Skip to main content

Advertisement

Log in

Synergetic effect of Ni-Au bimetal nanoparticles on urchin-like TiO2 for hydrogen and arabinose co-production by glucose photoreforming

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Biomass photoreforming is a prospective and attractive strategy to kill two birds with one stone for not only producing hydrogen (H2) but also valorizing biomass by exploiting infinite solar energy. Here, we design Ni-Au bimetal nanoparticles modified urchin-like TiO2 photocatalysts (NiAu/TiO2) and demonstrate an enhanced glucose photoreforming. The H2 production rate of the optimal Ni0.05Au0.45/TiO2 (6391.86 μmol h−1 g−1) is 118.57, 30.78, and 1.65 times of pure TiO2 (53.91 μmol h−1 g−1), Ni0.5/TiO2 (207.56 μmol h−1 g−1), and Au0.5/TiO2 (3867.12 μmol h−1 g−1), respectively. Meanwhile, the glucose conversion rate and the corresponding arabinose selectivity over Ni0.05Au0.45/TiO2 are up to 95.00% and 36.54% after 4-h photoreforming, which are higher than the corresponding monometallic and pristine TiO2. The synergistic effect of Ni and Au nanoparticles, including the localized surface plasmon resonance (LSPR) and Schottky junction of Au nanoparticles and the promoting effect of Ni particles on C–C cleavage in glucose, as well as the three-dimensional hierarchical urchin-like TiO2, significantly improve the H2 production, glucose conversion, and arabinose selectivity. The research paves a new way to the great potential of bimetal nanoparticles in biomass photoreforming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhao H, Li CF, Yong X, Kumar P, Palma B, Hu ZY, Van Tendeloo G, Siahrostami S, Larter S, Zheng D, Wang S, Chen Z, Kibria MG, Hu J (2021) Coproduction of hydrogen and lactic acid from glucose photocatalysis on band-engineered Zn1-xCdxS homojunction. iScience 24:102109–102120. https://doi.org/10.1016/j.isci.2021.102109

    Article  CAS  Google Scholar 

  2. Pan D, Su F, Liu H, Liu C, Umar A, Castañeda L, Algadi H, Wang C, Guo Z (2021) Research progress on catalytic pyrolysis and reuse of waste plastics and petroleum sludge. ES Mater Manuf 11:3–15. https://doi.org/10.30919/esmm5f415

  3. Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ Jr, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T (2006) The path forward for biofuels and biomaterials. Science 311:484–489. https://doi.org/10.1126/science.1114736

    Article  CAS  Google Scholar 

  4. Zhao H, Liu P, Wu X, Wang A, Zheng D, Wang S, Chen Z, Larter S, Li Y, Su B-L, Kibria MG, Hu J (2021) Plasmon enhanced glucose photoreforming for arabinose and gas fuel co-production over 3DOM TiO2-Au. Appl Catal B Environ 291:120055–120064. https://doi.org/10.1016/j.apcatb.2021.120055

    Article  CAS  Google Scholar 

  5. Kuehnel MF, Reisner E (2018) Solar hydrogen generation from lignocellulose. Angew Chem Int Ed Engl 57:3290–3296. https://doi.org/10.1002/anie.201710133

    Article  CAS  Google Scholar 

  6. Caravaca A, Jones W, Hardacre C, Bowker M (2016) H2 production by the photocatalytic reforming of cellulose and raw biomass using Ni, Pd, Pt and Au on titania. Proc Math Phys Eng Sci 472:20160054–20160065. https://doi.org/10.1098/rspa.2016.0054

    Article  CAS  Google Scholar 

  7. Liu WJ, Xu Z, Zhao D, Pan XQ, Li HC, Hu X, Fan ZY, Wang WK, Zhao GH, Jin S, Huber GW, Yu HQ (2020) Efficient electrochemical production of glucaric acid and H2 via glucose electrolysis. Nat Commun 11:265–276. https://doi.org/10.1038/s41467-019-14157-3

    Article  CAS  Google Scholar 

  8. Zhang Z, Huber GW (2018) Catalytic oxidation of carbohydrates into organic acids and furan chemicals. Chem Soc Rev 47:1351–1390. https://doi.org/10.1039/c7cs00213k

    Article  CAS  Google Scholar 

  9. Zhang P, Sun D, Cho A, Weon S, Lee S, Lee J, Han JW, Kim DP, Choi W (2019) Modified carbon nitride nanozyme as bifunctional glucose oxidase-peroxidase for metal-free bioinspired cascade photocatalysis. Nat Commun 10:940–954. https://doi.org/10.1038/s41467-019-08731-y

    Article  CAS  Google Scholar 

  10. Zhou B, Song J, Wu T, Liu H, Xie C, Yang G, Han B (2016) Simultaneous and selective transformation of glucose to arabinose and nitrosobenzene to azoxybenzene driven by visible-light. Green Chem 18:3852–3857. https://doi.org/10.1039/c6gc00943c

    Article  CAS  Google Scholar 

  11. Sanwald KE, Berto TF, Eisenreich W, Jentys A, Gutiérrez OY, Lercher JA (2017) Overcoming the rate-limiting reaction during photoreforming of sugar aldoses for H2-generation. ACS Catal 7:3236–3244. https://doi.org/10.1021/acscatal.7b00508

    Article  CAS  Google Scholar 

  12. Chong R, Li J, Ma Y, Zhang B, Han H, Li C (2014) Selective conversion of aqueous glucose to value-added sugar aldose on TiO2-based photocatalysts. J Catal 314:101–108. https://doi.org/10.1016/j.jcat.2014.03.009

    Article  CAS  Google Scholar 

  13. Zhao Y, Zeng Q, Feng T, Xia C, Liu C, Yang F, Zhang K, Yang B (2019) Carbonized polymer dots/TiO2 photonic crystal heterostructures with enhanced light harvesting and charge separation for efficient and stable photocatalysis. Mater Chem Front 3:2659–2667. https://doi.org/10.1039/c9qm00556k

    Article  CAS  Google Scholar 

  14. Silva CG, Sampaio MJ, Marques RRN, Ferreira LA, Tavares PB, Silva AMT, Faria JL (2015) Photocatalytic production of hydrogen from methanol and saccharides using carbon nanotube-TiO2 catalysts. Appl Catal B Environ 178:82–90. https://doi.org/10.1016/j.apcatb.2014.10.032

    Article  CAS  Google Scholar 

  15. Yu X, Fan X, An L, Liu G, Li Z, Liu J, Hu P (2018) Mesocrystalline Ti3+ TiO2 hybridized g-C3N4 for efficient visible-light photocatalysis. Carbon 128:21–30. https://doi.org/10.1016/j.carbon.2017.11.078

    Article  CAS  Google Scholar 

  16. Roongraung K, Chuangchote S, Laosiripojana N, Sagawa T (2020) Electrospun Ag-TiO2 nanofibers for photocatalytic glucose conversion to high-value chemicals. ACS Omega 5:5862–5872. https://doi.org/10.1021/acsomega.9b04076

    Article  CAS  Google Scholar 

  17. Luna AL, Dragoe D, Wang K, Beaunier P, Kowalska E, Ohtani B, Bahena Uribe D, Valenzuela MA, Remita H, Colbeau-Justin C (2017) Photocatalytic hydrogen evolution using Ni–Pd/TiO2: correlation of light absorption, charge-carrier dynamics, and quantum efficiency. J Phy Chem C 121:14302–14311. https://doi.org/10.1021/acs.jpcc.7b01167

    Article  CAS  Google Scholar 

  18. Shi C, Yuan W, Qu K, Shi J, Eqi M, Tan X, Huang Z, Gándara F, Pan D, Naik N, Zhang Y, Guo Z (2021) Gold/titania nanorod assembled urchin-like photocatalysts with an enhanced hydrogen generation by photocatalytic biomass reforming. Eng Sci 16:374–386. https://doi.org/10.30919/es8d478

    Article  CAS  Google Scholar 

  19. Zhao H, Li CF, Liu LY, Palma B, Hu ZY, Renneckar S, Larter S, Li Y, Kibria MG, Hu J, Su BL (2021) n-p Heterojunction of TiO2-NiO core-shell structure for efficient hydrogen generation and lignin photoreforming. J Colloid Interface Sci 585:694–704. https://doi.org/10.1016/j.jcis.2020.10.049

    Article  CAS  Google Scholar 

  20. Davda RR, Shabaker JW, Huber GW, Cortright RD, Dumesic JA (2005) A review of catalytic issues and process conditions for renewable hydrogen and alkanes by aqueous-phase reforming of oxygenated hydrocarbons over supported metal catalysts. Appl Catal B Environ 56:171–186. https://doi.org/10.1016/j.apcatb.2004.04.027

    Article  CAS  Google Scholar 

  21. Zhang J, Zhu Y, An Z, Shu X, Ma X, Song H, Wang W, He J (2020) Size effects of Ni particles on the cleavage of C-H and C–C bonds toward hydrogen production from cellulose. ACS Appl Energy Mater 3:7048–7057. https://doi.org/10.1021/acsaem.0c01104

    Article  CAS  Google Scholar 

  22. Kalisman P, Houben L, Aronovitch E, Kauffmann Y, Bar-Sadan M, Amirav L (2015) The golden gate to photocatalytic hydrogen production. J Mater Chem A 3:19679–19682. https://doi.org/10.1039/c5ta05784a

    Article  CAS  Google Scholar 

  23. Zheng X, Shen G, Wang C, Li Y, Dunphy D, Hasan T, Brinker CJ, Su BL (2017) Bio-inspired murray materials for mass transfer and activity. Nat Commun 8:14921–14930. https://doi.org/10.1038/ncomms14921

    Article  CAS  Google Scholar 

  24. Tudu B, Nalajala N, Saikia P, Gopinath CS (2020) Cu–Ni Bimetal Integrated TiO2 Thin film for enhanced solar hydrogen generation. Sol RRL 4:1900557–1900567. https://doi.org/10.1002/solr.201900557

    Article  CAS  Google Scholar 

  25. Wang Y, Zhang S, Huang C, Qu F, Yao D, Guo H, Xu H, Jiang C, Yang M (2021) Mesoporous WO3 modified by Au nanoparticles for enhanced trimethylamine gas sensing properties. Dalton Trans 50:970–978

    Article  CAS  Google Scholar 

  26. Wang Y, Zhang S, Huang C, Qu F, Yao D, Guo H, Xu H, Jiang C, Yang M (2021) Mesoporous WO3 modified by Au nanoparticles for enhanced trimethylamine gas sensing properties. Dalton T 50:970–978. https://doi.org/10.1039/d0dt03131c

    Article  CAS  Google Scholar 

  27. Yu X, Fan X, Li Z, Liu J (2017) Synthesis of plasmonic Ti3+ doped Au/Cl-TiO2 mesocrystals with enhanced visible light photocatalytic activity. Dalton T 46:11898–11904. https://doi.org/10.1039/c7dt02824e

    Article  CAS  Google Scholar 

  28. Yu Y, Dong X, Chen P, Geng Q, Wang H, Li J, Zhou Y, Dong F (2021) Synergistic effect of Cu single atoms and Au-Cu alloy nanoparticles on TiO2 for efficient CO2 photoreduction. ACS Nano 15:14453–14464. https://doi.org/10.1021/acsnano.1c03961

    Article  CAS  Google Scholar 

  29. Qin L, Si G, Li X, Kang S-Z (2015) Synergetic effect of Cu–Pt bimetallic cocatalyst on SrTiO3 for efficient photocatalytic hydrogen production from water. RSC Adv 5:102593–102598. https://doi.org/10.1039/c5ra22757g

    Article  CAS  Google Scholar 

  30. Patra KK, Gopinath CS (2016) Bimetallic and plasmonic Ag-Au on TiO2 for solar water splitting: an active nanocomposite for entire visible-light-region absorption. ChemCatChem 8:3294–3311. https://doi.org/10.1002/cctc.201600937

    Article  CAS  Google Scholar 

  31. Bharad PA, Sivaranjani K, Gopinath CS (2015) A rational approach towards enhancing solar water splitting: a case study of Au-RGO/N-RGO-TiO2. Nanoscale 7:11206–11215. https://doi.org/10.1039/c5nr02613j

    Article  CAS  Google Scholar 

  32. Sivaranjani K, RajaAmbal S, Das T, Roy K, Bhattacharyya S, Gopinath CS (2014) Disordered mesoporous TiO2−xNx nano-Au: an electronically integrated nanocomposite for solar H2 generation. ChemCatChem 6:522–530. https://doi.org/10.1002/cctc.201300715

    Article  CAS  Google Scholar 

  33. Tudu B, Nalajala N, Reddy KP, Saikia P, Gopinath CS (2019) Electronic integration and thin film aspects of Au-Pd/rGO/TiO2 for improved solar hydrogen generation. ACS Appl Mater Interfaces 11:32869–32878. https://doi.org/10.1021/acsami.9b07070

    Article  CAS  Google Scholar 

  34. Yan Y, Xia BY, Zhao B, Wang X (2016) A review on noble-metal-free bifunctional heterogeneous catalysts for overall electrochemical water splitting. J Mater Chem A 4:17587–17603. https://doi.org/10.1039/c6ta08075h

    Article  CAS  Google Scholar 

  35. Xu J, Li M, Yang L, Qiu J, Chen Q, Zhang X, Feng Y, Yao J (2020) Synergy of Ni dopant and oxygen vacancies in ZnO for efficient photocatalytic depolymerization of sodium lignosulfonate. Chem Eng J 394:125050–125070. https://doi.org/10.1016/j.cej.2020.125050

    Article  CAS  Google Scholar 

  36. Jiang B, Tang Y, Qu Y, Wang JQ, Xie Y, Tian C, Zhou W, Fu H (2015) Thin carbon layer coated Ti3+-TiO2 nanocrystallites for visible-light driven photocatalysis. Nanoscale 7:5035–5045. https://doi.org/10.1039/c5nr00032g

    Article  CAS  Google Scholar 

  37. Fang W, Xing M, Zhang J (2014) A new approach to prepare Ti3+ self-doped TiO2 via NaBH4 reduction and hydrochloric acid treatment. Appl Catal B Environ 160:240–246. https://doi.org/10.1016/j.apcatb.2014.05.031

    Article  CAS  Google Scholar 

  38. Xing M, Fang W, Nasir M, Ma Y, Zhang J, Anpo M (2013) Self-doped Ti3+ -enhanced TiO2 nanoparticles with a high-performance photocatalysis. J Catal 297:236–243. https://doi.org/10.1016/j.jcat.2012.10.014

    Article  CAS  Google Scholar 

  39. Guo F, Sun H, Cheng L, Shi W (2020) Oxygen-defective ZnO porous nanosheets modified by carbon dots to improve their visible-light photocatalytic activity and gain mechanistic insight. New J Chem 44:11215–11223. https://doi.org/10.1039/d0nj02268c

    Article  CAS  Google Scholar 

  40. Geng Z, Kong X, Chen W, Su H, Liu Y, Cai F, Wang G, Zeng J (2018) Oxygen vacancies in ZnO nanosheets enhance CO2 electrochemical reduction to CO. Angew Chem Int Ed Engl 57:6054–6059. https://doi.org/10.1002/anie.201711255

    Article  CAS  Google Scholar 

  41. Nowotny J, Alim MA, Bak T, Idris MA, Ionescu M, Prince K, Sahdan MZ, Sopian K, Mat Teridi MA, Sigmund W (2015) Defect chemistry and defect engineering of TiO2-based semiconductors for solar energy conversion. Chem Soc Rev 44:8424–8442. https://doi.org/10.1039/c4cs00469h

    Article  CAS  Google Scholar 

  42. Zhang B, Wang L, Zhang Y, Ding Y, Bi Y (2018) Ultrathin FeOOH nanolayers with abundant oxygen vacancies on BiVO4 photoanodes for efficient water oxidation. Angew Chem Int Ed Engl 57:2248–2252. https://doi.org/10.1002/anie.201712499

    Article  CAS  Google Scholar 

  43. Zhang Y, Xu Z, Li G, Huang X, Hao W, Bi Y (2019) Direct observation of oxygen vacancy self-healing on TiO2 photocatalysts for solar water splitting. Angew Chem Int Ed Engl 58:14229–14233. https://doi.org/10.1002/anie.201907954

    Article  CAS  Google Scholar 

  44. Li C, Wang T, Zhao ZJ, Yang W, Li JF, Li A, Yang Z, Ozin GA, Gong J (2018) Promoted fixation of molecular nitrogen with surface oxygen vacancies on plasmon-enhanced TiO2 photoelectrodes. Angew Chem Int Ed Engl 57:5278–5282. https://doi.org/10.1002/anie.201713229

    Article  CAS  Google Scholar 

  45. Yu H, Li J, Zhang Y, Yang S, Han K, Dong F, Ma T, Huang H (2019) Three-in-one oxygen vacancies: whole visible-spectrum absorption, efficient charge separation, and surface site activation for robust CO2 photoreduction. Angew Chem Int Ed Engl 58:3880–3884. https://doi.org/10.1002/anie.201813967

    Article  CAS  Google Scholar 

  46. Chowdhury IH, Roy M, Kundu S, Naskar MK (2019) TiO2 hollow microspheres impregnated with biogenic gold nanoparticles for the efficient visible light-induced photodegradation of phenol. J Phys Chem Solids 129:329–339. https://doi.org/10.1016/j.jpcs.2019.01.036

    Article  CAS  Google Scholar 

  47. Kang F, Shi C, Li W, Eqi M, Liu Z, Zheng X, Huang Z (2022) Honeycomb like CdS/sulphur-modified biochar composites with enhanced adsorption-photocatalytic capacity for effective removal of rhodamine B. J Environ Chem Eng 10:106942–106953. https://doi.org/10.1016/j.jece.2021.106942

    Article  CAS  Google Scholar 

  48. Lin Z, Du C, Yan B, Wang C, Yang G (2018) Two-dimensional amorphous NiO as a plasmonic photocatalyst for solar H2 evolution. Nat Commun 9:4036

    Article  Google Scholar 

  49. Vinesh V, Shaheer ARM, Neppolian B (2019) Reduced graphene oxide (rGO) supported electron deficient B-doped TiO2 (Au/B-TiO2/rGO) nanocomposite: an efficient visible light sonophotocatalyst for the degradation of tetracycline (TC). Ultrason Sonochem 50:302–310. https://doi.org/10.1016/j.ultsonch.2018.09.030

    Article  CAS  Google Scholar 

  50. Makula P, Pacia M, Macyk W (2018) How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV-Vis spectra. J Phys Chem Lett 9:6814–6817. https://doi.org/10.1021/acs.jpclett.8b02892

    Article  CAS  Google Scholar 

  51. Valan MF, Manikandan A, Antony SA (2015) A novel synthesis and characterization studies of magnetic Co3O4 nanoparticles. J Nanosci Nanotechnol 15:4580–4586. https://doi.org/10.1166/jnn.2015.9776

    Article  CAS  Google Scholar 

  52. Quesada-Cabrera R, Sotelo-Vazquez C, Bear JC, Darr JA, Parkin IP (2014) Photocatalytic evidence of the rutile-to-anatase electron transfer in titania. Adv Mater Interfaces 1:1400069–1400076. https://doi.org/10.1002/admi.201400069

    Article  CAS  Google Scholar 

  53. Nosaka Y, Nosaka AY (2016) Reconsideration of intrinsic band alignments within anatase and rutile TiO2. J Phys Chem Lett 7:431–434. https://doi.org/10.1021/acs.jpclett.5b02804

    Article  CAS  Google Scholar 

  54. Scanlon DO, Dunnill CW, Buckeridge J, Shevlin SA, Logsdail AJ, Woodley SM, Catlow CR, Powell MJ, Palgrave RG, Parkin IP, Watson GW, Keal TW, Sherwood P, Walsh A, Sokol AA (2013) Band alignment of rutile and anatase TiO2. Nat Mater 12:798–801. https://doi.org/10.1038/nmat3697

    Article  CAS  Google Scholar 

  55. Zhao H, Yu X, Li C-F, Yu W, Wang A, Hu Z-Y, Larter S, Li Y, Golam Kibria M, Hu J (2022) Carbon quantum dots modified TiO2 composites for hydrogen production and selective glucose photoreforming. J Energy Chem 64:201–208. https://doi.org/10.1016/j.jechem.2021.04.033

    Article  CAS  Google Scholar 

  56. Di J, Xia J, Yin S, Xu H, Xu L, Xu Y, He M, Li H (2014) Preparation of sphere-like g-C3N4/BiOI photocatalysts via a reactable ionic liquid for visible-light-driven photocatalytic degradation of pollutants. J Mater Chem A 2:5340–5351. https://doi.org/10.1039/c3ta14617k

    Article  CAS  Google Scholar 

  57. Yang M-Q, Han C, Xu Y-J (2015) Insight into the effect of highly dispersed MoS2 versus layer-structured MoS2 on the photocorrosion and photoactivity of CdS in graphene–CdS–MoS2 composites. J Phys Chem C 119:27234–27246. https://doi.org/10.1021/acs.jpcc.5b08016

    Article  CAS  Google Scholar 

  58. Shi C, Qi H, Sun Z, Qu K, Huang Z, Li J, Dong M, Guo Z (2020) Carbon dot-sensitized urchin-like Ti3+ self-doped TiO2 photocatalysts with enhanced photoredox ability for highly efficient removal of Cr6+ and RhB. J Mate Chem C 8:2238–2247. https://doi.org/10.1039/c9tc05513d

    Article  CAS  Google Scholar 

  59. Bai Y, Ye L, Chen T, Wang L, Shi X, Zhang X, Chen D (2016) Facet-dependent photocatalytic N2 fixation of bismuth-rich Bi5O7I nanosheets. ACS Appl Mater Interfaces 8:27661–27668. https://doi.org/10.1021/acsami.6b08129

    Article  CAS  Google Scholar 

  60. Abdouli I, Eternot M, Dappozze F, Guillard C, Essayem N (2021) Comparison of hydrothermal and photocatalytic conversion of glucose with commercial TiO2: superficial properties-activities relationships. Catal Today 367:268–277. https://doi.org/10.1016/j.cattod.2020.03.040

    Article  CAS  Google Scholar 

  61. Da Vià L, Recchi C, Gonzalez-Yañez EO, Davies TE, Lopez-Sanchez JA (2017) Visible light selective photocatalytic conversion of glucose by TiO2. Appl Catal B Environ 202:281–288. https://doi.org/10.1016/j.apcatb.2016.08.035

    Article  CAS  Google Scholar 

  62. Chen W-T, Chan A, Sun-Waterhouse D, Llorca J, Idriss H, Waterhouse GIN (2018) Performance comparison of Ni/TiO2 and Au/TiO2 photocatalysts for H2 production in different alcohol-water mixtures. J Catal 367:27–42. https://doi.org/10.1016/j.jcat.2018.08.015

    Article  CAS  Google Scholar 

  63. Bellardita M, García-López EI, Marcì G, Palmisano L (2016) Photocatalytic formation of H2 and value-added chemicals in aqueous glucose (Pt)-TiO2 suspension. Int J Hydrogen Energ 41:5934–5947. https://doi.org/10.1016/j.ijhydene.2016.02.103

    Article  CAS  Google Scholar 

  64. Bahadori E, Ramis G, Zanardo D, Menegazzo F, Signoretto M, Gazzoli D, Pietrogiacomi D, Michele AD, Rossetti I (2020) Photoreforming of glucose over CuO/TiO2. Catalysts 10:477–497. https://doi.org/10.3390/catal10050477

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 32071713), the Outstanding Youth Foundation Project of Heilongjiang Province (No. JQ2019C001), the Natural Science Basic Research Program of Shaanxi (Grant No. 2022JQ-441), and the Central University Basic Scientifc Research Project of China (No. 2572020DX01).

Author information

Authors and Affiliations

Authors

Contributions

Malin Eqi and Cai Shi wrote the main manuscript text; Jiajing Xie, Fuyan Kang, Houjuan Qi, and Xushen Tan prepared Scheme 1, Figs. 18, and Figs. S1S4. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Zhanhua Huang, Junli Liu or Jiang Guo.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Malin Eqi and Cai Shi contributed equally to this work.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 166 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eqi, M., Shi, C., Xie, J. et al. Synergetic effect of Ni-Au bimetal nanoparticles on urchin-like TiO2 for hydrogen and arabinose co-production by glucose photoreforming. Adv Compos Hybrid Mater 6, 5 (2023). https://doi.org/10.1007/s42114-022-00580-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-022-00580-6

Keywords

Navigation