Skip to main content
Log in

Bicontinuous laminated structure design of polypropylene/reduced graphene oxide hybrid films for thermal management

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

As modern electronic equipment is gradually miniaturized and functionalized, highly thermally conductive composites have been attracted much attention. The polypropylene/partially reduced graphene oxide (PP/rGO) hybrid films with bicontinuous laminated structure were prepared by a facile method. The in-plane thermal conductivity (TC) of PP hybrid film is as high as 12.75 W·m−1·K−1, which is better than most reported values (< 10 W·m−1·K−1). The good thermal conductivity is due to alternate multi-layered structure, rGO’s alignment, and effective interface interaction between layers. The influence of rGO layers’ number and thickness on thermal conductivity and mechanical properties of hybrid films was investigated systematically. Combined with good flexibility and passable mechanical properties, it has a bright future in practical application.

Graphical abstract

The flexible PP/rGO films with bicontinuous laminated structure exhibit excellent thermal conductivity and good mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jia L-C, Jin Y-F, Ren J-W et al (2021) Highly thermally conductive liquid metal-basedcomposites with superior thermostability forthermal management. J Mater Chem C 9:2904–2911. https://doi.org/10.1039/d0tc05493c

    Article  CAS  Google Scholar 

  2. Bustero I, Gaztelumendi I, Obieta I et al (2020) Free-standing graphene films embedded in epoxy resin with enhanced thermal properties. Adv Compos Hybrid Mater 3(1):31–40. https://doi.org/10.1007/s42114-020-00136-6

    Article  CAS  Google Scholar 

  3. Liang C, Du Y, Wang Y et al (2021) Intumescent fire-retardant coatings for ancient wooden architectures with ideal electromagnetic interference shielding. Adv Compos Hybrid Mater 4(4):979–988. https://doi.org/10.1007/s42114-021-00274-5

    Article  CAS  Google Scholar 

  4. Han Y, Ruan K, Gu J (2022) Janus (BNNS/ANF)-(AgNWs/ANF) thermal conductivity composite films with superior electromagnetic interference shielding and Joule heating performances. Nano Res. https://doi.org/10.1007/s12274-022-4159-z

    Article  Google Scholar 

  5. Ma Z, Xiang X, Shao L et al (2022) Multifunctional wearable silver nanowire decorated leather nanocomposites for joule heating, electromagnetic interference shielding and piezoresistive sensing. Angew Chem Int Ed. https://doi.org/10.1002/anie.202200705

    Article  Google Scholar 

  6. Liang C, Liu Y, Ruan Y et al (2020) Multifunctional sponges with flexible motion sensing and outstanding thermal insulation for superior electromagnetic interference shielding. Compos A: Appl Sci Manuf. https://doi.org/10.1016/j.compositesa.2020.106143

    Article  Google Scholar 

  7. Wang Z-G, Lv J-C, Zheng Z-L et al (2021) Highly thermally conductive graphene-based thermal interface materials with a bilayer structure for central processing unit cooling. ACS Appl Mater Interfaces 13(21):25325–25333. https://doi.org/10.1021/acsami.1c01223

    Article  CAS  Google Scholar 

  8. Yang S, Xue B, Li Y et al (2020) Controllable Ag-rGO heterostructure for highly thermal conductivity in layer-by-layer nanocellulose hybrid films. Chem Eng J 383:123072. https://doi.org/10.1016/j.cej.2019.123072

    Article  CAS  Google Scholar 

  9. An D, Cheng S, Xi S et al (2020) Flexible thermal interfacial materials with covalent bond connections for improving high thermal conductivity. Chem Eng J 383:123151. https://doi.org/10.1016/j.cej.2019.123151

    Article  CAS  Google Scholar 

  10. Feng Y, Han G, Wang B et al (2020) Multiple synergistic effects of graphene-based hybrid and hexagonal born nitride in enhancing thermal conductivity and flame retardancy of epoxy. Chem Eng J 379:122402. https://doi.org/10.1016/j.cej.2019.122402

    Article  CAS  Google Scholar 

  11. Cheng H, Pan Y, Chen Q et al (2021) Ultrathin flexible poly(vinylidene fluoride)/MXene/silver nanowire film with outstanding specific EMI shielding and high heat dissipation. Adv Compos Hybrid Mater 4(3):505–513. https://doi.org/10.1007/s42114-021-00224-1

    Article  CAS  Google Scholar 

  12. Song P, Cao Z, Cai Y et al (2011) Fabrication of exfoliated graphene-based polypropylene nanocomposites with enhanced mechanical and thermal properties. Polymer 52(18):4001–4010. https://doi.org/10.1016/j.polymer.2011.06.045

    Article  CAS  Google Scholar 

  13. King JA, Johnson BA, Via MD et al (2010) Effects of carbon fillers in thermally conductive polypropylene based resins. Polym Compos 31(3):497–506. https://doi.org/10.1002/pc.20830

    Article  CAS  Google Scholar 

  14. Zhang X, Dong J, Pan D et al (2021) Constructing dual thermal conductive networks in electrospun polyimide membranes with highly thermally conductivity but electrical insulation properties. Adv Compos Hybrid Mater 4(4):1102–1112. https://doi.org/10.1007/s42114-021-00335-9

    Article  CAS  Google Scholar 

  15. Xu F, Bao D, Cui Y et al (2021) Copper nanoparticle-deposited graphite sheets for highly thermally conductive polymer composites with reduced interfacial thermal resistance. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-021-00367-1

    Article  Google Scholar 

  16. Han Y, Shi X, Yang X et al (2020) Enhanced thermal conductivities of epoxy nanocomposites via incorporating in-situ fabricated hetero-structured SiC-BNNS fillers. Compos Sci Technol 187:107944. https://doi.org/10.1016/j.compscitech.2019.107944

    Article  CAS  Google Scholar 

  17. Huang S, Wang L, Li Y et al (2021) Novel Ti3C2Tx MXene/epoxy intumescent fire-retardant coatings for ancient wooden architectures. J Appl Polym Sci 138(27):e50649. https://doi.org/10.1002/app.50649

    Article  CAS  Google Scholar 

  18. Wang S, Feng D, Guan H et al (2022) Highly efficient thermal conductivity of polydimethylsiloxane composites via introducing “Line-Plane”-like hetero-structured fillers. Compos A 157:106911. https://doi.org/10.1016/j.compositesa.2022.106911

    Article  CAS  Google Scholar 

  19. Alam FE, Dai W, Yang M et al (2017) In situ formation of a cellular graphene framework in thermoplastic composites leading to superior thermal conductivity. J Mater Chem A 5(13):6164–6169. https://doi.org/10.1039/c7ta00750g

    Article  CAS  Google Scholar 

  20. Ren Y, Guo H, Liu Y et al (2019) A trade-off study toward highly thermally conductive and mechanically robust thermoplastic composites by injection moulding. Compos Sci Technol 183:107787. https://doi.org/10.1016/j.compscitech.2019.107787

    Article  CAS  Google Scholar 

  21. Liang L, Xu P, Wang Y et al (2020) Flexible polyvinylidene fluoride film with alternating oriented graphene/Ni nanochains for electromagnetic interference shielding and thermal management. Chem Eng J 395:125209. https://doi.org/10.1016/j.cej.2020.125209

    Article  CAS  Google Scholar 

  22. Li Y, Xue B, Yang S et al (2021) Flexible multilayered films consisting of alternating nanofibrillated cellulose/Fe3O4 and carbon nanotube/polyethylene oxide layers for electromagnetic interference shielding. Chem Eng J 410:128356. https://doi.org/10.1016/j.cej.2020.128356

    Article  CAS  Google Scholar 

  23. Wu K, Wang J, Liu D et al (2020) Highly thermoconductive, thermostable, and super-flexible film by engineering 1D rigid rod-like aramid nanofiber/2D boron nitride nanosheets. Adv Mater 32(8):1906939. https://doi.org/10.1002/adma.201906939

    Article  CAS  Google Scholar 

  24. Cui S, Jiang F, Song N et al (2019) Flexible films for smart thermal management: influence of structure construction of a two-dimensional graphene network on active heat dissipation response behavior. ACS Appl Mater Interfaces 11(33):30352–30359. https://doi.org/10.1021/acsami.9b10538

    Article  CAS  Google Scholar 

  25. Gao Q, Pan Y, Zheng G et al (2021) Flexible multilayered MXene/thermoplastic polyurethane films with excellent electromagnetic interference shielding, thermal conductivity, and management performances. Adv Compos Hybrid Mater 4(2):274–285. https://doi.org/10.1007/s42114-021-00221-4

    Article  CAS  Google Scholar 

  26. Zhang Y, Ruan K, Gu J (2021) Flexible sandwich-structured electromagnetic interference shielding nanocomposite films with excellent thermal conductivities. Small 17(42):2101951. https://doi.org/10.1002/smll.202101951

    Article  CAS  Google Scholar 

  27. Guo Y, Qiu H, Ruan K et al (2021) Hierarchically multifunctional polyimide composite films with strongly enhanced thermal conductivity. Nanomicro Lett 14(1):26–26. https://doi.org/10.1007/s40820-021-00767-4

    Article  CAS  Google Scholar 

  28. Warzoha RJ, Fleischer AS (2014) Heat flow at nanoparticle interfaces. Nano Energy 6:137–158

    Article  CAS  Google Scholar 

  29. Yan H, Dai X, Ruan K et al (2021) Flexible thermally conductive and electrically insulating silicone rubber composite films with BNNS@Al2O3 fillers. Adv Compos Hybrid Mater 4(1):36–50. https://doi.org/10.1007/s42114-021-00208-1

    Article  CAS  Google Scholar 

  30. Gu J, Ruan K (2021) Breaking through bottlenecks for thermally conductive polymer composites: a perspective for intrinsic thermal conductivity, interfacial thermal resistance and theoretics. Nanomicro Lett 13(1):110. https://doi.org/10.1007/s40820-021-00640-4

    Article  CAS  Google Scholar 

  31. Zhang B, Mao P, Liang Y et al (2019) Modulating thermal transport in polymers and interfaces: theories, simulations, and experiments. ES Energy Environ 5:37–55. https://doi.org/10.30919/esee8c306

  32. Chen Q, Yan X, Wu L et al (2021) Small-nanostructure-size-limited phonon transport within composite films made of single-wall carbon nanotubes and reduced graphene oxides. ACS Appl Mater Interfaces 13(4):5435–5444. https://doi.org/10.1021/acsami.0c20551

    Article  CAS  Google Scholar 

  33. Pan X, Debije MG, Schenning APHJ et al (2021) Enhanced thermal conductivity in oriented polyvinyl alcohol/graphene oxide composites. ACS Appl Mater Interfaces 13(24):28864–28869. https://doi.org/10.1021/acsami.1c06415

    Article  CAS  Google Scholar 

  34. Chen Y, Hou X, Liao M et al (2020) Constructing a “pea-pod-like” alumina-graphene binary architecture for enhancing thermal conductivity of epoxy composite. Chem Eng J 381:122690. https://doi.org/10.1016/j.cej.2019.122690

    Article  CAS  Google Scholar 

  35. Burger N, Laachachi A, Ferriol M et al (2016) Review of thermal conductivity in composites: mechanisms, parameters and theory. Prog Polym Sci 61:1–28. https://doi.org/10.1016/j.progpolymsci.2016.05.001

    Article  CAS  Google Scholar 

  36. Statz AR, Meagher RJ, Barron AE et al (2005) New peptidomimetic polymers for antifouling surfaces. J Am Chem Soc 127(22):7972–7973. https://doi.org/10.1021/ja0522534

    Article  CAS  Google Scholar 

  37. Wang Z, Wang X, Zhao N et al (2021) The desirable dielectric properties and high thermal conductivity of epoxy composites with the cobweb-structured SiCnw-SiO2-NH2 hybrids. J Mater Sci Mater Electron 32(16):20973–20984. https://doi.org/10.1007/s10854-021-06543-9

    Article  CAS  Google Scholar 

  38. Zurcher S, Wackerlin D, Bethuel Y et al (2006) Biomimetic surface modifications based on the cyanobacterial iron chelator anachelin. J Am Chem Soc 128(4):1064–1065. https://doi.org/10.1021/ja056256s

    Article  CAS  Google Scholar 

  39. Zhao C, Zhang P, Zhou J et al (2020) Layered nanocomposites by shear-flow-induced alignment of nanosheets. Nature 580(7802):210–215. https://doi.org/10.1038/s41586-020-2161-8

    Article  CAS  Google Scholar 

  40. Shen Y, Boffa V, Corazzari I et al (2018) Revealing hidden endotherm of Hummers’ graphene oxide during low-temperature thermal reduction. Carbon 138:337–347. https://doi.org/10.1016/j.carbon.2018.05.018

    Article  CAS  Google Scholar 

  41. Peng L, Xu Z, Liu Z et al (2017) Ultrahigh thermal conductive yet superflexible graphene films. Adv Mater 29(27):1700589. https://doi.org/10.1002/adma.201700589

    Article  CAS  Google Scholar 

  42. Chen S, Meng G, Kong B et al (2020) Asymmetric alicyclic amine-polyether amine molecular chain structure for improved energy storage density of high-temperature crosslinked polymer capacitor. Chem Eng J 387:123662. https://doi.org/10.1016/j.cej.2019.123662

    Article  CAS  Google Scholar 

  43. Xin G, Zhu W, Deng Y et al (2019) Microfluidics-enabled orientation and microstructure control of macroscopic graphene fibres. Nat Nanotechnol 14(2):168–175. https://doi.org/10.1038/s41565-018-0330-9

    Article  CAS  Google Scholar 

  44. Ruan K, Guo Y, Gu J (2021) Liquid crystalline polyimide films with high intrinsic thermal conductivities and robust toughness. Macromolecules 54(10):4934–4944. https://doi.org/10.1021/acs.macromol.1c00686

    Article  CAS  Google Scholar 

  45. Jiang F, Cui X, Song N et al (2020) Synergistic effect of functionalized graphene/boron nitride on the thermal conductivity of polystyrene composites. Compos Commun 20:100350. https://doi.org/10.1016/j.coco.2020.04.016

    Article  Google Scholar 

  46. Jin L, Wang P, Cao W et al (2021) Isolated solid wall-assisted thermal conductive performance of three-dimensional anisotropic MXene/graphene polymeric composites. ACS Appl Mater Interfaces. https://doi.org/10.1021/acsami.1c20267

    Article  Google Scholar 

  47. Wang Y, Zhang X, Ding X et al (2021) Enhanced thermal conductivity of carbon nitride-doped graphene/polyimide composite film via a “deciduous-like” strategy. Compos Sci Technol 205:108693. https://doi.org/10.1016/j.compscitech.2021.108693

    Article  CAS  Google Scholar 

  48. Soong Y-C, Chiu C-W (2021) Multilayered graphene/boron nitride/thermoplastic polyurethane composite films with high thermal conductivity, stretchability, and washability for adjustable-cooling smart clothes. J Colloid Interface Sci 599:611–619. https://doi.org/10.1016/j.jcis.2021.04.123

    Article  CAS  Google Scholar 

  49. An D, Cheng S, Xi S et al (2019) Flexible thermal interfacial materials with covalent bond connections for improving high thermal conductivity. Chem Eng J 383:123151. https://doi.org/10.1016/j.cej.2019.123151

    Article  CAS  Google Scholar 

  50. Hu J, Huang Y, Zeng X et al (2018) Polymer composite with enhanced thermal conductivity and mechanical strength through orientation manipulating of BN. Compos Sci Technol 160:127–137. https://doi.org/10.1016/j.compscitech.2018.01.045

    Article  CAS  Google Scholar 

  51. Mei X, Lu L, Xie Y et al (2019) An ultra-thin carbon-fabric/graphene/poly(vinylidene fluoride) film for enhanced electromagnetic interference shielding. Nanoscale 11(28):13587–13599. https://doi.org/10.1039/c9nr03603b

    Article  CAS  Google Scholar 

  52. Hu D, Ma W, Zhang Z et al (2020) Dual bio-inspired design of highly thermally conductive and superhydrophobic nanocellulose composite films. ACS Appl Mater Interfaces 12(9):11115–11125. https://doi.org/10.1021/acsami.0c01425

    Article  CAS  Google Scholar 

  53. Cui S, Song N, Shi L et al (2020) Enhanced thermal conductivity of bioinspired nanofibrillated cellulose hybrid films based on graphene sheets and nanodiamonds. ACS Sustain Chem Eng 8(16):6363–6370. https://doi.org/10.1021/acssuschemeng.0c00420

    Article  CAS  Google Scholar 

  54. Ma M, Xu L, Qiao L et al (2020) Nanofibrillated cellulose/MgO@rGO composite films with highly anisotropic thermal conductivity and electrical insulation. Chem Eng J 392:123714. https://doi.org/10.1016/j.cej.2019.123714

    Article  CAS  Google Scholar 

  55. Song N, Pan H, Liang X et al (2018) Structural design of multilayer thermally conductive nanofibrillated cellulose hybrid film with electrically insulating and antistatic properties. J Mater Chem C 6(26):7085–7091. https://doi.org/10.1039/c8tc01277f

    Article  CAS  Google Scholar 

  56. Song N, Jiao D, Ding P et al (2016) Anisotropic thermally conductive flexible films based on nanofibrillated cellulose and aligned graphene nanosheets. J Mater Chem C 4(2):305–314. https://doi.org/10.1039/c5tc02194d

    Article  CAS  Google Scholar 

  57. Ma T, Zhao Y, Ruan K et al (2020) Highly thermal conductivities, excellent mechanical robustness and flexibility, and outstanding thermal stabilities of aramid nanofiber composite papers with nacre-mimetic layered structures. ACS Appl Mater Interfaces 12(1):1677–1686. https://doi.org/10.1021/acsami.9b19844

    Article  CAS  Google Scholar 

  58. Xie Z, Wu K, Liu D et al (2021) One-step alkyl-modification on boron nitride nanosheets for polypropylene nanocomposites with enhanced thermal conductivity and ultra-low dielectric loss. Compos Sci Technol 208:108756. https://doi.org/10.1016/j.compscitech.2021.108756

    Article  CAS  Google Scholar 

  59. Song N, Cao D, Luo X et al (2020) Highly thermally conductive polypropylene/graphene composites for thermal management. Compos A: Appl Sci Manuf 135:105912. https://doi.org/10.1016/j.compositesa.2020.105912

    Article  CAS  Google Scholar 

  60. Feng C, Ni H, Chen J et al (2016) Facile method to fabricate highly thermally conductive graphite/PP composite with network structures. ACS Appl Mater Interfaces 8(30):19732–19738. https://doi.org/10.1021/acsami.6b03723

    Article  CAS  Google Scholar 

  61. Guo Y, Dun C, Xu J et al (2017) Ultrathin, washable, and large-area graphene papers for personal thermal management. Small 13(44):1702645. https://doi.org/10.1002/smll.201702645

    Article  CAS  Google Scholar 

  62. Liu S, Liu J, Xu Z et al (2018) Artificial bicontinuous laminate synergistically reinforces and toughens dilute graphene composites. ACS Nano 12(11):11236–11243. https://doi.org/10.1021/acsnano.8b05835

    Article  CAS  Google Scholar 

  63. Lu H, Zhang J, Luo J et al (2017) Enhanced thermal conductivity of free-standing. 3D hierarchical carbon nanotube-graphene hybrid paper. Compos A: Appl Sci Manuf 102:1–8. https://doi.org/10.1016/j.compositesa.2017.07.021

    Article  CAS  Google Scholar 

  64. Song N, Wang P, Cao D et al (2022) Enhanced thermal conductivity of PP hybrid films induced by filler orientation and laminated structure. J Mater Sci 57:2540–2549. https://doi.org/10.1007/s10853-021-06664-w

    Article  CAS  Google Scholar 

  65. Ren Y, Zhang Y, Fang H et al (2018) Simultaneous enhancement on thermal and mechanical properties of polypropylene composites filled with graphite platelets and graphene sheets. Compos A: Appl Sci Manuf 112:57–63. https://doi.org/10.1016/j.compositesa.2018.05.017

    Article  CAS  Google Scholar 

  66. An Z, Compton OC, Putz KW et al (2011) Bio-lnspired borate cross-linking in ultra-stiff graphene oxide thin films. Adv Mater 23(33):3842–3846. https://doi.org/10.1002/adma.201101544

    Article  CAS  Google Scholar 

  67. Zhou Y, Wu S, Long Y et al (2020) Recent advances in thermal interface materials. ES Mater Manuf 7:4–24. https://doi.org/10.30919/esmm5f717

  68. Xu Y, Wang X, Hao Q (2021) A mini review on thermally conductive polymers and polymer-based composites. Compos Commun 24:100617. https://doi.org/10.1016/j.coco.2020.100617

    Article  Google Scholar 

Download references

Funding

This work was financially supported by the National Science Foundation of China (No. 51703122, No. 52073168) and the PetroChina Innovation Foundation (No. 2016D-5007–0508).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Na Song.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1954 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, N., Zhang, F., Cao, D. et al. Bicontinuous laminated structure design of polypropylene/reduced graphene oxide hybrid films for thermal management. Adv Compos Hybrid Mater 5, 2873–2883 (2022). https://doi.org/10.1007/s42114-022-00470-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-022-00470-x

Keywords

Navigation