Skip to main content

Advertisement

Log in

High-performance and environmentally friendly acrylonitrile butadiene styrene/wood composite for versatile applications in furniture and construction

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Untreated ubiquitous plastics have caused great damage to the ecosystem of our world. In order to solve this problem, the untreated plastic was transformed into an environmentally friendly polymer/wood composite. However, due to the poor interfacial compatibility, their mechanical strength, water resistance, and heat resistance are very poor. Therefore, an acrylonitrile butadiene styrene (ABS)/poplar composite with excellent properties was prepared by a novel one-step method. The resulting poplar ABS composite shows better tensile strength (350.06 MPa) and flexural strength (204.89 MPa) than poplar (51.97 MPa, 95.84 MPa) and plywood (18.84 MPa, 37.94 MPa). It was found that the poplar ABS composite shows lower water absorption (10.14%) and greater thermal stability than that of poplar. In addition, the thermal conductivity (0.48 W/m.K) of poplar ABS composite is lower than that of poplar and plywood, suggesting its good thermal insulation performance. Overall, the preparation of poplar-ABS composite demonstrates great promise to replace commercial plastics to synthesize wood plastic composite with potential versatile applications in furniture and construction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gibb BC (2019) Plastics are forever. Nat Chem 11(5):394–395. https://doi.org/10.1038/s41557-019-0260-7

    Article  CAS  Google Scholar 

  2. Borrelle SB, Ringma J, Law KL, Monnahan CC, Lebreton L, McGivern A, Murphy E, Jambeck J, Leonard GH, Hilleary MA, Eriksen M, Possingham HP, De Frond H, Gerber LR, Polidoro B, Tahir A, Bernard M, Mallos N, Barnes M, Rochman CM (2020) Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. Sci 369(6510):1515–1518. https://doi.org/10.1126/science.aba3656

    Article  CAS  Google Scholar 

  3. Guan QF, Yang HB, Zhao YX, Han ZM, Ling ZC, Yang KP, Yin CH, Yu SH (2021) Microplastics release from victuals packaging materials during daily usage. EcoMat (Beijing, China) 3:e12107. https://doi.org/10.1002/eom2.12107

    Article  CAS  Google Scholar 

  4. Almeshal I, Tayeh BA, Alyousef R, Alabduljabbar H, Mohamed AM (2020) Eco-friendly concrete containing recycled plastic as partial replacement for sand. J Mater Res 9(3):4631–4643. https://doi.org/10.1016/j.jmrt.2020.02.090

    Article  CAS  Google Scholar 

  5. Lin TA, Lin J-H, Bao L (2020) Polypropylene/thermoplastic polyurethane blends: mechanical characterizations, recyclability and sustainable development of thermoplastic materials. J Mater Res 9(3):5304–5312. https://doi.org/10.1016/j.jmrt.2020.03.056

    Article  CAS  Google Scholar 

  6. Chen C, Kuang Y, Zhu S, Burgert I, Keplinger T, Gong A, Li T, Berglund L, Eichhorn SJ, Hu L (2020) Structure-property-function relationships of natural and engineered wood. Nat Rev Mater 5(9):642–666. https://doi.org/10.1038/s41578-020-0195-z

    Article  CAS  Google Scholar 

  7. Xiao S, Chen C, Xia Q, Liu Y, Yao Y, Chen Q, Hartsfield M, Brozena A, Tu K, Eichhorn SJ, Yao Y, Li J, Gan W, Shi SQ, Yang VW, Lo Ricco M, Zhu JY, Burgert I, Luo A, Li T, Hu L (2021) Lightweight, strong, moldable wood via cell wall engineering as a sustainable structural material. Sci 374(6566):465–471. https://doi.org/10.1126/science.abg9556

    Article  CAS  Google Scholar 

  8. Kumar S, Singh R, Singh TP, Batish A (2021) Investigations for magnetic properties of PLA-PVC-Fe3O4-wood dust blend for self-assembly applications. J Thermoplast Compos Mater 34(7):929–951. https://doi.org/10.1177/0892705719857778

    Article  CAS  Google Scholar 

  9. Gardner DJ, Han Y, Wang L (2015) Wood–plastic composite technology. Curr For Rep 1(3):139–150. https://doi.org/10.1007/s40725-015-0016-6

    Article  Google Scholar 

  10. Maddodi BS, Lathashri UA, Devesh S, Rao AU, Shenoy GB, Wijerathne HT, Sooriyaperkasam N, Prasanna Kumar M (2022) Repurposing plastic wastes in non-conventional engineered wood building bricks for constructional application – a mechanical characterization using experimental and statistical analys. Eng Sci 18:329–336. https://doi.org/10.30919/es8d696

  11. Najafi SK (2013) Use of recycled plastics in wood plastic composites - a review. Waste Manag (Elmsford) 33(9):1898–1905. https://doi.org/10.1016/j.wasman.2013.05.017

    Article  Google Scholar 

  12. Lian M, Huang Y, Liu Y, Jiang D, Wu Z, Li B, Xu Q, Murugadoss V, Jiang Q, Huang M, Guo Z (2022) An overview of regenerable wood-based composites: preparation and applications for flame retardancy, enhanced mechanical properties, biomimicry, and transparency energy saving. Adv Compos Mater 5(3):1612–1657. https://doi.org/10.1007/s42114-022-00475-6

    Article  Google Scholar 

  13. Zhou Y, Stanchev P, Katsou E, Awad S, Fan M (2019) A circular economy use of recovered sludge cellulose in wood plastic composite production: recycling and eco-efficiency assessment. Waste Manag 99:42–48. https://doi.org/10.1016/j.wasman.2019.08.037

    Article  CAS  Google Scholar 

  14. Zhang L, Chen Z, Dong H, Fu S, Ma L, Yang X (2021) Wood plastic composites based wood wall’s structure and thermal insulation performance. J Bioresour Bioprod 6(1):65–74. https://doi.org/10.1016/j.jobab.2021.01.005

    Article  CAS  Google Scholar 

  15. Gao X, Lin L, Pang JY, Chen F, Li QD (2019) Effects of impulse-cyclone drying and silane modification on the properties of wood fiber/HDPE composite material. Carbohydr 207:343–351. https://doi.org/10.1016/j.carbpol.2018.11.078

    Article  CAS  Google Scholar 

  16. Zhou HY, Xiao ZF, Wang YG, Hao XL, Xie YJ, Song YM, Wang FQ, Wang QW (2020) Conductive and fire-retardant wood/polyethylene composites based on a continuous honeycomb-like nanoscale carbon black network. Constr Build Mater 233(10):117369. https://doi.org/10.1016/j.conbuildmat.2019.117369

    Article  CAS  Google Scholar 

  17. Wang J, Wang S, Zuo YF, Xiao JH, Wu YQ (2021) Construction of compatible interface of straw/magnesium oxychloride lightweight composites by coupling agents. Constr Build Mater 281:122600. https://doi.org/10.1016/j.conbuildmat.2021.122600

    Article  CAS  Google Scholar 

  18. Elamin MAM, Li SX, Osman ZA, Otitoju TA (2020) Preparation and characterization of wood-plastic composite by utilizing a hybrid compatibilizer system. Ind Crops Prod 154:112659. https://doi.org/10.1016/j.indcrop.2020.112659

    Article  CAS  Google Scholar 

  19. Ding CX, Pan MZ, Chen H, Zhang S, Mei CT (2020) An anionic polyelectrolyte hybrid for wood-polyethylene composites with high strength and fire safety via self-assembly. Constr Build Mater 248:118661. https://doi.org/10.1016/j.conbuildmat.2020.118661

    Article  CAS  Google Scholar 

  20. Ge S, Zuo S, Zhang M, Luo Y, Yang R, Wu Y, Zhang Y, Li J, Xia C (2021) Utilization of decayed wood for polyvinyl chloride/wood flour composites. J Mater Res 12:862–869. https://doi.org/10.1016/j.jmrt.2021.03.026

    Article  CAS  Google Scholar 

  21. Li J, Henriksson G, Gellerstedt G (2007) Lignin depolymerization/repolymerization and its critical role for delignification of aspen wood by steam explosion. Bioresour Technol 98(16):3061–3068. https://doi.org/10.1016/j.biortech.2006.10.018

    Article  CAS  Google Scholar 

  22. Wen J-L, Sun S-L, Xue B-L, Sun R-C (2013) Recent advances in characterization of lignin polymer by solution-state nuclear magnetic resonance (NMR) methodology. Materials 6(1):359–391

    Article  Google Scholar 

  23. Wen JL, Sun SL, Xue BL, Sun RC (2013) Recent advances in characterization of lignin polymer by solution-state nuclear magnetic resonance (NMR) methodology. Materials (Basel) 6(1):359–391. https://doi.org/10.3390/ma6010359

    Article  Google Scholar 

  24. Sun S, Huang Y, Sun R, Tu M (2016) The strong association of condensed phenolic moieties in isolated lignins with their inhibition of enzymatic hydrolysis. Green Chem 18(15):4276–4286. https://doi.org/10.1039/c6gc00685j

    Article  CAS  Google Scholar 

  25. Lu L, Fan W, Ge S, Liew RK, Shi Y, Dou H, Wang S, Lam SS (2022) Progress in recycling and valorization of waste silk. Sci Total Environ 830:154812–154812. https://doi.org/10.1016/j.scitotenv.2022.154812

    Article  CAS  Google Scholar 

  26. Ye H, Wang Y, Yu Q, Ge S, Fan W, Zhang M, Huang Z, Manzo M, Cai L, Wang L, Xia C (2021) Bio-based composites fabricated from wood fibers through self-bonding technology. Chemosphere 287(Pt 4):132436. https://doi.org/10.1016/j.chemosphere.2021.132436

    Article  CAS  Google Scholar 

  27. Zhang Y, Li J, Mouser VHM, Roumans N, Moroni L, Habibovic P (2021) Biomimetic mechanically strong one-dimensional hydroxyapatite/poly(d, l-lactide) composite inducing formation of anisotropic collagen matrix. ACS Nano 15(11):17480–17498. https://doi.org/10.1021/acsnano.1c03905

    Article  CAS  Google Scholar 

  28. Ge S, Ma NL, Jiang S, Ok YS, Lam SS, Li C, Shi SQ, Nie X, Qiu Y, Li D, Wu Q, Tsang DCW, Peng W, Sonne C (2020) Processed bamboo as a novel formaldehyde-free high-performance furniture biocomposite. ACS Appl Mater 12(27):30824–30832. https://doi.org/10.1021/acsami.0c07448

    Article  CAS  Google Scholar 

  29. Guan QF, Yang HB, Han ZM, Ling ZC, Yang KP, Yin CH, Yu SH (2021) Plant cellulose nanofiber-derived structural material with high-density reversible interaction networks for plastic substitute. Nano Lett 21(21):8999–9004. https://doi.org/10.1021/acs.nanolett.1c02315

    Article  CAS  Google Scholar 

  30. Jiang B, Chen C, Liang Z, He S, Kuang Y, Song J, Mi R, Chen G, Jiao M, Hu L (2020) Lignin as a wood-inspired binder enabled strong, water stable, and biodegradable paper for plastic replacement. Adv Funct 30(4):1906307. https://doi.org/10.1002/adfm.201906307

    Article  CAS  Google Scholar 

  31. Li Z, Chen C, Mi R, Gan W, Dai J, Jiao M, Xie H, Yao Y, Xiao S, Hu L (2020) A strong, tough, and scalable structural material from fast-growing bamboo. Adv Mater 32(10):e1906308. https://doi.org/10.1002/adma.201906308

    Article  CAS  Google Scholar 

  32. Sepet H, Tarakcioglu N, Misra RDK (2016) Investigation of mechanical, thermal and surface properties of nanoclay/HDPE nanocomposites produced industrially by melt mixing approach. J Compos Mater 50(22):3105–3116. https://doi.org/10.1177/0021998315615653

    Article  CAS  Google Scholar 

  33. Bakar MBA, Leong YW, Ariffin A, Ishak ZAM (2007) Mechanical, flow, and morphological properties of talc- and kaolin-filled polypropylene hybrid composites. J Appl Polym Sci 104(1):434–441. https://doi.org/10.1002/app.25535

    Article  CAS  Google Scholar 

  34. Xu X, Wang L, Toghiani H, Pittman CU Jr (2000) Effect of crosslinking on mechanical and viscoelastic properties of semiinterpenetrating polymer networks composed of poly (vinyl chloride) and isocyanate crosslinked networks. J Appl Polym Sci 78(7):1402–1411. https://doi.org/10.1002/1097-4628(20001114)78:7

    Article  CAS  Google Scholar 

  35. Jang SP, Kim D (2000) Thermal, mechanical, and diffusional properties of nylon 6/ABS polymer blends: compatibilizer effect. Polym Eng Sci 40(7):1635–1642. https://doi.org/10.1002/pen.11295

    Article  CAS  Google Scholar 

  36. Hittini W, Abu-Jdayil B, Mourad A-H (2019) Development of date pit–polystyrene thermoplastic heat insulator material: mechanical properties. J Thermoplast Compos Mater 34(4):472–489. https://doi.org/10.1177/0892705719847242

    Article  CAS  Google Scholar 

  37. Yu X, Fan W, Azwar E, Ge S, Xia C, Sun Y, Gao X, Yang X, Wang S, Lam SS (2021) Twisting in improving processing of waste-derived yarn into high-performance reinforced composite. J Clean Prod 317:128446. https://doi.org/10.1016/j.jclepro.2021.128446

    Article  CAS  Google Scholar 

  38. Qiu HY, Liu R, Long L (2019) Analysis of chemical composition of extractives by acetone and the chromatic aberration of teak (Tectona grandis LF) from China. Molecules. https://doi.org/10.3390/molecules24101989

    Article  Google Scholar 

  39. Wang X, Xia Q, Jing S, Li C, Chen Q, Chen B, Pang Z, Jiang B, Gan W, Chen G, Cui M, Hu L, Li T (2021) Strong, hydrostable, and degradable straws based on cellulose-lignin reinforced composites. Small 17(18):e2008011. https://doi.org/10.1002/smll.202008011

    Article  CAS  Google Scholar 

  40. Yang W, Pan M, Zhang J, Zhang L, Lin F, Liu X, Huang C, Chen XZ, Wang J, Yan B, Zeng H (2021) A universal strategy for constructing robust and antifouling cellulose nanocrystal coating. Adv Funct Mater 32(8):2109989. https://doi.org/10.1002/adfm.202109989

    Article  CAS  Google Scholar 

  41. Wang X, Pang Z, Chen C, Xia Q, Zhou Y, Jing S, Wang R, Ray U, Gan W, Li C, Chen G, Foster B, Li T, Hu L (2020) All-natural, degradable, rolled-up straws based on cellulose micro- and nano-hybrid fibers. Adv Funct Mater 30(22):1910417. https://doi.org/10.1002/adfm.201910417

    Article  CAS  Google Scholar 

  42. Wang SS, Gao B, Zimmerman AR, Li YC, Ma L, Harris WG, Migliaccio KW (2015) Removal of arsenic by magnetic biochar prepared from pinewood and natural hematite. Bioresour Technol 175:391–395. https://doi.org/10.1016/j.biortech.2014.10.104

    Article  CAS  Google Scholar 

  43. Chen C, Song J, Cheng J, Pang Z, Gan W, Chen G, Kuang Y, Huang H, Ray U, Li T, Hu L (2020) Highly elastic hydrated cellulosic materials with durable compressibility and tunable conductivity. ACS Nano 14(12):16723–16734. https://doi.org/10.1021/acsnano.0c04298

    Article  CAS  Google Scholar 

  44. Wen Y, Tsou C-H, Gao C, Chen J-C, Tang Z, Chen Z, Yang T, Du J, Yu Y, Suen M-C, Wu C-S, Hung W-S, Wang R-Y, De Guzman MR (2020) Evaluating distillers grains as bio-fillers for high-density polyethylene. J Polym Res. https://doi.org/10.1007/s10965-020-02148-8

    Article  Google Scholar 

  45. Gironès J, Méndez JA, Boufi S, Vilaseca F, Mutjé P (2007) Effect of silane coupling agents on the properties of pine fibers/polypropylene composites. J Appl Polym Sci 103(6):3706–3717. https://doi.org/10.1002/app.25104

    Article  CAS  Google Scholar 

  46. Asadinezhad A, Novák I, Lehocký M, Sedlařík V, Vesel A, Junkar I, Sáha P, Chodák I (2010) A physicochemical approach to render antibacterial surfaces on plasma-treated medical-grade PVC: Irgasan coating. Plasma Process Polym 7(6):504–514. https://doi.org/10.1002/ppap.200900132

    Article  CAS  Google Scholar 

  47. Sarma M, Abad K, Nguyen D, Ruelas S, Liu K, Thompson J (2021) Investigation of chemical stabilities and contact angle of 3D printed polymers with CO2 capture solvents to enhance absorber performance. Int J Greenhouse Gas Control 111:103478. https://doi.org/10.1016/j.ijggc.2021.103478

    Article  CAS  Google Scholar 

  48. Feng J, Yuan Q, Sun X, Yang F, Cui K, Li W, Yao Z (2020) Improving the properties of ABS by blending with PP and using PP-g-PS as a compatibilizer. Polym-Plast Tech Mat 60(7):798–806. https://doi.org/10.1080/25740881.2020.1853771

    Article  CAS  Google Scholar 

  49. Gnip IY, Kersulis V, Vejelis S, Vaitkus S (2006) Water absorption of expanded polystyrene boards. Polym Test 25(5):635–641. https://doi.org/10.1016/j.polymertesting.2006.04.002

    Article  CAS  Google Scholar 

  50. Abdulal EA, Khot A, Bailey A, Mehan M, Debies T, Takacs GA (2014) Surface characterization of polystyrene treated with ozone and grafted with poly(acrylic acid). J Adhes Sci Technol 29(1):1–11. https://doi.org/10.1080/01694243.2014.970833

    Article  CAS  Google Scholar 

  51. Hu D, Liu H, Ding Y, Ma W (2021) Synergetic integration of thermal conductivity and flame resistance in nacre-like nanocellulose composites. Carbohydr Polym 264:118058. https://doi.org/10.1016/j.carbpol.2021.118058

    Article  CAS  Google Scholar 

  52. Oyeoka HC, Ewulonu CM, Nwuzor IC, Obele CM, Nwabanne JT (2021) Packaging and degradability properties of polyvinyl alcohol/gelatin nanocomposite films filled water hyacinth cellulose nanocrystals. J Bioresour Bioprod 6(2):168–185. https://doi.org/10.1016/j.jobab.2021.02.009

    Article  CAS  Google Scholar 

  53. Wan C, Jiao Y, Tian W, Zhang L, Wu Y, Li J, Li X (2020) A holocellulose framework with anisotropic microchannels for directional assembly of copper sulphide nanoparticles for multifunctional applications. Chem Eng J 393:124637. https://doi.org/10.1016/j.cej.2020.124637

    Article  CAS  Google Scholar 

  54. Sheng Y, Liu M, Xia C, Song J, Ge S, Cai L, Lam SS, Sonne C (2021) Using nucleophilic naphthol derivatives to suppress biomass lignin repolymerization in fermentable sugar production. Chem Eng J 420:130258. https://doi.org/10.1016/j.cej.2021.130258

    Article  CAS  Google Scholar 

  55. Chen C, Li Z, Mi R, Dai J, Xie H, Pei Y, Li J, Qiao H, Tang H, Yang B, Hu L (2020) Rapid processing of whole bamboo with exposed, aligned nanofibrils toward a high-performance structural material. ACS Nano 14(5):5194–5202. https://doi.org/10.1021/acsnano.9b08747

    Article  CAS  Google Scholar 

  56. Deeksha B, Sadanand V, Hariram N, Rajulu AV (2021) Preparation and properties of cellulose nanocomposite fabrics with in situ generated silver nanoparticles by bioreduction method. J Bioresour Bioprod 6(1):75–81. https://doi.org/10.1016/j.jobab.2021.01.003

    Article  CAS  Google Scholar 

  57. Chen B, Leiste UH, Fourney WL, Liu Y, Chen Q, Li T (2021) Hardened wood as a renewable alternative to steel and plastic. Matter 12(4):3941–3952. https://doi.org/10.1016/j.matt.2021.09.020

    Article  Google Scholar 

  58. Tu K, Puertolas B, Adobes-Vidal M, Wang Y, Sun J, Traber J, Burgert I, Perez-Ramirez J, Keplinger T (2020) Green synthesis of hierarchical metal-organic framework/wood functional composites with superior mechanical properties. Adv Sci (Weinh) 7(7):1902897. https://doi.org/10.1002/advs.201902897

    Article  CAS  Google Scholar 

  59. Mu L, Dong Y, Li L, Gu X, Shi Y (2021) Achieving high value utilization of bio-oil from lignin targeting for advanced lubrication. ES Mater Manuf 11:72–80. https://doi.org/10.30919/esmm5f1146

  60. Wu Q, Gao L, Huang M, Mersal GAM, Ibrahim MM, El-Bahy ZM, Shi X, Jiang Q (2022) Aminated lignin by ultrasonic method with enhanced arsenic (V) adsorption from polluted water. Adv Compos Mater 5(2):1044–1053. https://doi.org/10.1007/s42114-022-00492-5

    Article  CAS  Google Scholar 

  61. Culebras M, Collins GA, Beaucamp A, Geaney H, Collins MN (2022) Lignin/Si hybrid carbon nanofibers towards highly efficient sustainable Li-ion anode materials. Eng Sci 17:195–203. https://doi.org/10.30919/es8d608

  62. Le X, An J, Zhang G, Wang L, Fan J, Wang P, Xie Y (2016) Investigation of the structural characteristics of corn stalk during hot-pressing. BioResources 11(4):10213–10225

    Article  CAS  Google Scholar 

  63. Sun Y-C, Lin Z, Peng W-X, Yuan T-Q, Xu F, Wu Y-Q, Yang J, Wang Y-S, Sun R-C (2014) Chemical changes of raw materials and manufactured binderless boards during hot pressing: lignin isolation and characterization. BioResources 9(1):1055–1071

    Article  Google Scholar 

  64. Ge S, Liang Y, Zhou C, Sheng Y, Zhang M, Cai L, Zhou Y, Huang Z, Manzo M, Wu C, Xia C (2022) The potential of Pinus armandii Franch for high-grade resource utilization. Biomass Bioenergy. https://doi.org/10.1016/j.biombioe.2022.106345

  65. Akpan EI, Wetzel B, Friedrich K (2021) Eco-friendly and sustainable processing of wood-based materials. Green Chem 23(6):2198–2232. https://doi.org/10.1039/d0gc04430j

    Article  CAS  Google Scholar 

  66. Pielhop T, Larrazábal GO, Studer MH, Brethauer S, Seidel C-M, von Rohr PR (2015) Lignin repolymerisation in spruce autohydrolysis pretreatment increases cellulase deactivation. Green Chem 17(6):3521–3532. https://doi.org/10.1039/c4gc02381a

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the foundation support from the National Natural Science Foundation of China (32201491, 31560192), Jiangsu Agricultural Science and Technology Innovation Fund (CX(22)3047), Science and Technology Innovation Program of Hunan Province (2021RC2106), and Central Plain Scholar Funding Project of Henan Province (212101510005).

Funding

The manuscript was funded by the National Natural Science Foundation of China (32201491, 31560192), Jiangsu Agricultural Science and Technology Innovation Fund (CX(22)3047), Science and Technology Innovation Program of Hunan Province (2021RC2106), and Central Plain Scholar Funding Project of Henan Province (212101510005).

Author information

Authors and Affiliations

Authors

Contributions

Shengbo Ge and Hui Ouyang wrote the main manuscript text. Haoran Ye and Yang Shi prepared the acrylonitrile butadiene styrene (ABS)/poplar composite. Yequan Sheng and Wanxi Peng tested the physical and chemical properties of the poplar-ABS composite. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Hui Ouyang or Wanxi Peng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 439 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, S., Ouyang, H., Ye, H. et al. High-performance and environmentally friendly acrylonitrile butadiene styrene/wood composite for versatile applications in furniture and construction. Adv Compos Hybrid Mater 6, 44 (2023). https://doi.org/10.1007/s42114-023-00628-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-023-00628-1

Keywords

Navigation