Skip to main content

Advertisement

Log in

Semiconductive biocomposites enabled portable and interchangeable sensor for early osteoarthritis joint inflammation detection

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Early osteoarthritis (OA) joint inflammation detection is crucial for effective diagnosis and treatment. Thus, regular screening of OA is highly recommended, especially for the higher-risk population. However, the current OA biomarker detection methods are based on laboratory testing, which is low efficiency and high cost, and there is no point of care (POC) method available. In this work, we synthesized a biocomposite thin film in which TNF-a antibody (Abs) was covalently crafted on the PANI conjugating skeleton to form the semiconductive Ab-PANI composites, as the TNF-a acceptor and also the signal amplifier. The PANI structure was altered during the adsorption with the UV–visible spectroscopy and also caused the electrochemical impedance spectroscopy (EIS) signal change by monitoring the TNF-a adsorption behavior. A complex EIS analysis quantified the concentration of TNF-a, and the detection method was trained in a wide concentration range of TNF-a of PBS buffer solution. This screen-printed PANI-Ab sensor (SPAS) was further evaluated with the mice serum samples showing compatible accuracy and precision in comparison to conventional enzyme-linked immunosorbent assay (ELISA). Finally, the parallel accuracy validations on SPAS arrays indicate no significant difference in both precision and accuracy of measurement, which is suitable for the future interchangeable application of long-term inflammation monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hayami T et al (2006) Characterization of articular cartilage and subchondral bone changes in the rat anterior cruciate ligament transection and meniscectomized models of osteoarthritis. Bone 38:234–243. https://doi.org/10.1016/j.bone.2005.08.007

    Article  Google Scholar 

  2. Loeser RF, Goldring SR, Scanzello CR, Goldring MB (2012) Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum 64:1697. https://doi.org/10.1002/art.34453

    Article  Google Scholar 

  3. Anderson AS, Loeser RF (2010) Why is osteoarthritis an age-related disease? Best Pract Res Clin Rheumatol 24:15–26. https://doi.org/10.1016/j.berh.2009.08.006

    Article  Google Scholar 

  4. van Baar ME, Dekker J, Lemmens JA, Oostendorp RA, Bijlsma JW (1998) Pain and disability in patients with osteoarthritis of hip or knee: the relationship with articular, kinesiological, and psychological characteristics. J Rheumatol 25:125–133

    Google Scholar 

  5. Woolf AD, Erwin J, March L (2012) The need to address the burden of musculoskeletal conditions. Best Pract Res Clin Rheumatol 26:183–224. https://doi.org/10.1016/j.berh.2012.03.005

    Article  Google Scholar 

  6. Carbone A, Rodeo S (2017) Review of current understanding of post-traumatic osteoarthritis resulting from sports injuries. J Orthop Res 35:397–405. https://doi.org/10.1002/jor.23341

    Article  Google Scholar 

  7. Nelson AE (2018) Osteoarthritis year in review 2017: clinical. Osteoarthr Cartil 26:319–325. https://doi.org/10.1016/j.joca.2017.11.014

    Article  CAS  Google Scholar 

  8. Showery JE et al (2016) The rising incidence of degenerative and posttraumatic osteoarthritis of the knee in the United States military. J Arthroplasty 31:2108–2114. https://doi.org/10.1016/j.arth.2016.03.026

    Article  Google Scholar 

  9. Li ZC et al (2014) Functional annotation of rheumatoid arthritis and osteoarthritis associated genes by integrative genome-wide gene expression profiling analysis. PLoS ONE 9:e85784. https://doi.org/10.1371/journal.pone.0085784

    Article  CAS  Google Scholar 

  10. Scanzello CR (2017) Role of low-grade inflammation in osteoarthritis. Curr Opin Rheumatol 29:79–85. https://doi.org/10.1097/BOR.0000000000000353

    Article  CAS  Google Scholar 

  11. Marcu KB, Otero M, Olivotto E, Borzi RM, Goldring MB (2010) NF-kappaB signaling: multiple angles to target OA. Curr Drug Targets 11:599–613. https://doi.org/10.2174/138945010791011938

    Article  CAS  Google Scholar 

  12. Swarnkar G, Zhang K, Mbalaviele G, Long F, Abu-Amer Y (2014) Constitutive activation of IKK2/NF-kappaB impairs osteogenesis and skeletal development. PLoS ONE 9:e91421. https://doi.org/10.1371/journal.pone.0091421

    Article  CAS  Google Scholar 

  13. Leavy O (2013) Inflammasome: turning on and off NLRP3. Nat Rev Immunol 13:1. https://doi.org/10.1038/nri3366

    Article  CAS  Google Scholar 

  14. Takakubo Y, Barreto G, Konttinen YT, Oki H, Takagi M (2014) Role of innate immune sensors, TLRs, and NALP3 in rheumatoid arthritis and osteoarthritis. J Long Term Eff Med Implants 24:243–251. https://doi.org/10.1615/jlongtermeffmedimplants.2014011295

    Article  Google Scholar 

  15. Jin C et al (2011) NLRP3 inflammasome plays a critical role in the pathogenesis of hydroxyapatite-associated arthropathy. Proc Natl Acad Sci U S A 108:14867–14872. https://doi.org/10.1073/pnas.1111101108

    Article  Google Scholar 

  16. Mahr S et al (2006) Cis- and trans-acting gene regulation is associated with osteoarthritis. Am J Hum Genet 78:793–803. https://doi.org/10.1086/503849

    Article  CAS  Google Scholar 

  17. Daghestani HN, Kraus VB (2015) Inflammatory biomarkers in osteoarthritis. Osteoarthr Cartil 23:1890–1896. https://doi.org/10.1016/j.joca.2015.02.009

    Article  CAS  Google Scholar 

  18. Wan Y, Su Y, Zhu X, Liu G, Fan C (2013) Development of electrochemical immunosensors towards point of care diagnostics. Biosens Bioelectron 47:1–11. https://doi.org/10.1016/j.bios.2013.02.045

    Article  CAS  Google Scholar 

  19. Wang Z, Nautiyal A, Huang X, He R, Dong P (2021) Identification of human coronavirus: an overview on conventional, newly developed and alternative methods. ES Food Agrofor 3:4–16. https://doi.org/10.30919/esfaf437

  20. Zhang M, Adkins M, Wang Z (2021) Recent progress on semiconductor-interface facing clinical biosensing. Sensors 21:3467. https://doi.org/10.3390/s21103467

    Article  CAS  Google Scholar 

  21. Vanova V et al (2021) Peptide-based electrochemical biosensors utilized for protein detection. Biosens Bioelectron 180:113087. https://doi.org/10.1016/j.bios.2021.113087

    Article  CAS  Google Scholar 

  22. Zhang Y et al (2018) Point-of-care determination of acetaminophen levels with multi-hydrogen bond manipulated single-molecule recognition (eMuHSiR). Anal Chem 90:4733–4740. https://doi.org/10.1021/acs.analchem.7b05361

    Article  CAS  Google Scholar 

  23. Motabar D, Li J, Payne GF, Bentley WE (2021) Mediated electrochemistry for redox-based biological targeting: entangling sensing and actuation for maximizing information transfer. Curr Opin Biotech 71:137–144. https://doi.org/10.1016/j.copbio.2021.07.017

    Article  CAS  Google Scholar 

  24. Raziq A et al (2021) Development of a portable MIP-based electrochemical sensor for detection of SARS-CoV-2 antigen. Biosens Bioelectron 178:113029. https://doi.org/10.1016/j.bios.2021.113029

    Article  CAS  Google Scholar 

  25. Bogomolova A et al (2009) Challenges of electrochemical impedance spectroscopy in protein biosensing. Anal Chem 81:3944–3949. https://doi.org/10.1021/ac9002358

    Article  CAS  Google Scholar 

  26. Magar HS, Hassan RY, Mulchandani A (2021) Electrochemical impedance spectroscopy (EIS): principles, construction, and biosensing applications. Sensors-Basel 21:6578. https://doi.org/10.3390/s21196578

    Article  CAS  Google Scholar 

  27. Grossi M, Riccò B (2017) Electrical impedance spectroscopy (EIS) for biological analysis and food characterization: a review. J Sens Sens Syst 6:303–325. https://doi.org/10.5194/jsss-6-303-2017

    Article  Google Scholar 

  28. Wang C, Deng ZX, Zhang GH, Fan SS, Li YD (2002) Synthesis of nanocrystalline TiO2 in alcohols. Powder Technol 125:39–44. https://doi.org/10.1016/S0032-5910(01)00523-X

    Article  CAS  Google Scholar 

  29. Deng ZX, Wang C, Sun XM, Li YD (2002) Structure-directing coordination template effect of ethylenediamine in formations of ZnS and ZnSe nanocrystallites via solvothermal route. Inorg Chem 41:869–873. https://doi.org/10.1021/ic0103502

    Article  CAS  Google Scholar 

  30. Chen X, Deng ZX, Li YP, Li YD (2002) Hydrothermal synthesis and superparamagnetic behaviors of a series of ferrite nanoparticles. Chinese J Inorg Chem 18:460–464

    CAS  Google Scholar 

  31. Li Y, Wang X, Dong YC, Zhu JW (2002) Hydrothermal synthesis of zeolites from natural stellerite. T Nonferr Metal Soc 12:321–325

    Google Scholar 

  32. Zhang X, Chan-Yu-King R, Jose A, Manohar SK (2004) Nanofibers of polyaniline synthesized by interfacial polymerization. Synth Met 145:23. https://doi.org/10.1016/j.synthmet.2004.03.012

    Article  CAS  Google Scholar 

  33. Zhang X, Goux WJ, Manohar SK (2004) Synthesis of polyaniline nanofibers by “nanofiber seeding.” J Am Chem Soc 126:4502. https://doi.org/10.1021/ja031867a

    Article  CAS  Google Scholar 

  34. Zhang X, Manohar SK (2004) Polyaniline nanofibers: chemical synthesis using surfactants. Chem Commun 20:2360. https://doi.org/10.1039/b409309g

    Article  CAS  Google Scholar 

  35. Kolla HS, Surwade SP, Zhang X, MacDiarmid AG, Manohar SK (2005) Absolute molecular weight of polyaniline. J Am Chem Soc 127:16770–16771. https://doi.org/10.1021/ja055327k

    Article  CAS  Google Scholar 

  36. Taşaltın C, Türkmen TA, Taşaltın N, Karakuş S (2021) Highly sensitive non-enzymatic electrochemical glucose biosensor based on PANI: β12 borophene. J Mater Sci Mater Electron 32:10750–10760. https://doi.org/10.1007/s10854-021-05732-w

    Article  CAS  Google Scholar 

  37. Pan X, Kan J, Yuan L (2004) Polyaniline glucose oxidase biosensor prepared with template process. Sens Actuators B Chem 102:325–330. https://doi.org/10.1016/j.snb.2004.04.090

    Article  CAS  Google Scholar 

  38. Chang H, Yuan Y, Shi N, Guan Y (2007) Electrochemical DNA biosensor based on conducting polyaniline nanotube array. Anal Chem 79:5111–5115. https://doi.org/10.1021/ac070639m

    Article  CAS  Google Scholar 

  39. Dhand C, Das M, Datta M, Malhotra B (2011) Recent advances in polyaniline based biosensors. Biosens Bioelectron 26:2811–2821. https://doi.org/10.1016/j.bios.2010.10.017

    Article  CAS  Google Scholar 

  40. Kazemi F, Naghib SM, Zare Y, Rhee KY (2021) Biosensing applications of polyaniline (PANI)-based nanocomposites: a review. Polym Rev 61:553–597. https://doi.org/10.1080/15583724.2020.1858871

    Article  CAS  Google Scholar 

  41. Lai J, Yi Y, Zhu P, Shen J, Wu K, Zhang L, Liu J (2016) Polyaniline-based glucose biosensor: a review. J Electroanal Chem 782:138–153. https://doi.org/10.1016/j.jelechem.2016.10.033

    Article  CAS  Google Scholar 

  42. Zhao Z, Huang C, Huang Z, Lin F, He Q, Tao D, Guo Z (2021) Advancements in electrochemical biosensing for respiratory virus detection: a review. TrAC Trends Anal Chem 139:116253. https://doi.org/10.1016/j.trac.2021.116253

    Article  CAS  Google Scholar 

  43. Min J, Sempionatto JR, Teymourian H, Wang J, Gao W (2021) Wearable electrochemical biosensors in North America. Biosens Bioelectron 172:112750. https://doi.org/10.1016/j.bios.2020.112750

    Article  CAS  Google Scholar 

  44. Singh A, Sharma A, Ahmed A, Sundramoorthy AK, Furukawa H, Arya S, Khosla A (2021) Recent advances in electrochemical biosensors: applications, challenges, and future scope. Biosensors 11:336. https://doi.org/10.3390/bios11090336

    Article  CAS  Google Scholar 

  45. Baba A, Tian S, Stefani F, Xia C, Wang Z, Advincula RC, Johannsmann D, Knoll W (2004) Electropolymerization and doping/dedoping properties of polyaniline thin films as studied by electrochemical-surface plasmon spectroscopy and by the quartz crystal microbalance. J Electroanal Chem 562:95–103. https://doi.org/10.1016/j.jelechem.2003.08.012

    Article  CAS  Google Scholar 

  46. Wang Z, Sun C, Vegesna G, Liu H, Liu Y, Li J, Zeng X (2013) Glycosylated aniline polymer sensor: amine to imine conversion on protein-carbohydrate binding. Biosens Bioelectron. https://doi.org/10.1016/j.bios.2013.02.030

    Article  Google Scholar 

  47. Wang Z, Nautiyal A, Alexopoulos C, Aqrawi R, Huang X, Ali A, Lawson KE, Riley K, Adamczyk AJ, Dong P, Zhang X (2022) Fentanyl assay derived from intermolecular interaction-enabled small molecule recognition (iMSR) with differential impedance analysis for point-of-care testing. Anal Chem 94:9242–9251. https://doi.org/10.1021/acs.analchem.2c00017

    Article  CAS  Google Scholar 

  48. Bednarczyk K et al (2021) Effect of polyaniline content and protonating dopants on electroconductive composites. Sci Rep 11:7487. https://doi.org/10.1038/s41598-021-86950-4

    Article  CAS  Google Scholar 

  49. Jamadade VS, Dhawale DS, Lokhande CD (2010) Studies on electrosynthesized leucoemeraldine, emeraldine and pernigraniline forms of polyaniline films and their supercapacitive behavior. Synth Met 160:955–960. https://doi.org/10.1016/j.synthmet.2010.02.007

    Article  CAS  Google Scholar 

  50. Martínez-Sánchez B, Cazorla-Amorós D, Morallón E (2020) Tailoring intrinsic properties of polyaniline by functionalization with phosphonic groups. Polymers 12:2820. https://doi.org/10.3390/polym12122820

    Article  CAS  Google Scholar 

  51. Andriianova AN, Biglova YN, Mustafin AG (2020) Effect of structural factors on the physicochemical properties of functionalized polyanilines. RSC Adv 10:7468–7491. https://doi.org/10.1039/C9RA08644G

    Article  CAS  Google Scholar 

  52. Shaikh MO, Srikanth B, Zhu P-Y, Chuang C-H (2019) Impedimetric immunosensor utilizing polyaniline/gold nanocomposite-modified screen-printed electrodes for early detection of chronic kidney disease. Sensors-Basel 19:3990. https://doi.org/10.3390/s19183990

    Article  CAS  Google Scholar 

  53. Felix FS, Angnes L (2018) Electrochemical immunosensors – a powerful tool for analytical applications. Biosens Bioelectron 102:470–478. https://doi.org/10.1016/j.bios.2017.11.029

    Article  CAS  Google Scholar 

  54. Moina C, Ybarra G (2012) Fundamentals and applications of immunosensors. Advances in immunoassay technology 65–80

  55. Singh R, Suni II (2010) Minimizing nonspecific adsorption in protein biosensors that utilize electrochemical impedance spectroscopy. J Electrochem Soc 157:J334. https://doi.org/10.1149/1.3478635

    Article  CAS  Google Scholar 

  56. Lisdat F, Schäfer D (2008) The use of electrochemical impedance spectroscopy for biosensing. Anal Bioanal Chem 391:1555. https://doi.org/10.1007/s00216-008-1970-7

    Article  CAS  Google Scholar 

  57. Baltrūnas G, Valiūnienė A, Vienožinskis J, Gaidamauskas E, Jankauskas T, Margarian Ž (2008) Electrochemical gold deposition from sulfite solution: application for subsequent polyaniline layer formation. J Appl Electrochem 38:1519–1526. https://doi.org/10.1007/s10800-008-9596-1

    Article  CAS  Google Scholar 

  58. Hanaor DAH, Ghadiri M, Chrzanowski W, Gan Y (2014) Scalable surface area characterization by electrokinetic analysis of complex anion adsorption. Langmuir 30:15143–15152. https://doi.org/10.1021/la503581e

    Article  CAS  Google Scholar 

  59. Weber TW, Chakravorti RK (1974) Pore and solid diffusion models for fixed-bed adsorbers. AIChE J 20:228–238. https://doi.org/10.1002/aic.690200204

    Article  CAS  Google Scholar 

  60. The Emerging Risk Factors Collaboration (2010) Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet 375:2215–2222. https://doi.org/10.1016/S0140-6736(10)60484-9

    Article  CAS  Google Scholar 

  61. Willson C (2018) The clinical toxicology of caffeine: a review and case study. Toxicol Rep 5:1140–1152. https://doi.org/10.1016/j.toxrep.2018.11.002

    Article  CAS  Google Scholar 

  62. Rehman T, Shabbir MA, Inam-Ur-Raheem M, Manzoor MF, Ahmad N, Liu ZW, Ahmad MH, Siddeeg A, Abid M, Aadil RM (2020) Cysteine and homocysteine as biomarker of various diseases. Food Sci Nutr 8:4696–4707. https://doi.org/10.1002/fsn3.1818

    Article  CAS  Google Scholar 

  63. Poklis J, Poklis A, Wolf C, Mainland M, Hair L, Devers K, Chrostowski L, Arbefeville E, Merves M, Pearson J (2015) Postmortem tissue distribution of acetyl fentanyl, fentanyl and their respective nor-metabolites analyzed by ultrahigh performance liquid chromatography with tandem mass spectrometry. Forensic Sci Int 257:435–441. https://doi.org/10.1016/j.forsciint.2015.10.021

    Article  CAS  Google Scholar 

  64. Hagel AF, Albrecht H, Dauth W, Hagel W, Vitali F, Ganzleben I, Schultis HW, Konturek PC, Stein J, Neurath MF, Raithel M (2018) Plasma concentrations of ascorbic acid in a cross section of the German population. J Int Med Res 46:168–174. https://doi.org/10.1177/0300060517714387

    Article  CAS  Google Scholar 

  65. Desideri G, Castaldo G, Lombardi A, Mussap M, Testa A, Pontremoli R, Punzi L, Borghi C (2014) Is it time to revise the normal range of serum uric acid levels? Eur Rev Med Pharmacol Sci 18:1295–1306

    CAS  Google Scholar 

  66. Janssen GME, Venema JF (1985) Ibuprofen: plasma concentrations in man. J Int Med Res 13:68–73. https://doi.org/10.1177/030006058501300110

    Article  CAS  Google Scholar 

  67. Soldin OP et al (2004) Serum iron, ferritin, transferrin, total iron binding capacity, hs-CRP, LDL cholesterol and magnesium in children; new reference intervals using the Dade Dimension Clinical Chemistry System. Clin Chim Acta 342:211–217. https://doi.org/10.1016/j.cccn.2004.01.002

    Article  CAS  Google Scholar 

  68. Arun A, Malrautu P, Laha A, Ramakrishna S (2021) Gelatin nanofibers in drug delivery systems and tissue engineering. Eng Sci 16:71–81 https://doi.org/10.30919/es8d527

  69. Maddodi BS, Lathashri UA, Devesh S, Rao AU, Shenoy GB, Wijerathne HT, Sooriyaperkasam N, Kumar MP (2022) Repurposing plastic wastes in non-conventional engineered wood building bricks for constructional application – a mechanical characterization using experimental and statistical analysis. Eng Sci 18:329–336, https://doi.org/10.30919/es8d696

  70. Yao F, Xie W, Ma C, Wang D, El-Bahy ZM, Helal MH, Liu H, Du A, Guo Z, Gu H (2022) Superb electromagnetic shielding polymer nanocomposites filled with 3-dimensional p-phenylenediamine/aniline copolymer nanofibers@copper foam hybrid nanofillers. Compos B Eng 245:110236. https://doi.org/10.1016/j.compositesb.2022.110236

    Article  CAS  Google Scholar 

  71. Feng Y, Li Y, Ye X, Li Z, Wang W, Liu T, Azab IHE, Mersal GAM, Ibrahim MM, El-Bahy ZM, Huang M, Guo Z (2022) Synthesis and characterization of 2,5-furandicarboxylic acid poly(butanediol sebacate-butanediol) terephthalate (PBSeT) segment copolyesters with excellent water vapor barrier and good mechanical properties. J Mater Sc 57:10997–11012. https://doi.org/10.1007/s10853-022-07269-7

    Article  CAS  Google Scholar 

Download references

Funding

This publication was made possible by the support from the Army Research Office (W911NF-18–1-0458), National Science Foundation (CHE-1832167), as well as NIH/NIAMS grants (AR075860, AR077616, and AR077226 to JS). ZW acknowledges the startup funding, REF Research grant from Oakland University and Michigan Space Grant Consortium.

Author information

Authors and Affiliations

Authors

Contributions

Zhe Wang, Jie Shen, Sidong Lei, and Pei Dong conceived the study. Zhe Wang, Fatima Bhatti, Ding Xiao, Tara Jebagu, Erin Witherspoon, and Xiaozhou Huang acquired experimental data. Sidong Lei and Pei Dong developed the array device. Zhe Wang and Jie Shen wrote the first draft of the manuscript with substantial contributions from Sidong Lei and Pei Dong. All authors edited and approved the final version of the manuscript.

Corresponding author

Correspondence to Zhe Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhatti, F., Xiao, D., Jebagu, T. et al. Semiconductive biocomposites enabled portable and interchangeable sensor for early osteoarthritis joint inflammation detection. Adv Compos Hybrid Mater 6, 33 (2023). https://doi.org/10.1007/s42114-022-00614-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-022-00614-z

Keywords

Navigation