectric self-powered sweat sensor fabricated from self-healing nanocellulose hydrogels. Adv Funct Mater 32:2201846. https://doi.org/10.1002/adfm.202201846

    Article  CAS  Google Scholar 

  43. Wang Z, Liu ZR, Zhao GR, Zhang ZC, Zhao XY, Wan XY, Zhang YL, Wang ZL, Li LL (2022) Stretchable unsymmetrical piezoelectric BaTiO3 composite hydrogel for triboelectric nanogenerators and multimodal sensors. ACS Nano 16:1661–1670. https://doi.org/10.1021/acsnano.1c10678

    Article  CAS  Google Scholar 

  44. Xin C, Li Z, Zhang Q, Peng Y, Guo H, Xie S (2022) Investigating the output performance of triboelectric nanogenerators with single/double-sided interlayer. Nano Energy 100:107448. https://doi.org/10.1016/j.nanoen.2022.107448

  45. Babu A, Aazem I, Walden R, Bairagi S, Mulvihill DM, Pillai SC (2023) Electrospun nanofiber based tengs for wearable electronics and self-powered sensing. Chem Eng J 452:139060. https://doi.org/10.1016/j.cej.2022.139060

  46. Cui X, Wu H, Wang R (2022) Fibrous triboelectric nanogenerators: fabrication, integration, and application. J Mater Chem A 10:15881–15905. https://doi.org/10.1039/d2ta03813g

    Article  CAS  Google Scholar 

  47. Dassanayaka DG, Alves TM, Wanasekara ND, Dharmasena IG, Ventura J (2022) Recent progresses in wearable triboelectric nanogenerators. Adv Funct Mater 32:2205438. https://doi.org/10.1002/adfm.202205438

    Article  CAS  Google Scholar 

  48. Walden R, Aazem I, Babu A, Pillai SC (2023) Textile-triboelectric nanogenerators (t-TENGs) for wearable energy harvesting devices. Chem Eng J 451:138741. https://doi.org/10.1016/j.cej.2022.138741

  49. Zhou M, Xu F, Ma L, Luo Q, Ma W, Wang R, Lan C, Pu X, Qin X (2022) Continuously fabricated nano/micro aligned fiber based waterproof and breathable fabric triboelectric nanogenerators for self-powered sensing systems. Nano Energy 104:107885. https://doi.org/10.1016/j.nanoen.2022.107885

  50. Bairagi S, Khandelwal G, Karagiorgis X, Gokhool S, Kumar C, Min G, Mulvihill DM (2022) High-performance triboelectric nanogenerators based on commercial textiles: electrospun nylon 66 nanofibers on silk and PVDF on polyester. ACS Appl Mater Interfaces 14:44591–44603. https://doi.org/10.1021/acsami.2c13092

    Article  CAS  Google Scholar 

  51. Chen W, Fan W, Wang Q, Yu X, Luo Y, Wang W, Lei R, Li Y (2022) A nano-micro structure engendered abrasion resistant, superhydrophobic, wearable triboelectric yarn for self-powered sensing. Nano Energy 103:107769. https://doi.org/10.1016/j.nanoen.2022.107769

  52. Chen Y, Chen E, Wang Z, Ling Y, Fisher R, Li M, Hart J, Mu W, Gao W, Tao X, Yang B, Yin R (2022) Flexible, durable, and washable triboelectric yarn and embroidery for self-powered sensing and human-machine interaction. Nano Energy 104:107929. https://doi.org/10.1016/j.nanoen.2022.107929

  53. Zeng Q, Chen A, Zhang X, Luo Y, Tan L, Wang X (2023) A dual-functional triboelectric nanogenerator based on the comprehensive integration and synergetic utilization of triboelectrification, electrostatic induction, and electrostatic discharge to achieve alternating current/direct current convertible outputs. Adv Mater 35:e2208139. https://doi.org/10.1002/adma.202208139

  54. Xu H, Tao J, Liu Y, Mo Y, Bao R, Pan C (2022) Fully fibrous large-area tailorable triboelectric nanogenerator based on solution blow spinning technology for energy harvesting and self-powered sensing. Small 18:e2202477. https://doi.org/10.1002/smll.202202477

  55. Fan FR, Tian ZQ, Wang ZL (2012) Flexible triboelectric generator! Nano Energy 1:328–334. https://doi.org/10.1016/j.nanoen.2012.01.004

    Article  CAS  Google Scholar 

  56. Wang ZL (2017) On Maxwell’s displacement current for energy and sensors: the origin of nanogenerators. Mater Today 20:74–82. https://doi.org/10.1016/j.mattod.2016.12.001

    Article  Google Scholar 

  57. Chen J, Wang ZL (2017) Reviving vibration energy harvesting and self-powered sensing by a triboelectric nanogenerator. Joule 1:480–521. https://doi.org/10.1016/j.joule.2017.09.004

    Article  CAS  Google Scholar 

  58. Wang ZL (2013) Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 7:9533–9557. https://doi.org/10.1021/nn404614z

    Article  CAS  Google Scholar 

  59. Lin L, Xie Y, Wang S, Wu W, Niu S, Wen X, Wang ZL (2013) Triboelectric active sensor array for self-powered static and dynamic pressure detection and tactile imaging. ACS Nano 7:8266–8274. https://doi.org/10.1021/nn4037514

    Article  CAS  Google Scholar 

  60. Xu Z, Zhang D, Cai H, Yang Y, Zhang H, Du C (2022) Performance enhancement of triboelectric nanogenerators using contact-separation mode in conjunction with the sliding mode and multifunctional application for motion monitoring. Nano Energy 102:107719. https://doi.org/10.1016/j.nanoen.2022.107719

  61. Yang W, Wang X, Chen P, Hu Y, Li L, Sun Z (2021) On the controlled adhesive contact and electrical performance of vertical contact-separation mode triboelectric nanogenerators with micro-grooved surfaces. Nano Energy 85:106037. https://doi.org/10.1016/j.nanoen.2021.106037

  62. Jeong J, Jeon S, Ma X, Kwon Y W, Shin D M, Hong S W (2021) A sustainable and flexible microbrush-faced triboelectric generator for portable/wearable applications. Adv Mater 33:e2102530. https://doi.org/10.1002/adma.202102530

  63. Cao R, Pu X, Du X, Yang W, Wang J, Guo H, Zhao S, Yuan Z, Zhang C, Li C, Wang ZL (2018) Screen-printed washable electronic textiles as self-powered touch/gesture tribo-sensors for intelligent human-machine interaction. ACS Nano 12:5190–5196. https://doi.org/10.1021/acsnano.8b02477

    Article  CAS  Google Scholar 

  64. Mule AR, Dudem B, Patnam H, Graham SA, Yu JS (2019) Wearable single-electrode-mode triboelectric nanogenerator via conductive polymer-coated textiles for self-power electronics. ACS Sustain Chem Eng 7:16450–16458. https://doi.org/10.1021/acssuschemeng.9b03629

    Article  CAS  Google Scholar 

  65. Wang J, He J, Ma L, Yao Y, Zhu X, Peng L, Liu X, Li K, Qu M (2021) A humidity-resistant, stretchable and wearable textile-based triboelectric nanogenerator for mechanical energy harvesting and multifunctional self-powered haptic sensing. Chem Eng J 423:130200. https://doi.org/10.1016/j.cej.2021.130200

  66. Ye C, Liu D, Peng X, Jiang Y, Cheng R, Ning C, Sheng F, Zhang Y, Dong K, Wang ZL (2021) A hydrophobic self-repairing power textile for effective water droplet energy harvesting. ACS Nano 15:18172–18181. https://doi.org/10.1021/acsnano.1c06985

    Article  CAS  Google Scholar 

  67. Wang AC, Zhang B, Xu C, Zou H, Lin Z, Wang ZL (2020) Unraveling temperature-dependent contact electrification between sliding-mode triboelectric pairs. Adv Funct Mater 30:1909384. https://doi.org/10.1002/adfm.201909384

    Article  CAS  Google Scholar 

  68. Cheng G, Lin ZH, Lin L, Du ZL, Wang ZL (2013) Pulsed nanogenerator with huge instantaneous output power density. ACS Nano 7:7383–7391. https://doi.org/10.1021/nn403151t

    Article  CAS  Google Scholar 

  69. Gang X, Guo ZH, Cong Z, Wang J, Chang C, Pan C, Pu X, Wang ZL (2021) Textile triboelectric nanogenerators simultaneously harvesting multiple “high-entropy” kinetic energies. ACS Appl Mater Interfaces 13:20145–20152. https://doi.org/10.1021/acsami.1c03250

    Article  CAS  Google Scholar 

  70. Guan X, Xu B, Wu M, Jing T, Yang Y, Gao Y (2021) Breathable, washable and wearable woven-structured triboelectric nanogenerators utilizing electrospun nanofibers for biomechanical energy harvesting and self-powered sensing. Nano Energy 80:105549. https://doi.org/10.1016/j.nanoen.2020.105549

  71. Wang P, Pan L, Wang J, Xu M, Dai G, Zou H, Dong K, Wang ZL (2018) An ultra-low-friction triboelectric-electromagnetic hybrid nanogenerator for rotation energy harvesting and self-powered wind speed sensor. ACS Nano 12:9433–9440. https://doi.org/10.1021/acsnano.8b04654

    Article  CAS  Google Scholar 

  72. Zhao L, Liu L, Yang X, Hong H, Yang Q, Wang J, Tang Q (2020) Cumulative charging behavior of water droplet driven freestanding triboelectric nanogenerators toward hydrodynamic energy harvesting. J Mater Chem A 8:7880–7888. https://doi.org/10.1039/d0ta01698e

    Article  CAS  Google Scholar 

  73. Sahu M, Hajra S, Panda S, Rajaitha M, Panigrahi BK, Rubahn H-G, Mishra YK, Kim HJ (2022) Waste textiles as the versatile triboelectric energy-harvesting platform for self-powered applications in sports and athletics. Nano Energy 97:107208. https://doi.org/10.1016/j.nanoen.2022.107208

  74. Paosangthong W, Wagih M, Torah R, Beeby S (2022) Textile-based triboelectric nanogenerator with alternating positive and negative freestanding woven structure for harvesting sliding energy in all directions. Nano Energy 92:106739. https://doi.org/10.1016/j.nanoen.2021.106739

  75. Ma L, Wu R, Patil A, Yi J, Liu D, Fan X, Sheng F, Zhang Y, Liu S, Shen S, Wang J, Wang ZL (2021) Acid and alkali-resistant textile triboelectric nanogenerator as a smart protective suit for liquid energy harvesting and self-powered monitoring in high-risk environments. Adv Funct Mater 31:2102963. https://doi.org/10.1002/adfm.202102963

    Article  CAS  Google Scholar 

  76. Liu J, Cui N, Du T, Li G, Liu S, Xu Q, Wang Z, Gu L, Qin Y (2020) Coaxial double helix structured fiber-based triboelectric nanogenerator for effectively harvesting mechanical energy. Nanoscale Adv 2:4482–4490. https://doi.org/10.1039/d0na00536c

    Article  CAS  Google Scholar 

  77. Rezaei J, Nikfarjam A (2021) Rib stitch knitted extremely stretchable and washable textile triboelectric nanogenerator. Adv Mater Technol 6:2000983. https://doi.org/10.1002/admt.202000983

    Article  CAS  Google Scholar 

  78. Barras R, dos Santos A, Calmeiro T, Fortunato E, Martins R, Águas H, Barquinha P, Igreja R, Pereira L (2021) Porous PDMS conformable coating for high power output carbon fibers/ZnO nanorod-based triboelectric energy harvesters. Nano Energy 90:106582. https://doi.org/10.1016/j.nanoen.2021.106582

  79. Mao Y, Li Y, Xie J, Liu H, Guo C, Hu W (2021) Triboelectric nanogenerator/supercapacitor in-one self-powered textile based on ptfe yarn wrapped PDMS/MnO2NW hybrid elastomer. Nano Energy 84:105918. https://doi.org/10.1016/j.nanoen.2021.105918

  80. Zhong J, Zhang Y, Zhong Q, Hu Q, Hu B, Wang ZL, Zhou J (2014) Fiber-based generator for wearable electronics and mobile medication. ACS Nano 8:6273–6280. https://doi.org/10.1021/nn501732z

    Article  CAS  Google Scholar 

  81. Li L, Chen Y-T, Hsiao Y-C, Lai Y-C (2022) Mycena chlorophos-inspired autoluminescent triboelectric fiber for wearable energy harvesting, self-powered sensing, and as human–device interfaces. Nano Energy 94:106944. https://doi.org/10.1016/j.nanoen.2022.106944

  82. Yu A, Pu X, Wen R, Liu M, Zhou T, Zhang K, Zhang Y, Zhai J, Hu W, Wang ZL (2017) Core-shell-yarn-based triboelectric nanogenerator textiles as power cloths. ACS Nano 11:12764–12771. https://doi.org/10.1021/acsnano.7b07534

    Article  CAS  Google Scholar 

  83. Yang Y, Xie L, Wen Z, Chen C, Chen X, Wei A, Cheng P, Xie X, Sun X (2018) Coaxial triboelectric nanogenerator and supercapacitor fiber-based self-charging power fabric. ACS Appl Mater Interfaces 10:42356–42362. https://doi.org/10.1021/acsami.8b15104

    Article  CAS  Google Scholar 

  84. Xie L, Chen X, Wen Z, Yang Y, Shi J, Chen C, Peng M, Liu Y, Sun X (2019) Spiral steel wire based fiber-shaped stretchable and tailorable triboelectric nanogenerator for wearable power source and active gesture sensor. Nano-micro Lett 11:39. https://doi.org/10.1007/s40820-019-0271-3

    Article  CAS  Google Scholar 

  85. Jing T, Xu B, Yang Y (2021) Organogel electrode based continuous fiber with large-scale production for stretchable triboelectric nanogenerator textiles. Nano Energy 84:105867. https://doi.org/10.1016/j.nanoen.2021.105867

  86. Guan X, Xu B, Huang J, Jing T, Gao Y (2022) Fiber-shaped stretchable triboelectric nanogenerator with a novel synergistic structure of opposite Poisson’s ratios. Chem Eng J 427:131698. https://doi.org/10.1016/j.cej.2021.131698

  87. Ning C, Dong K, Cheng R, Yi J, Ye C, Peng X, Sheng F, Jiang Y, Wang ZL (2020) Flexible and stretchable fiber-shaped triboelectric nanogenerators for biomechanical monitoring and human-interactive sensing. Adv Funct Mater 31:2006679. https://doi.org/10.1002/adfm.202006679

    Article  CAS  Google Scholar 

  88. Ye C, Yang S, Ren J, Dong S, Cao L, Pei Y, Ling S (2022) Electroassisted core-spun triboelectric nanogenerator fabrics for intellisense and artificial intelligence perception. ACS Nano 16:4415–4425. https://doi.org/10.1021/acsnano.1c10680

    Article  CAS  Google Scholar 

  89. Ma L, Wu R, Liu S, Patil A, Gong H, Yi J, Sheng F, Zhang Y, Wang J, Wang J, Guo W, Wang ZL (2020) A machine-fabricated 3D honeycomb-structured flame-retardant triboelectric fabric for fire escape and rescue. Adv Mater 32:e2003897. https://doi.org/10.1002/adma.202003897

  90. Li Y, Zhang Y, Yi J, Peng X, Cheng R, Ning C, Sheng F, Wang S, Dong K, Wang ZL (2022) Large‐scale fabrication of core‐shell triboelectric braided fibers and power textiles for energy harvesting and plantar pressure monitoring. EcoMat 4:e12191. https://doi.org/10.1002/eom2.12191

  91. Busolo T, Szewczyk PK, Nair M, Stachewicz U, Kar-Narayan S (2021) Triboelectric yarns with electrospun functional polymer coatings for highly durable and washable smart textile applications. ACS Appl Mater Interfaces 13:16876–16886. https://doi.org/10.1021/acsami.1c00983

    Article  CAS  Google Scholar 

  92. Zhao T, Fu Y, Sun C, Zhao X, Jiao C, Du A, Wang Q, Mao Y, Liu B (2022) Wearable biosensors for real-time sweat analysis and body motion capture based on stretchable fiber-based triboelectric nanogenerators. Biosens Bioelectron 205:114115. https://doi.org/10.1016/j.bios.2022.114115

  93. He X, Zi Y, Guo H, Zheng H, Xi Y, Wu C, Wang J, Zhang W, Lu C, Wang ZL (2017) A highly stretchable fiber-based triboelectric nanogenerator for self-powered wearable electronics. Adv Funct Mater 27:1604378. https://doi.org/10.1002/adfm.201604378

    Article  CAS  Google Scholar 

  94. Kim KN, Chun J, Kim JW, Lee KY, Park JU, Kim SW, Wang ZL, Baik JM (2015) Highly stretchable 2D fabrics for wearable triboelectric nanogenerator under harsh environments. ACS Nano 9:6394–6400. https://doi.org/10.1021/acsnano.5b02010

    Article  CAS  Google Scholar 

  95. Gong W, Hou C, Guo Y, Zhou J, Mu J, Li Y, Zhang Q, Wang H (2017) A wearable, fibroid, self-powered active kinematic sensor based on stretchable sheath-core structural triboelectric fibers. Nano Energy 39:673–683. https://doi.org/10.1016/j.nanoen.2017.08.003

    Article  CAS  Google Scholar 

  96. Lee J-E, Shin Y-E, Lee G-H, Kim J, Ko H, Chae HG (2021) Polyvinylidene fluoride (PVDF)/cellulose nanocrystal (CNC) nanocomposite fiber and triboelectric textile sensors. Compos Part B 223:109098. https://doi.org/10.1016/j.compositesb.2021.109098

  97. Jing T, Xu B, Xin JH, Guan X, Yang Y (2021) Series to parallel structure of electrode fiber: an effective method to remarkably reduce inner resistance of triboelectric nanogenerator textiles. J Mater Chem A 9:12331–12339. https://doi.org/10.1039/d1ta01309b

    Article  CAS  Google Scholar 

  98. Xu F, Dong S, Liu G, Pan C, Guo ZH, Guo W, Li L, Liu Y, Zhang C, Pu X, Wang ZL (2021) Scalable fabrication of stretchable and washable textile triboelectric nanogenerators as constant power sources for wearable electronics. Nano Energy 88:106247. https://doi.org/10.1016/j.nanoen.2021.106247

  99. Dong S, Xu F, Sheng Y, Guo Z, Pu X, Liu Y (2020) Seamlessly knitted stretchable comfortable textile triboelectric nanogenerators for e-textile power sources. Nano Energy 78:105327. https://doi.org/10.1016/j.nanoen.2020.105327

  100. Shen D, Xiao M, Zhao X, Xiao Y, Duley WW, Zhou YN (2021) Multifunctional self-powered electronics based on a reusable low-cost polypropylene fabric triboelectric nanogenerator. ACS Appl Mater Interfaces 13:34266–34273. https://doi.org/10.1021/acsami.1c07791

    Article  CAS  Google Scholar 

  101. Ye Q, Wu Y, Qi Y, Shi L, Huang S, Zhang L, Li M, Li W, Zeng X, Wo H, Wang X, Dong S, Ramakrishna S, Luo J (2019) Effects of liquid metal particles on performance of triboelectric nanogenerator with electrospun polyacrylonitrile fiber films. Nano Energy 61:381–388. https://doi.org/10.1016/j.nanoen.2019.04.075

    Article  CAS  Google Scholar 

  102. Huang J, Hao Y, Zhao M, Li W, Huang F, Wei Q (2021) All-fiber-structured triboelectric nanogenerator via one-pot electrospinning for self-powered wearable sensors. ACS Appl Mater Interfaces 13:24774–24784. https://doi.org/10.1021/acsami.1c03894

    Article  CAS  Google Scholar 

  103. Doganay D, Cicek MO, Durukan MB, Altuntas B, Agbahca E, Coskun S, Unalan HE (2021) Fabric based wearable triboelectric nanogenerators for human machine interface. Nano Energy 89:106412. https://doi.org/10.1016/j.nanoen.2021.106412

  104. Yi J, Dong K, Shen S, Jiang Y, Peng X, Ye C, Wang ZL (2021) Fully fabric-based triboelectric nanogenerators as self-powered human-machine interactive keyboards. Nano-micro Lett 13:103. https://doi.org/10.1007/s40820-021-00621-7

    Article  CAS  Google Scholar 

  105. Bayan S, Pal S, Ray SK (2022) Interface engineered silver nanoparticles decorated g-C3N4 nanosheets for textile based triboelectric nanogenerators as wearable power sources. Nano Energy 94:106928. https://doi.org/10.1016/j.nanoen.2022.106928

  106. Liu L, Pan J, Chen P, Zhang J, Yu X, Ding X, Wang B, Sun X, Peng H (2016) A triboelectric textile templated by a three-dimensionally penetrated fabric. J Mater Chem A 4:6077–6083. https://doi.org/10.1039/c6ta01166g

    Article  CAS  Google Scholar 

  107. Zhu M, Huang Y, Ng WS, Liu J, Wang Z, Wang Z, Hu H, Zhi C (2016) 3D spacer fabric based multifunctional triboelectric nanogenerator with great feasibility for mechanized large-scale production. Nano Energy 27:439–446. https://doi.org/10.1016/j.nanoen.2016.07.016

    Article  CAS  Google Scholar 

  108. Chen C, Chen L, Wu Z, Guo H, Yu W, Du Z, Wang ZL (2020) 3D double-faced interlock fabric triboelectric nanogenerator for bio-motion energy harvesting and as self-powered stretching and 3D tactile sensors. Mater Today 32:84–93. https://doi.org/10.1016/j.mattod.2019.10.025

    Article  CAS  Google Scholar 

  109. Wang Z, Ruan Z, Ng WS, Li H, Tang Z, Liu Z, Wang Y, Hu H, Zhi C (2018) Integrating a triboelectric nanogenerator and a zinc-ion battery on a designed flexible 3D spacer fabric. Small Methods 2:1800150. https://doi.org/10.1002/smtd.201800150

    Article  CAS  Google Scholar 

  110. Niu L, Peng X, Chen L, Liu Q, Wang T, Dong K, Pan H, Cong H, Liu G, Jiang G, Chen C, Ma P (2022) Industrial production of bionic scales knitting fabric-based triboelectric nanogenerator for outdoor rescue and human protection. Nano Energy 97:107168. https://doi.org/10.1016/j.nanoen.2022.107168

  111. Jiang C, Lai CL, Xu B, So MY, Li Z (2022) Fabric-rebound triboelectric nanogenerators with loops and layered structures for energy harvesting and intelligent wireless monitoring of human motions. Nano Energy 93:106807. https://doi.org/10.1016/j.nanoen.2021.106807

  112. Dong K, Peng X, An J, Wang AC, Luo J, Sun B, Wang J, Wang ZL (2020) Shape adaptable and highly resilient 3D braided triboelectric nanogenerators as e-textiles for power and sensing. Nat Commun 11:2868. https://doi.org/10.1038/s41467-020-16642-6

    Article  CAS  Google Scholar 

  113. Guo Y, Cao Y, Chen Z, Li R, Gong W, Yang W, Zhang Q, Wang H (2020) Fluorinated metal-organic framework as bifunctional filler toward highly improving output performance of triboelectric nanogenerators. Nano Energy 70:104517. https://doi.org/10.1016/j.nanoen.2020.104517

  114. Shao Y, Feng C-p, Deng B-w, Yin B, Yang M-b (2019) Facile method to enhance output performance of bacterial cellulose nanofiber based triboelectric nanogenerator by controlling micro-nano structure and dielectric constant. Nano Energy 62:620–627. https://doi.org/10.1016/j.nanoen.2019.05.078

    Article  CAS  Google Scholar 

  115. Mi HY, Jing X, Meador MAB, Guo H, Turng LS, Gong S (2018) Triboelectric nanogenerators made of porous polyamide nanofiber mats and polyimide aerogel film: output optimization and performance in circuits. ACS Appl Mater Interfaces 10:30596–30606. https://doi.org/10.1021/acsami.8b08098

    Article  CAS  Google Scholar 

  116. Chun J, Ye BU, Lee JW, Choi D, Kang CY, Kim SW, Wang ZL, Baik JM (2016) Boosted output performance of triboelectric nanogenerator via electric double layer effect. Nat Commun 7:12985. https://doi.org/10.1038/ncomms12985

    Article  CAS  Google Scholar 

  117. Feng M, Wu Y, Feng Y, Dong Y, Liu Y, Peng J, Wang N, Xu S, Wang D (2022) Highly wearable, machine-washable, and self-cleaning fabric-based triboelectric nanogenerator for wireless drowning sensors. Nano Energy 93:106835. https://doi.org/10.1016/j.nanoen.2021.106835

  118. Gui C, Zhang R, Chen Z, Wu W, Li H, Huang J (2022) Textile-based triboelectric nanogenerators via electroless plating for fabricating electrode material: study of the relationship between electrostatic-charge density and strain in dielectric material. Compos Sci Technol 218:109187. https://doi.org/10.1016/j.compscitech.2021.109187

  119. Sangkhun W, Wanwong S (2021) Natural textile based triboelectric nanogenerators for efficient energy harvesting applications. Nanoscale 13:2420–2428. https://doi.org/10.1039/d0nr07756a

    Article  CAS  Google Scholar 

  120. Zhang L, Su C, Cui X, Li P, Wang Z, Gu L, Tang Z (2020) Free-standing triboelectric layer-based full fabric wearable nanogenerator for efficient mechanical energy harvesting. ACS Appl Electr Mater 2:3366–3372. https://doi.org/10.1021/acsaelm.0c00646

    Article  CAS  Google Scholar 

  121. Zhang L, Yu Y, Eyer GP, Suo G, Kozik LA, Fairbanks M, Wang X, Andrew TL (2016) All-textile triboelectric generator compatible with traditional textile process. Adv Mater Technol 1:1600147. https://doi.org/10.1002/admt.201600147

    Article  CAS  Google Scholar 

  122. Dong C, Leber A, Das Gupta T, Chandran R, Volpi M, Qu Y, Nguyen-Dang T, Bartolomei N, Yan W, Sorin F (2020) High-efficiency super-elastic liquid metal based triboelectric fibers and textiles. Nat Commun 11:3537. https://doi.org/10.1038/s41467-020-17345-8

    Article  CAS  Google Scholar 

  123. Zhang L, Su C, Cheng L, Cui N, Gu L, Qin Y, Yang R, Zhou F (2019) Enhancing the performance of textile triboelectric nanogenerators with oblique microrod arrays for wearable energy harvesting. ACS Appl Mater Interfaces 11:26824–26829. https://doi.org/10.1021/acsami.9b06627

    Article  CAS  Google Scholar 

  124. Shin Y-E, Lee J-E, Park Y, Hwang S-H, Chae HG, Ko H (2018) Sewing machine stitching of polyvinylidene fluoride fibers: programmable textile patterns for wearable triboelectric sensors. J Mater Chem A 6:22879–22888. https://doi.org/10.1039/c8ta08485h

    Article  CAS  Google Scholar 

  125. Choi D, Yang S, Lee C, Kim W, Kim J, Hong J (2018) Highly surface-embossed polydimethylsiloxane-based triboelectric nanogenerators with hierarchically nanostructured conductive Ni-Cu fabrics. ACS Appl Mater Interfaces 10:33221–33229. https://doi.org/10.1021/acsami.8b10613

    Article  CAS  Google Scholar 

  126. Yu X, Pan J, Zhang J, Sun H, He S, Qiu L, Lou H, Sun X, Peng H (2017) A coaxial triboelectric nanogenerator fiber for energy harvesting and sensing under deformation. J Mater Chem A 5:6032–6037. https://doi.org/10.1039/c7ta00248c

    Article  CAS  Google Scholar 

  127. Pandey P, Jung D-H, Choi G-J, Seo M-K, Lee S, Kim JM, Park I-K, Sohn JI (2023) Nafion-mediated barium titanate-polymer composite nanofibers-based triboelectric nanogenerator for self-powered smart street and home control system. Nano Energy 107:108134. https://doi.org/10.1016/j.nanoen.2022.108134

  128. Zheng Z, Yu D, Guo Y (2021) Dielectric modulated glass fiber fabric-based single electrode triboelectric nanogenerator for efficient biomechanical energy harvesting. Adv Funct Mater 31:2102431. https://doi.org/10.1002/adfm.202102431

    Article  CAS  Google Scholar 

  129. Parandeh S, Kharaziha M, Karimzadeh F, Hosseinabadi F (2020) Triboelectric nanogenerators based on graphene oxide coated nanocomposite fibers for biomedical applications. Nanotechnology 31:385402. https://doi.org/10.1088/1361-6528/ab9972

  130. Li Z, Zhu M, Qiu Q, Yu J, Ding B (2018) Multilayered fiber-based triboelectric nanogenerator with high performance for biomechanical energy harvesting. Nano Energy 53:726–733. https://doi.org/10.1016/j.nanoen.2018.09.039

    Article  CAS  Google Scholar 

  131. Feng PY, Xia Z, Sun B, Jing X, Li H, Tao X, Mi HY, Liu Y (2021) Enhancing the performance of fabric-based triboelectric nanogenerators by structural and chemical modification. ACS Appl Mater Interfaces 13:16916–16927. https://doi.org/10.1021/acsami.1c02815

    Article  CAS  Google Scholar 

  132. Jian G, Meng Q, Jiao Y, Feng L, Shao H, Wang F, Meng F (2021) Hybrid PDMS-TiO2-stainless steel textiles for triboelectric nanogenerators. Chem Eng J 417:127974. https://doi.org/10.1016/j.cej.2020.127974

  133. Seung W, Gupta MK, Lee KY, Shin KS, Lee JH, Kim TY, Kim S, Lin J, Kim JH, Kim SW (2015) Nanopatterned textile-based wearable triboelectric nanogenerator. ACS Nano 9:3501–3509. https://doi.org/10.1021/nn507221f

    Article  CAS  Google Scholar 

  134. Seung W, Yoon H-J, Kim TY, Ryu H, Kim J, Lee J-H, Lee JH, Kim S, Park YK, Park YJ, Kim S-W (2017) Boosting power-generating performance of triboelectric nanogenerators via artificial control of ferroelectric polarization and dielectric properties. Adv Energy Mater 7:1600988. https://doi.org/10.1002/aenm.201600988

    Article  CAS  Google Scholar 

  135. Lee JW, Cho HJ, Chun J, Kim KN, Kim S, Ahn CW, Kim IW, Kim JY, Kim SW, Yang C, Baik JM (2017) Robust nanogenerators based on graft copolymers via control of dielectrics for remarkable output power enhancement. Sci Adv 3:e1602902. https://doi.org/10.1126/sciadv.1602902

  136. Yu Y, Li Z, Wang Y, Gong S, Wang X (2015) Sequential infiltration synthesis of doped polymer films with tunable electrical properties for efficient triboelectric nanogenerator development. Adv Mater 27:4938–4944. https://doi.org/10.1002/adma.201502546

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (52103081, 52273070, 52073078), Zhejiang Provincial Natural Science Foundation of China (LQ22E030005, LR20E030003), and China Postdoctoral Science Foundation (2022M713209).

Author information

Authors and Affiliations

Authors

Contributions

Chongfan Hu and Xihua Cui wrote the main manuscript text. Fei Wang prepared figures. Yutian Zhu reviewed and edited the manuscript text. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Xihua Cui or Yutian Zhu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, C., Wang, F., Cui, X. et al. Recent progress in textile-based triboelectric force sensors for wearable electronics. Adv Compos Hybrid Mater 6, 70 (2023). https://doi.org/10.1007/s42114-023-00650-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-023-00650-3

Keywords

Navigation