Skip to main content

Advertisement

Log in

Carbon dots: building a robust optical shield for wood preservation

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Wood is a sustainable building material that can help to achieve carbon neutralization but, because wood is easily damaged by ultraviolet (UV) light, it is important to protect wood from this harmful radiation. Here, we synthesized sustainable biomass-based carbon dots (Bio-CDs) using only microcrystalline cellulose, which was concentration-dependent and capable of absorbing short wavelength and converting it to long wavelength light emission. Furthermore, the Bio-CDs were mixed with poly (vinyl alcohol) (PVA) to produce robust optical shielding films (OSFs). The results showed that OSFs had good optical properties, which could effectively block UV and high-energy blue photons radiation by absorbing short wavelength light and converting it into longer wavelength (> 450 nm) light. The extent of UV and high-energy blue photons blocking can be easily adjusted by varying the proportion of Bio-CDs in the film. The OSFs have good optical properties and have been successfully used to protect wood from UV damage. This study, which uses environmentally friendly and simple methodology, provides an example of sustainable research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All relevant data are within the paper and its Supporting Information files.

References

  1. Palander T, Haavikko H, Kärhä K (2018) Towards sustainable wood procurement in forest industry-the energy efficiency of larger and heavier vehicles in Finland. Renew Sust Energ Rev 96:100–118. https://doi.org/10.1016/j.rser.2018.07.043

    Article  Google Scholar 

  2. Voshell S, Mäkelä M, Dahl O (2018) A review of biomass ash properties towards treatment and recycling. Renew Sust Energ Rev 96:479–486. https://doi.org/10.1016/j.rser.2018.07.025

    Article  CAS  Google Scholar 

  3. Head M, Bernier P, Levasseur A, Beauregard R, Margni M (2019) Forestry carbon budget models to improve biogenic carbon accounting in life cycle assessment. J Clean Prod 213:289–299. https://doi.org/10.1016/j.jclepro.2018.12.122

    Article  CAS  Google Scholar 

  4. Wang J, Zhang D, Chu F (2021) Wood-derived functional polymeric materials. Adv Mater 33:e2001135. https://doi.org/10.1002/adma.202001135

    Article  CAS  Google Scholar 

  5. Mi R, Chen C, Keplinger T, Pei Y, He S, Liu D, Li J, Dai J, Hitz E, Yang B, Burgert I, Hu L (2020) Scalable aesthetic transparent wood for energy efficient buildings. Nat Commun 11:3836. https://doi.org/10.1038/s41467-020-17513-w

    Article  CAS  Google Scholar 

  6. Jia C, Chen C, Mi R, Li T, Dai J, Yang Z, Pei Y, He S, Bian H, Jang S, Zhu J, Yang B, Hu L (2019) Clear wood toward high-performance building materials. ACS Nano 13:9993–10001. https://doi.org/10.1021/acsnano.9b00089

    Article  CAS  Google Scholar 

  7. Li W, Chen Z, Yu H, Li J, Liu S (2021) Wood-derived carbon materials and light-emitting materials. Adv Mater 33:e2000596. https://doi.org/10.1002/adma.202000596

    Article  CAS  Google Scholar 

  8. Guo H, Klose D, Hou Y, Jeschke G, Burgert I (2017) Highly efficient UV protection of the biomaterial wood by a transparent TiO2/Ce xerogel. ACS Appl Mater Interfaces 9:39040–39047. https://doi.org/10.1021/acsami.7b12574

    Article  CAS  Google Scholar 

  9. Xia Q, Chen C, Yao Y, He S, Wang X, Li J, Gao J, Gan W, Jiang B, Cui M, Hu L (2021) In situ lignin modification toward photonic wood. Adv Mater 33:e2001588. https://doi.org/10.1002/adma.202001588

    Article  CAS  Google Scholar 

  10. Yang H, Liu Y, Guo Z, Lei B, Zhuang J, Zhang X, Liu Z, Hu C (2019) Hydrophobic carbon dots with blue dispersed emission and red aggregation-induced emission. Nat Commun 10:1789. https://doi.org/10.1038/s41467-019-09830-6

    Article  CAS  Google Scholar 

  11. Varganici C, Rosu L, Rosu D, Mustata F, Rusu T (2020) Sustainable wood coatings made of epoxidized vegetable oils for ultraviolet protection. Environ Chem Lett 19:307–328. https://doi.org/10.1007/s10311-020-01067-w

    Article  CAS  Google Scholar 

  12. Yuan B, Guo M, Murugadoss V, Song G, Guo Z (2021) Immobilization of graphitic carbon nitride on wood surface via chemical crosslinking method for UV resistance and self-cleaning. Adv Compos Hybrid Mater 4:286–293. https://doi.org/10.1007/s42114-021-00235-y

    Article  CAS  Google Scholar 

  13. Dong Y, Yan Y, Ma H, Zhang S, Li J, Xia C, Shi S, Cai L (2017) In-situ chemosynthesis of ZnO nanoparticles to endow wood with antibacterial and UV-resistance properties. J Mater Sci Technol 33:266–270. https://doi.org/10.1016/j.jmst.2016.03.018

    Article  CAS  Google Scholar 

  14. Lim S, Shen W, Gao Z (2015) Carbon quantum dots and their applications. Chem Soc Rev 44:362–381. https://doi.org/10.1039/c4cs00269e

    Article  CAS  Google Scholar 

  15. Desmond L, Phan A, Gentile P (2021) Critical overview on the green synthesis of carbon quantum dots and their application for cancer therapy. Environ Sci-Nano 8:848–862. https://doi.org/10.1039/d1en00017a

    Article  CAS  Google Scholar 

  16. Wareing T, Gentile P, Phan A (2021) Biomass-based carbon dots: current development and future perspectives. ACS Nano 15:15471–15501. https://doi.org/10.1021/acsnano.1c03886

    Article  CAS  Google Scholar 

  17. Ge M, Han Y, Ni J, Li Y, Han S, Li S, Yu H, Zhang C, Liu S, Li J, Chen Z (2021) Seeking brightness from nature: sustainable carbon dots-based AIEgens with tunable emission wavelength from natural rosin. Chem Eng J 413:127457. https://doi.org/10.1016/j.cej.2020.127457

    Article  CAS  Google Scholar 

  18. Ge M, Huang X, Ni J, Han Y, Zhang C, Li S, Cao J, Li J, Chen Z, Han S (2021) One-step synthesis of self-quenching-resistant biomass-based solid-state fluorescent carbon dots with high yield for white lighting emitting diodes. Dyes Pigments 185:108953. https://doi.org/10.1016/j.dyepig.2020.108953

    Article  CAS  Google Scholar 

  19. Cai X, Lin Y, Li Y, Chen X, Wang Z, Zhao X, Huang S, Zhao Z, Tang B (2021) BioAIEgens derived from rosin: how does molecular motion affect their photophysical processes in solid state? Nat Commun 12:1773. https://doi.org/10.1038/s41467-021-22061-y

    Article  CAS  Google Scholar 

  20. Liu H, Du H, Zheng T, Liu K, Ji X, Xu T, Zhang X, Si C (2021) Cellulose based composite foams and aerogels for advanced energy storage devices. Chem Eng J. https://doi.org/10.1016/j.cej.2021.130817

    Article  Google Scholar 

  21. Liu H, Xu T, Cai C, Liu K, Liu W, Zhang M, Du H, Si C, Zhang K (2022) Multifunctional superelastic, superhydrophilic, and ultralight nanocellulose-based composite carbon aerogels for compressive supercapacitor and strain sensor. Adv Funct Mater. https://doi.org/10.1002/adfm.202113082

    Article  Google Scholar 

  22. Xu T, Du H, Liu H, Liu W, Zhang X, Si C, Liu P, Zhang K (2021) Advanced nanocellulose-based composites for flexible functional energy storage devices. Adv Mater 33:e2101368. https://doi.org/10.1002/adma.202101368

    Article  CAS  Google Scholar 

  23. Zhang M, Du H, Liu K, Nie S, Xu T, Zhang X, Si C (2021) Fabrication and applications of cellulose-based nanogenerators. Adv Compos Hybrid Mater 4:865–884. https://doi.org/10.1007/s42114-021-00312-2

    Article  CAS  Google Scholar 

  24. Xu T, Liu K, Sheng N, Zhang M, Liu W, Liu H, Dai L, Zhang X, Si C, Du H, Zhang K (2022) Biopolymer-based hydrogel electrolytes for advanced energy storage/conversion devices: properties, applications, and perspectives. Energy Storage Mater 48:244–262. https://doi.org/10.1016/j.ensm.2022.03.013

    Article  Google Scholar 

  25. Han Y, Huang X, Liu J, Ni J, Bai Y, Zhao B, Han S, Zhang C (2022) Seeking eye protection from biomass: carbon dot-based optical blocking films with adjustable levels of blue light blocking. J Colloid Interf Sci 617:44–52. https://doi.org/10.1016/j.jcis.2022.02.115

    Article  CAS  Google Scholar 

  26. Park S, Yang H, Moon B (2019) Ultraviolet to blue blocking and wavelength convertible films using carbon dots for interrupting eye damage caused by general lighting. Nano Energy 60:87–94. https://doi.org/10.1016/j.nanoen.2019.03.043

    Article  CAS  Google Scholar 

  27. Wang R, Meng Z, Yan X, Tian T, Lei M, Pashameah R, Abo-Dief H, Algadi H, Huang N, Guo Z, Tang H (2023) Tellurium intervened Fe-N codoped carbon for improved oxygen reduction reaction and high-performance Zn-air batteries. J Mater Sci Technol 137:215–222. https://doi.org/10.1016/j.jmst.2022.07.041

    Article  Google Scholar 

  28. Liu S, Du H, Liu K, Ma M, Kwon Y, Si C, Ji X, Choi S, Zhang X (2021) Flexible and porous Co3O4-carbon nanofibers as binder-free electrodes for supercapacitors. Adv Compos Hybrid Mater 4:1367–1383. https://doi.org/10.1007/s42114-021-00344-8

    Article  CAS  Google Scholar 

  29. Chen N, Wang C, Ali O, Mahmoud S, Shi Y, Ji Y, Algadi H, EI-Bahy S, Huang M, Guo Z, Cui D, Wei H (2022) MXene@nitrogen-doped carbon films for supercapacitor and piezoresistive sensing applications. Compos A 163:107174. https://doi.org/10.1016/j.compositesa.2022.107174

    Article  CAS  Google Scholar 

  30. Hou C, Yang W, Kimura H, Xie X, Zhang X, Sun X, Yu Z, Yang X, Zhang Y, Wang B, Xu B, Sridhar D, Algadi H, Guo Z, Du W (2023) Boosted lithium storage performance by local build-in electric field derived by oxygen vacancies in 3D holey N-doped carbon structure decorated with molybdenum dioxide. J Mater Sci Technol 142:185–195. https://doi.org/10.1016/j.jmst.2022.10.007

    Article  Google Scholar 

  31. Xue B, Yang Y, Sun Y, Fan J, Li X, Zhang Z (2019) Photoluminescent lignin hybridized carbon quantum dots composites for bioimaging applications. Int J Biol Macromol 122:954–961. https://doi.org/10.1016/j.ijbiomac.2018.11.018

    Article  CAS  Google Scholar 

  32. Ozyurt D, Shafqat S, Pakkanen T, Hocking R, Mouritz A, Fox B (2021) Aggregation induced emission transformation of liquid and solid-state N-doped graphene quantum dots. Carbon 175:576–584. https://doi.org/10.1016/j.carbon.2021.01.026

    Article  CAS  Google Scholar 

  33. Liu H, Xu T, Liang Q, Zhao Q, Zhao D, Si C (2022) Compressible cellulose nanofibrils/reduced graphene oxide composite carbon aerogel for solid-state supercapacitor. Adv Compos Hybrid Mater 5:1168–1179. https://doi.org/10.1007/s42114-022-00427-0

    Article  CAS  Google Scholar 

  34. Wang Z, Liu Y, Zhen S, Li X, Zhang W, Sun X, Xu B, Wang X, Gao Z, Meng X (2020) Gram-scale synthesis of 41% efficient single-component white-light-emissive carbonized polymer dots with hybrid fluorescence/phosphorescence for white Light-Emitting Diodes. Adv Sci 7:1902688. https://doi.org/10.1002/advs.201902688

    Article  CAS  Google Scholar 

  35. Zeng M, Li T, Liu Y, Lin X, Zu X, Mu Y, Chen L, Huo Y, Qin Y (2022) Cellulose-based photo-enhanced persistent room-temperature phosphorescent materials by space stacking effects. Chem Eng J. https://doi.org/10.1016/j.cej.2022.136935

    Article  Google Scholar 

  36. Xu M, Dong C, Xu J, Rehman S, Wang Q, Osipov V, Jiang K, Wang J, Bi H (2022) Fluorinated carbon dots/carboxyl methyl cellulose sodium composite with a temperature-sensitive fluorescence/phosphorescence applicable for anti-counterfeiting marking. Carbon 189:459–466. https://doi.org/10.1016/j.carbon.2021.12.077

    Article  CAS  Google Scholar 

  37. Chen W, Hong L, Wu Y, Yang M, Zhang X, Zhu S, He M, Xie J, Shi Z (2022) Fluorescent probe of nitrogen-doped carbon dots derived from biomass for the sensing of MnO4-in polluted water based on inner filter effect. Adv Compos Hybrid Mater 5:2378–2386. https://doi.org/10.1007/s42114-022-00443-0

    Article  CAS  Google Scholar 

  38. Vijeata A, Chaudhary G, Umar A, Chaudhary S (2021) Distinctive solvatochromic response of fluorescent carbon dots derived from different components of aegle marmelos plant. Eng Sci 15:197–209. https://doi.org/10.30919/es8e512

  39. Liu B, Chu B, Wang Y, Hu L, Hu S, Zhang X (2021) Carbon dioxide derived carbonized polymer dots for multicolor light-emitting diodes. Green Chem 23:422–429. https://doi.org/10.1039/d0gc03333b

    Article  CAS  Google Scholar 

  40. Jiang K, Gao X, Feng X, Wang Y, Li Z, Lin H (2020) Carbon dots with dual-emissive, robust, and aggregation-induced room-temperature phosphorescence characteristics. Angew Chem Int Ed Engl 59:1263–1269. https://doi.org/10.1002/anie.201911342

    Article  CAS  Google Scholar 

  41. Han Y, Tang B, Wang L, Bao H, Lu Y, Guan C, Zhang L, Le M, Liu Z, Wu M (2020) Machine-learning-driven synthesis of carbon dots with enhanced quantum yields. ACS Nano 14:14761–14768. https://doi.org/10.1021/acsnano.0c01899

    Article  CAS  Google Scholar 

  42. Guo J, Li H, Ling L, Li G, Cheng R, Lu X, Xie A, Li Q, Wang C, Chen S (2019) Green synthesis of carbon dots toward anti-counterfeiting. ACS Sustain Chem Eng 8:1566–1572. https://doi.org/10.1021/acssuschemeng.9b06267

    Article  CAS  Google Scholar 

  43. Kumari M, Chaudhary G, Chaudhary S, Umar A (2022) Rapid analysis of trace sulphite ion using fluorescent carbon dots produced from single use plastic cups. Eng Sci 17:101–112. https://doi.org/10.30919/es8d556

  44. Ba X, Zhang L, Yin Y, Jiang F, Jiang P, Liu Y (2020) Luminescent carbon dots with concentration-dependent emission in solution and yellow emission in solid state. J Colloid Interface Sci 565:77–85. https://doi.org/10.1016/j.jcis.2020.01.007

    Article  CAS  Google Scholar 

  45. Ni J, Huang X, Bai Y, Zhao B, Han Y, Han S, Xu T, Si C, Zhang C (2022) Resistance to aggregation-caused quenching: chitosan-based solid carbon dots for white light-emitting diode and 3D printing. Adv Compos Hybrid Mater 5:1865–1875. https://doi.org/10.1007/s42114-022-00483-6

    Article  CAS  Google Scholar 

  46. Chen Y, Zheng M, Xiao Y, Dong H, Zhang H, Zhuang J, Hu H, Lei B, Liu Y (2016) A Self-quenching-resistant carbon-dot powder with tunable solid-state fluorescence and construction of dual-fluorescence morphologies for white light-emission. Adv Mater 28:312–318. https://doi.org/10.1002/adma.201503380

    Article  CAS  Google Scholar 

  47. Bhattacharyya S, Ehrat F, Urban P, Teves R, Wyrwich R, Doblinger M, Feldmann J, Urban A, Stolarczyk J (2017) Effect of nitrogen atom positioning on the trade-off between emissive and photocatalytic properties of carbon dots. Nat Commun 8:1401. https://doi.org/10.1038/s41467-017-01463-x

    Article  CAS  Google Scholar 

  48. Zhang T, Zhao F, Li L, Qi B, Zhu D, Lu J, Lu C (2018) Tricolor White-light-emitting carbon dots with multiple-cores@shell structure for WLED application. ACS Appl Mater Interfaces 10:19796–19805. https://doi.org/10.1021/acsami.8b03529

    Article  CAS  Google Scholar 

  49. Gao X, Zhou X, Ma Y, Qian T, Wang C, Chu F (2019) Facile and cost-effective preparation of carbon quantum dots for Fe3+ ion and ascorbic acid detection in living cells based on the “on-off-on” fluorescence principle. Appl Surf Sci 469:911–916. https://doi.org/10.1016/j.apsusc.2018.11.095

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by the National Key Research and Development Program (2021YFD2200601).

Author information

Authors and Affiliations

Authors

Contributions

The first two authors contributed equally to this work. Shiyan Han and Wenji Yu designed the research. Youqi Han carried out the experiments, data analysis, and drawing of figures. Yuning Wang, Yibing Bai, and Bin Zhao sorted the data and figures. Shujun Li and Chuanling Si carried out mechanism analysis. Zhijun Chen, Yahui Zhang, Haipeng Yu, and Chunlei Zhang carried out supervision. Youqi Han wrote the manuscript. All authors have given approval to the final version of the manuscript.

Corresponding authors

Correspondence to Shiyan Han, Chuanling Si or Wenji Yu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 135371 kb)

Supplementary file2 (MP4 3128 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Y., Wang, Y., Zhao, B. et al. Carbon dots: building a robust optical shield for wood preservation. Adv Compos Hybrid Mater 6, 39 (2023). https://doi.org/10.1007/s42114-022-00619-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-022-00619-8

Keywords

Navigation