Skip to main content

Advertisement

Log in

Cooperation between covalent organic frameworks (COFs) and metal organic frameworks (MOFs): application of COFs-MOFs hybrids

  • Review
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

The application and development of porous materials have a long history. With the deepening of study, more and more advanced organic porous materials and organic–inorganic porous materials have been designed and prepared. Covalent organic frameworks (COFs) and metal organic frameworks (MOFs) materials, as typical representatives among them, have attracted extensive attention all over the world since the first report, and show great application potential in the fields of adsorption, catalysis, drug delivery, luminescence, sensor, separation analysis, energy storage, and others. COFs-MOFs hybrid materials combine the advantages of COFs and MOFs, and are gradually being reported in the fields of sensors, energy storage, adsorption, catalysis, and biological applications. The current research results show that the COFs-MOFs hybrid materials have ingenious obvious structural characteristics and superior performance, and will be widely applied in more and more fields with the deepening of research and development. It is believed that the cooperation between these two famous materials will bring more surprises to the world.

Graphical abstract

The COFs-MOFs hybrid materials have ingenious structural and superior performance, and will be widely used in many fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chen Q, Li X, Min X, Cheng D, Zhou J, Li Y, Xie Z, Liu P, Cai W, Zhang C (2017) Determination of catechol and hydroquinone with high sensitivity using MOF−graphene composites modified electrode. J Electroanal Chem 789:114–122. https://doi.org/10.1016/j.jelechem.2017.02.033

    Article  CAS  Google Scholar 

  2. Kumar P, Deep A, Kim KH (2015) Metal organic frameworks for sensing applications. Trends Anal Chem 73:39–53. https://doi.org/10.1016/j.trac.2015.04.009

    Article  CAS  Google Scholar 

  3. Liao Y, Cheng Z, Zuo W, Thomas A, Faul CFJ (2017) Nitrogen rich conjugated microporous polymers: facile synthesis, efficient gas storage, and heterogeneous catalysis. ACS Appl Mater Interface 9:38390–38400. https://doi.org/10.1021/acsami.7b09553

    Article  CAS  Google Scholar 

  4. Yang X, Xu Q (2017) Bimetallic metal-organic frameworks for gas storage and separation. Cryst Growth Des 17:1450–1455. https://doi.org/10.1021/acs.cgd.7b00166

    Article  CAS  Google Scholar 

  5. Matos I, Bernardo M, Fonseca I (2017) Porous carbon: a versatile material for catalysis. Catal Today 285:194–203. https://doi.org/10.1016/j.cattod.2017.01.039

    Article  CAS  Google Scholar 

  6. Haikal RR, Wang X, Hassan YS, Parida MR, Murali B, Mohammed OF, Pellechia PJ, Fontecave M, Alkordi MH (2016) Porous−hybrid polymers as platforms for heterogeneous photochemical catalysis. ACS Appl Mater Interface 8:19994–20002. https://doi.org/10.1021/acsami.6b05031

    Article  CAS  Google Scholar 

  7. Zhang H, Xiao D, Li Q, Ma Y, Yuan S, Xie L, Chen C, Lu C (2018) Porous NiCo2O4 nanowires supported on carbon cloth for flexible asymmetric supercapacitor with high energy density. J Energy Chem 27:195–202. https://doi.org/10.1016/j.jechem.2017.10.034

    Article  Google Scholar 

  8. Liang T, Chen C, Li X, Zhang J (2016) Popcorn-derived porous carbon for energy storage and CO2 capture. Langmuir 32:8042–8049. https://doi.org/10.1021/acs.langmuir.6b01953

    Article  CAS  Google Scholar 

  9. Zhang H, Wang J, Zhang Y, Hu T (2017) Hollow porous organic polymer: high−performance adsorption for organic dye in aqueous solution. J Polymer Sci A Polymer Chem 55:1329–1337. https://doi.org/10.1002/pola.28500

    Article  CAS  Google Scholar 

  10. Tian L, Zhang C, He X, Guo Y, Qiao M, Gu J, Zhang Q (2017) Novel reusable porous polyimide fibers for hot−oil adsorption. J Hazardou Mater 340:67–76. https://doi.org/10.1016/j.jhazmat.2017.06.063

    Article  CAS  Google Scholar 

  11. Doménech−Carbó A (2012) Electrochemistry of porous materials. Science Press, Beijing

    Google Scholar 

  12. Pinto ML, Pires J, Rocha J (2008) Porous materials prepared from clays for the upgrade of landfill gas. J Phys Chem C 112:14394–14402. https://doi.org/10.1021/jp803015d

    Article  CAS  Google Scholar 

  13. Polverejan M, Pauly TR, Pinnavaia TJ (2000) Acidic porous clay heterostructures (PCH): intragallery assembly of mesoporous silica in synthetics aponite clays. Chem Mater 12:2698–2704. https://doi.org/10.1021/cm0002618

    Article  CAS  Google Scholar 

  14. Inagaki S, Sato K, Hayashi S, Tatami J, Kubota Y, Wakihara T (2015) Mechanochemical approach for selective deactivation of external surface acidity of ZSM-5 zeolite catalyst. ACS Appl Mater Interface 7:4488–4493. https://doi.org/10.1021/am507982n

    Article  CAS  Google Scholar 

  15. Sushkevich VL, Palagin D, Ivanova II (2015) With open arms: open sites of ZrBEA zeolite facilitate selective synthesis of butadiene from ethanol. ACS Catal 5:4833–4836. https://doi.org/10.1021/acscatal.5b01024

    Article  CAS  Google Scholar 

  16. Brock SL, Duan N, Tian ZR, Giraldo O, Zhou H, Suib SL (1998) A review of porous manganese oxide materials. Chem Mater 10:2619–2628. https://doi.org/10.1021/cm980227h

    Article  CAS  Google Scholar 

  17. Liu Q, Duan X, Sun H, Wang Y, Tade MO, Wang S (2016) Size−tailored porous spheres of manganese oxides for catalytic oxidation via peroxymonosulfate activation. J Phys Chem C 120:16871–16878. https://doi.org/10.1021/acs.jpcc.6b05934

    Article  CAS  Google Scholar 

  18. Kong X, Jiang J (2018) Amorphous porous organic cage membranes for water desalination. J Phys Chem C 122:1732–1740. https://doi.org/10.1021/acs.jpcc.7b11497

    Article  CAS  Google Scholar 

  19. Lee MN, Santiago−Cordoba MA, Hamilton CE, Subbaiyan NK, Duque JG, Obrey KAD (2014) Developing monolithic nanoporous gold with hierarchical bicontinuity using colloidal bijels. J Phys Chem Lett 5:809–812. https://doi.org/10.1021/jz5001962

    Article  CAS  Google Scholar 

  20. Baldizzone C, Gan L, Hodnik N, Keeley GP, Kostka A, Heggen M, Strasser P, Mayrhofer KJJ (2015) Stability of dealloyed porous Pt/Ni nanoparticles. ACS Catal 5:5000–5007. https://doi.org/10.1021/acscatal.5b01151

    Article  CAS  Google Scholar 

  21. Yun YS, Park MH, Hong SJ, Lee ME, Park YW, Jin H (2015) Hierarchically porous carbon nanosheets from waste coffee grounds for supercapacitors. ACS Appl Mater Interfaces 7:3684–3690. https://doi.org/10.1021/am5081919

    Article  CAS  Google Scholar 

  22. Wang L, Yu J, Dong X, Li X, Xie Y, Chen S, Li P, Hou H, Song Y (2014) Three−dimensional macroporous carbon/Fe3O4-doped porous carbon nanorods for high−performance supercapacitor. ACS Sus Chem Eng 4:1531–1537. https://doi.org/10.1021/acssuschemeng.5b01474

    Article  CAS  Google Scholar 

  23. Mason CR, Maynard−Atem L, Al−Harbi NM, Budd PM, Bernardo P, Bazzarelli F, Clarizia G, Jansen JC (2011) Polymer of intrinsic microporosity incorporating thioamide functionality: preparation and gas transport properties. Macromolecules 44:6471–6479. https://doi.org/10.1021/ma200918h

    Article  CAS  Google Scholar 

  24. Du N, Robertson GP, Song J, Pinnau I, Thomas S, Guiver MD (2008) Polymers of intrinsic microporosity containing trifluoromethyl and phenylsulfone groups as materials for membrane gas separation. Macromolecules 41:9656–9662. https://doi.org/10.1021/ma801858d

    Article  CAS  Google Scholar 

  25. Stock N, Biswas S (2012) Synthesis of metal−organic frameworks (MOFs): routes to various MOF topologies morphologies and composites. Chem Rev 112:933–969. https://doi.org/10.1021/cr200304e

    Article  CAS  Google Scholar 

  26. Zhu L, Liu X, Jiang H, Sun L (2017) Metal-organic frameworks for heterogeneous basic catalysis. Chem Rev 117:8129–8176. https://doi.org/10.1021/acs.chemrev.7b00091

    Article  CAS  Google Scholar 

  27. Panchariy DK, Rai RK, Kumar EA, Singh SK (2018) Core−shell zeolitic imidazolate frameworks for enhanced hydrogen storage. ACS Omega 3:167–175. https://doi.org/10.1021/acsomega.7b01693

    Article  CAS  Google Scholar 

  28. Yaghi OM, Li H (1995) Hydrothermal synthesis of a metal-organic framework containing large rectangular channels. J Am Chem Soc 117:10401–10402. https://doi.org/10.1021/ja00146a033

    Article  CAS  Google Scholar 

  29. Côét AP, Benin AI, Ockwig NW, O’Keeffe M, Matzger AJ, Yaghi OM (2005) Porous crystalline covalent organic frameworks. Science 310:1166–1170. https://doi.org/10.1126/science.1120411

    Article  CAS  Google Scholar 

  30. He T, Kong X, Li J (2021) Chemically stable metal–organic frameworks: rational construction and application expansion. Acc Chem Res 54:3083–3094. https://doi.org/10.1021/acs.accounts.1c00280

    Article  CAS  Google Scholar 

  31. Xue R, Gou H, Liu Y, Rao H (2021) A layered triazinyl-COF linked by −NH− linkage and resulting N-doped microporous carbons: preparation characterization and application for supercapacitance. J Porous Mater 28:895–903. https://doi.org/10.1007/s10934-021-01046-8

    Article  CAS  Google Scholar 

  32. Sun B, Liu J, Cao A, Song W, Wang D (2017) Interfacial synthesis of ordered and stable covalent organic frameworks on aminofunctionalized carbon nanotubes with enhanced electrochemical performance. Chem Commun 53:6303–6306. https://doi.org/10.1039/C7CC01902E

    Article  CAS  Google Scholar 

  33. Lin C, Huang Y, Usman M, Chao W, Lin W, Luo T, Whang W, Chen C, Lu K (2019) Zr-MOF/polyaniline composite films with exceptional seebeck coefficient for thermoelectric material applications. ACS Appl Mater Interface 11:3400–3406. https://doi.org/10.1021/acsami.8b17308

    Article  CAS  Google Scholar 

  34. Yao L, Gu Q, Yu X (2021) Three-dimensional MOFs@MXene aerogel composite derived MXene threaded hollow carbon confined CoS nanoparticles toward advanced alkali-ion batteries. ACS Nano 15:3228–3240. https://doi.org/10.1021/acsnano.0c09898

    Article  CAS  Google Scholar 

  35. Huang X, Yan S, Deng D, Zhang L, Liu R, Lv Y (2021) Novel strategy for engineering the metal-oxide@MOF core@shell architecture and its applications in cataluminescence sensing. ACS Appl Mater Interface 13:3471–3480. https://doi.org/10.1021/acsami.0c20799

    Article  CAS  Google Scholar 

  36. Zhao M, Li W, Li J, Hu W, Li CM (2020) Strong electronic interaction enhanced electrocatalysis of metal sulfide clusters embedded metal–organic framework ultrathin nanosheets toward highly efficient overall water splitting. Adv Sci 7:2001965. https://doi.org/10.1002/advs.202001965

    Article  CAS  Google Scholar 

  37. Stock N, Biswas S (2012) Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies morphologies and composites. Chem Rev 112:933–969. https://doi.org/10.1021/cr200304e

    Article  CAS  Google Scholar 

  38. Nong W, Liu X, Wang Q, Wu J, Guan Y (2020) Metal-organic framework-based materials: synthesis, stability and applications in food safety and preservation. ES Food Agrofor 1:11–40. https://doi.org/10.30919/esfaf0001

    Article  Google Scholar 

  39. Li Y, Wang G, Ma L, Hou L, Wang Y, Zhu Z (2021) Multiple functions of gas separation and vapor adsorption in a new MOF with open tubular channels. ACS Appl Mater Interface 13:4102–4109. https://doi.org/10.1021/acsami.0c21554

    Article  CAS  Google Scholar 

  40. Qian J, Jiang F, Su K, Pan J, Xue Z, Liang L, Baga PP, Hong M (2014) Heterometallic cluster-based indium–organic frameworks. Chem Commun 50:15224. https://doi.org/10.1039/c4cc07611g

    Article  CAS  Google Scholar 

  41. Jiang H, Wang Q, Wang H, Chen Y, Zhang M (2016) MOF-74 as an efficient catalyst for the low-temperature selective catalytic reduction of NOx with NH3. ACS Appl Mater Interface 8:26817–26826. https://doi.org/10.1021/acsami.6b08851

    Article  CAS  Google Scholar 

  42. Wang XS, Liang J, Li L, Lin ZJ, Bag PP, Gao SY, Huang YB, Cao R (2016) An anion metal−organic framework with Lewis basic sites-rich toward charge-exclusive cationic dyes separation and size-selective catalytic reaction. Inorg Chem 55:2641–2649. https://doi.org/10.1021/acs.inorgchem.6b00019

    Article  CAS  Google Scholar 

  43. Yu H, Xu C, Li Y, Jin F, Ye F, Li X (2020) Performance enhancement of CuO/ZnO by deposition on the metal-organic framework of Cu-BTC for methanol steam reforming reaction. ES Energy Environ 8:65–77. https://doi.org/10.30919/esee8c415

    Article  CAS  Google Scholar 

  44. Morshedy AS, Salam HMAE, El Naggar AMA, Zaki T (2020) Hydrogen production and in situ storage through process of water splitting using mono/binary metal−organic framework (MOF) structures as new chief photocatalysts. Energ Fuel 34:11660–11669. https://doi.org/10.1021/acs.energyfuels.0c01559

    Article  CAS  Google Scholar 

  45. Bag PP, Sahoo P (2020) Designing metal-organic frameworks based photocatalyst for specific photocatalytic reactions: a crystal engineering approach. In: Rajendran S, Naushad M, Ponce L, Lichtfouse E (eds) Green photocatalysts for energy and environmental process Environmental Chemistry for a Sustainable World, vol 36. Springer, Cham. https://doi.org/10.1007/978-3-030-17638-9_6

    Chapter  Google Scholar 

  46. Bag PP, Wang XS, Sahoo P, Xiong J, Cao R (2017) Efficient photocatalytic hydrogen evolution under visible light by ternary composite CdS@NU-1000/ RGOCatal. Sci Technol 7:5113. https://doi.org/10.1039/c7cy01254c

    Article  CAS  Google Scholar 

  47. Ahamad MN, Shahid M, Ahmad M, Sama F (2019) Cu(II) MOFs based on bipyridyls: topology, magnetism, and exploring sensing ability toward multiple nitroaromatic explosives. ACS Omega 4:7738–7749. https://doi.org/10.1021/acsomega.9b00715

    Article  CAS  Google Scholar 

  48. Hu J, Chen Y, Zhang H, Chen Z (2021) Controlled syntheses of Mg-MOF-74 nanorods for drug delivery. J Solid State Chem 294:121853. https://doi.org/10.1016/j.jssc.2020.121853

    Article  CAS  Google Scholar 

  49. Bag PP, Wang D, Chen Z, Cao R (2016) Outstanding drug loading capacity by water stable microporous MOF: a potential drug carrier. Chem Commun 52:3669. https://doi.org/10.1039/c5cc09925k

    Article  CAS  Google Scholar 

  50. Sun J, Zhang X, Zhang A, Liao C (2019) Preparation of Fe–Co based MOF-74 and its effective adsorption of arsenic from aqueous solution. J Envion Sci 80:197–207. https://doi.org/10.1016/j.jes.2018.12.013

    Article  CAS  Google Scholar 

  51. Guo H, Wu N, Xue R, Liu H, Li L, Wang M, Yao W, Li Q, Yang W (2020) Multifunctional Ln-MOF luminescent probe displaying superior capabilities for highly selective sensing of Fe3+ and Al3+ ions and nitrotoluene. Colloid Surface A 585:124094. https://doi.org/10.1016/j.colsurfa.2019.124094

    Article  CAS  Google Scholar 

  52. Chatterjee T, Roy D, Das A, Ghosh A, Bag PP, Mandal PK (2013) Chemical tweaking of a non-fluorescent GFP chromophore to a highly fluorescent coumarinic fluorophore: application towards photo-uncaging and stem cell imaging. RSC Adv 3:24021. https://doi.org/10.1039/c3ra44034f

    Article  CAS  Google Scholar 

  53. Bag PP, Wang XS, Cao R (2015) Microwave-assisted large scale synthesis of lanthanide metal–organic frameworks (Ln-MOFs) having a preferred conformation and photoluminescence properties. Dalton Trans 44:11954. https://doi.org/10.1039/c5dt01598g

    Article  CAS  Google Scholar 

  54. Ma B, Guo H, Wang M, Li L, Jia X, Chen H, Xue R, Yang W (2019) Electrocatalysis of Cu MOF/graphene composite and its sensing application for electrochemical simultaneous determination of dopamine and paracetamol. Electroanal 31:1002–1008. https://doi.org/10.1002/elan.201800890

    Article  CAS  Google Scholar 

  55. Xu Y, Lv W, Ren C, Niu X, Chen H, Chen X (2018) In situ preparation of multilayer coated capillary column with HKUST-1 for separation of neutral small organic molecules by open tubular capillary electrochromatography. J Chromatogr A 1532:223–231. https://doi.org/10.1016/j.chroma.2017.11.064

    Article  CAS  Google Scholar 

  56. Sun J, Yu X, Zhao S, Chen H, Tao K, Han L (2020) Solvent-controlled morphology of amino-functionalized bimetal metal-organic frameworks for asymmetric supercapacitors. Inorg Chem 59:11385–11395. https://doi.org/10.1021/acs.inorgchem.0c01157

    Article  CAS  Google Scholar 

  57. Rehman S, Ahmed R, Ma K, Xu S, Tao T, Aslam MA, Amir M, Wang J (2021) Composite of strip-shaped ZIF-67 with polypyrrole: a conductive polymer-MOF electrode system for stable and high specific capacitance. Eng Sci 13:71–78. https://doi.org/10.30919/es8d1263

    Article  CAS  Google Scholar 

  58. Wang Y, Liu Y, Wang C, Liu H, Zhang J, Lin J, Fan J, Ding T, Ryu JE, Guo Z (2020) Significantly enhanced ultrathin NiCo-based MOF nanosheet electrodes hybrided with Ti3C2Tx MXene for high performance asymmetric supercapacitors. Eng Sci 9:50–59. https://doi.org/10.30919/es8d903

    Article  CAS  Google Scholar 

  59. Bag PP, Singh GP, Singha S, Roymahapatra G (2021) Synthesis of metal-organic frameworks (MOFs) and their biological catalytic and energetic applications: a mini review. Eng Sci 13:1–10. https://doi.org/10.30919/es8d1166

    Article  CAS  Google Scholar 

  60. Rehman S, Liu J, Fang Z, Wang J, Ahmed R, Wang C, Bi H (2019) Heterostructured TiO2/C/Co from ZIF-67 frameworks for microwave-absorbing nanomaterials. ACS Appl Nano Mater 2:4451–4461. https://doi.org/10.1021/acsanm.9b00841

    Article  CAS  Google Scholar 

  61. Rehmana S, Wang J, Luo Q, Sun M, Jiang L, Han Q, Liu J, Bi H (2019) Starfish-like C/CoNiO2 heterostructure derived from ZIF-67 with tunable microwave absorption properties. Chem Eng J 373:122–130. https://doi.org/10.1016/j.cej.2019.05.040

    Article  CAS  Google Scholar 

  62. Xiao T, Liu D (2019) The most advanced synthesis and a wide range of applications of MOF-74 and its derivatives. Micropor Mesopor Mater 283:88–103. https://doi.org/10.1016/j.micromeso.2019.03.002

    Article  CAS  Google Scholar 

  63. Chui SSY, Lo SMF, Charmant JPH, Orpen AG, Williams ID (1999) A Chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n. Science 283:1148–1150. https://doi.org/10.1126/science.283.5405.1148

    Article  CAS  Google Scholar 

  64. Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM (2013) The chemistry and applications of metal-organic frameworks. Science 341:1230444. https://doi.org/10.1126/science.1230444

    Article  CAS  Google Scholar 

  65. Waller PJ, Gándara F, Yaghi OM (2015) Chemistry of covalent organic frameworks. Acc Chem Res 48:3053–3063. https://doi.org/10.1021/acs.accounts.5b00369

    Article  CAS  Google Scholar 

  66. Geng K, He T, Liu R, Dalapati S, Tan KT, Li Z, Tao S, Gong Y, Jiang Q, Jiang D (2020) Covalent organic frameworks: design synthesis and functions. Chem Rev 120:8814–8933. https://doi.org/10.1021/acs.chemrev.9b00550

    Article  CAS  Google Scholar 

  67. Brucks SD, Bunck DN, Dichtel WR (2014) Functionalization of 3D covalent organic frameworks using monofunctional boronic acids. Polymer 55:330–334. https://doi.org/10.1016/j.polymer.2013.07.030

    Article  CAS  Google Scholar 

  68. Hunt JR, Doonan CJ, LeVangie JD, Côté AP, Yaghi OM (2008) Reticular synthesis of covalent organic borosilicate frameworks. J Am Chem Soc 130:11872–11873. https://doi.org/10.1021/ja805064f

    Article  CAS  Google Scholar 

  69. Feng X, Chen L, Dong Y, Jiang D (2011) Porphyrin-based two-dimensional covalent organic frameworks: synchronized synthetic control of macroscopic structures and pore parameters. Chem Commun 47:1979–1981. https://doi.org/10.1039/C0CC04386A

    Article  CAS  Google Scholar 

  70. Fang Q, Gu S, Zheng J, Zhuang Z, Qiu S, Yan Y (2014) 3D microporous base-functionalized covalent organic frameworks for size-selective catalysis. Angew Chem Int Ed 53:2878–2882. https://doi.org/10.1002/ange.201310500

    Article  CAS  Google Scholar 

  71. Li Z, Sheng L, Wang H, Wang X, Li M, Xu Y, Cui H, Zhang H, Liang H, Xu H, He X (2021) Three-dimensional covalent organic framework with ceq topology. J Am Chem Soc 143:92–96. https://doi.org/10.1021/jacs.0c11313

    Article  CAS  Google Scholar 

  72. Uribe-Romo FJ, Doonan CJ, Furukawa H, Oisaki K, Yaghi OM (2011) Crystalline covalent organic frameworks with hydrazone linkages. J Am Chem Soc 133:11478–11481. https://doi.org/10.1021/ja204728y

    Article  CAS  Google Scholar 

  73. Hao L, Ning J, Luo B, Wang B, Zhang Y, Tang Z, Yang J (2015) Structural evolution of 2D microporous covalent triazine-based framework toward the study of high-performance supercapacitors. J Am Chem Soc 137:219–225. https://doi.org/10.1021/ja508693y

    Article  CAS  Google Scholar 

  74. Li J, Yang X, Bai C, Tian Y, Li B, Zhang S, Yang X, Ding S, Xia C, Tan X, Ma L, Li S (2015) A novel benzimidazole-functionalized 2-D COF material: synthesis and application as a selective solid-phase extractant for separation of uranium. J Colloid Interface Sci 437:211–218. https://doi.org/10.1016/j.jcis.2014.09.046

    Article  CAS  Google Scholar 

  75. Nagai A, Chen X, Feng X, Ding X, Guo Z, Jiang D (2013) A squaraine-linked mesoporous covalent organic framework. Angew Chem Int Ed 125:3858–3862. https://doi.org/10.1002/ange.201300256

    Article  Google Scholar 

  76. Xue R, Gou H, Zheng Y, Zhang L, Liu Y, Rao H, Zhao G (2020) New squaraine-linked triazinyl-based covalent organic frameworks: preparation characterization and application for sensitive and selective determination of Fe3+ cations. ChemistrySelect 5:10632–10636. https://doi.org/10.1002/slct.202002232

    Article  CAS  Google Scholar 

  77. Fang QR, Wang JH, Gu S, Kaspar RB, Zhuang ZB, Zheng J, Guo HX, Qiu SL, Yan YS (2015) 3D porous crystalline polyimide covalent organic frameworks for drug delivery. J Am Chem Soc 137:8352. https://doi.org/10.1021/jacs.5b04147

    Article  CAS  Google Scholar 

  78. Wang T, Xue R, Chen H, Shi P, Lei X, Wei Y, Guo H, Yang W (2017) Preparation of two new polyimide bond linked porous covalent organic frameworks and their fluorescent sensing application for sensitive and selective determination of Fe3+. New J Chem 41:14272–14278. https://doi.org/10.1039/C7NJ02134H

    Article  CAS  Google Scholar 

  79. Kandambeth S, Dey K, Banerjee R (2019) Covalent organic frameworks: chemistry beyond the structure. J Am Chem Soc 14:1807–1822. https://doi.org/10.1021/jacs.8b10334

    Article  CAS  Google Scholar 

  80. Xu LQ, Ding SY, Liu JM, Sun JL, Wang W, Zheng QY (2016) Highly crystalline covalent organic frameworks from flexible building blocks. Chem Commun 52:4706–4709. https://doi.org/10.1039/C6CC01171C

    Article  CAS  Google Scholar 

  81. Smith BJ, Overholts AC, Hwang N, Dichtel WR (2016) Insight into the crystallization of amorphous imine-linked polymer networks to 2D covalent organic frameworks. Chem Commun 52:3690–3693. https://doi.org/10.1039/C5CC10221A

    Article  CAS  Google Scholar 

  82. Guan X, Ma Y, Li H, Yusran Y, Xue M, Fang Q, Yan Y, Valtchev V, Qiu S (2018) Fast ambient temperature and pressure ionothermal synthesis of three-dimensional covalent organic frameworks. J Am Chem Soc 140:4494–4498. https://doi.org/10.1021/jacs.8b01320

    Article  CAS  Google Scholar 

  83. Zhang W, Liang F, Li C, Qiu L, Yuan Y, Peng F, Jiang X, Xie A, Shen Y, Zhu J (2011) Microwave-enhanced synthesis of magnetic porous covalent triazine-based framework composites for fast separation of organic dye from aqueous solution. J Hazard Mater 186:984–990. https://doi.org/10.1016/j.jhazmat.2010.11.093

    Article  CAS  Google Scholar 

  84. Ren S, Bojdys MJ, Dawson R, Laybourn A, Khimyak YZ, Adams DJ, Cooper AI (2012) Porous, fluorescent, covalent triazine-based frameworks via room-temperature and microwave-assisted synthesis. Adv Mater 24:2357–2361. https://doi.org/10.1002/adma.201200751

    Article  CAS  Google Scholar 

  85. Rajput L, Banerjee R (2014) Mechanochemical synthesis of amide functionalized porous organic polymers. Cryst Growth Des 14:2729–2732. https://doi.org/10.1021/cg500439f

    Article  CAS  Google Scholar 

  86. Medina DD, Rotter JM, Hu Y, Dogru M, Werner V, Auras F, Markiewicz JT, Knochel P, Bein T (2015) Room temperature synthesis of covalent–organic framework films through vapor-assisted conversion. J Am Chem Soc 137:1016–1019. https://doi.org/10.1021/ja510895m

    Article  CAS  Google Scholar 

  87. Liu X, Guan C, Ding S, Wang W, Yan H, Wang D, Wan L (2013) On-surface synthesis of single-layered two-dimensional covalent organic frameworks via solid–vapor interface reactions. J Am Chem Soc 135:10470–10474. https://doi.org/10.1021/ja403464h

    Article  CAS  Google Scholar 

  88. Liu Y, Wang Y, Li H, Guan X, Zhu L, Xue M, Yan Y, Valtchev V, Qiu S, Fang Q (2019) Ambient aqueous-phase synthesis of covalent organic frameworks for degradation of organic pollutants. Chem Sci 10:10815–10820. https://doi.org/10.1039/C9SC03725J

    Article  CAS  Google Scholar 

  89. Doonan CJ, Tranchemontagne DJ, Glover TG, Hunt JR, Yaghi OM (2010) Exceptional ammonia uptake by a covalent organic framework. Nat Chem 2:235–238. https://doi.org/10.1038/nchem.548

    Article  CAS  Google Scholar 

  90. Shan M, Seoane B, Rozhko E, Dikhtiarenko A, Clet G, Kapteijn F, Gascon J (2016) Azine-linked covalent organic framework (COF)-based mixed-matrix membranes for CO2/CH4 separation. Chem Eur J 22:14467–14470. https://doi.org/10.1002/chem.201602999

    Article  CAS  Google Scholar 

  91. Hao S, Zhang T, Fan S, Jia Z, Yang Y (2021) Preparation of COF-TpPa1 membranes by chemical vapor deposition method for separation of dyes. Chem Eng J 421:129750. https://doi.org/10.1016/j.cej.2021.129750

    Article  CAS  Google Scholar 

  92. Li Y, Pei B, Chen J, Bing S, Hou L, Sun Q, Xu G, Yao Z, Zhang L (2021) Hollow nanosphere construction of covalent organic frameworks for catalysis: (Pd/C)@TpPa COFs in Suzuki coupling reaction. J Colloid Interf Sci 591:273–280. https://doi.org/10.1016/j.jcis.2021.01.105

    Article  CAS  Google Scholar 

  93. Yang Y, Niu H, Xu L, Zhang H, Cai Y (2020) Triazine functionalized fully conjugated covalent organic framework for efficient photocatalysis. Appl Catal B Environ 269:118799. https://doi.org/10.1016/j.apcatb.2020.118799

    Article  CAS  Google Scholar 

  94. Li Y, Chen M, Han Y, Feng Y, Zhang Z, Zhang B (2020) Fabrication of a new corrole-based covalent organic framework as a highly efficient and selective chemosensor for heavy metal ions. Chem Mater 32:2532–2540. https://doi.org/10.1021/acs.chemmater.9b05234

    Article  CAS  Google Scholar 

  95. Guan Q, Guo H, Xue R, Wang M, Wu N, Cao Y, Zhao X, Yang W (2021) Electrochemical sensing platform based on covalent organic framework materials and gold nanoparticles for high sensitivity determination of theophylline and caffeine. Microchim Acta 188:85. https://doi.org/10.1007/s00604-021-04744-x

    Article  CAS  Google Scholar 

  96. Xu S, Zhouxian Li, Zhang L, Zhang W, Li D (2021) In situ growth of COF-rLZU1 on the surface of silica sphere as stationary phase for high performance liquid chromatography. Talanta 221:121612. https://doi.org/10.1016/j.talanta.2020.121612

    Article  CAS  Google Scholar 

  97. Anbazhagan R, Krishnamoorthi R, Kumaresan S, Tsai H (2021) Thioether-terminated triazole-bridged covalent organic framework for dual-sensitive drug delivery application. Mat Sci Eng C 120:111704. https://doi.org/10.1016/j.msec.2020.111704

    Article  CAS  Google Scholar 

  98. Cao Y, Hu X, Zhu C, Zhou S, Li R, Shi H, Miao S, Vakilic M, Wang W, Qi D (2020) Sulfhydryl functionalized covalent organic framework as an efficient adsorbent for selective Pb (II) removal. Colloid Surf A 600:125004. https://doi.org/10.1016/j.colsurfa.2020.125004

    Article  CAS  Google Scholar 

  99. Mohamed MG, Lee C, EL-Mahdy AFM, Lüder J, Yu M, Li Z, Zhu Z, Chueh C, Kuo S (2020) Exploitation of two-dimensional conjugated covalent organic frameworks based on tetraphenylethylene with bicarbazole and pyrene units and applications in perovskite solar cells. J Mater Chem A 8:11448. https://doi.org/10.1039/D0TA02956D

    Article  CAS  Google Scholar 

  100. Kandambeth S, Jia J, Wu H, Kale VS, Parvatkar PT, Czaban-Jóźwiak J, Zhou S, Xu X, Ameur ZO, Abou-Hamad E, Emwas AH, Shekhah O, Alshareef HN, Eddaoudi M (2020) Covalent organic frameworks as negative electrodes for high-performance asymmetric supercapacitors. Adv Energy Mater 10:2001673. https://doi.org/10.1002/aenm.202001673

    Article  CAS  Google Scholar 

  101. Shehab MK, Weeraratne KS, Huang T, Lao KU, El-Kader HM (2021) Exceptional sodium-ion storage by an aza-covalent organic framework for high energy and power density sodium-ion batteries. ACS Appl Mater Interface 13:15083–15091. https://doi.org/10.1021/acsami.0c20915

    Article  CAS  Google Scholar 

  102. Côté AP, El-Kaderi HM, Furukawa H, Hunt JR, Yaghi OM (2007) Reticular synthesis of microporous and mesoporous 2D covalent organic frameworks. J Am Chem Soc 129:12914–12915. https://doi.org/10.1021/ja0751781

    Article  CAS  Google Scholar 

  103. Li Z, Feng X, Zou Y, Zhang Y, Xia H, Liu X, Mu Y (2014) A 2D azine-linked covalent organic framework for gas storage applications. Chem Commun 50:13825–13828. https://doi.org/10.1039/C4CC05665E

    Article  CAS  Google Scholar 

  104. Wan S, Guo J, Kim J, Ihee H, Jiang D (2008) A belt-shaped, blue luminescent, and semiconducting covalent organic framework. Angew Chem Int Ed 47:8826–8830. https://doi.org/10.1002/anie.200803826

    Article  CAS  Google Scholar 

  105. Ding S, Gao J, Wang Q, Zhang Y, Song W, Su C, Wang W (2011) Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in Suzuki Miyaura coupling reaction. J Am Chem Soc 133:19816–19822. https://doi.org/10.1021/ja206846p

    Article  CAS  Google Scholar 

  106. Zhou N, Ma Y, Hu B, He L, Wang S, Zhang Z, Lu S (2019) Construction of Ce-MOF@COF hybrid nanostructure: label-free aptasensor for the ultrasensitive detection of oxytetracycline residues in aqueous solution environments. Biosens Bioelectron 127:92–100. https://doi.org/10.1016/j.bios.2018.12.024

    Article  CAS  Google Scholar 

  107. Liu X, Hu M, Wang M, Song Y, Zhou N, He L, Zhang Z (2019) Novel nanoarchitecture of Co-MOF-on-TPN-COF hybrid: ultralowly sensitive bioplatform of electrochemical aptasensor toward ampicillin. Biosens Bioelectron 123:59–68. https://doi.org/10.1016/j.bios.2018.09.089

    Article  CAS  Google Scholar 

  108. Zhang H, Zhu Q, Yuan R, He H (2021) Crystal engineering of MOF@COF core-shell composites for ultra-sensitively electrochemical detection. Sensor Actuat B Chem 329:129144. https://doi.org/10.1016/j.snb.2020.129144

    Article  CAS  Google Scholar 

  109. Wang X, Yin H, Yin X (2020) MOF@COFs with strong multi-emission for differentiation and ratiometric fluorescence detection. ACS Appl Mater Interface 12:20973–20981. https://doi.org/10.1021/acsami.0c04147

    Article  CAS  Google Scholar 

  110. Peng H, Raya J, Richard F, Baaziz W, Ersen O, Ciesielski A, Samoì P (2020) Synthesis of robust MOFs@COFs porous hybrid materials via an aza-Diels–Alder reaction: towards high-performance supercapacitor materials. Angew Chem Int Ed 59:19602–19609. https://doi.org/10.1002/anie.202008408

    Article  CAS  Google Scholar 

  111. Sun W, Tang X, Yang Q, Xu Y, Wu F, Guo S, Zhang Y, Wu M, Wang Y (2019) Coordination-induced interlinked covalent- and metal-organic-framework hybrids for enhanced lithium storage. Adv Mater 31:1903176. https://doi.org/10.1002/adma.201903176

    Article  CAS  Google Scholar 

  112. Gao M, Qi M, Liu L, Han Z (2019) An exceptionally stable core–shell MOF/COF bifunctional catalyst for a highly efficient cascade deacetalization–Knoevenagel condensation reaction. Chem Commun 55:6377. https://doi.org/10.1039/C9CC02174D

    Article  CAS  Google Scholar 

  113. Zhou W, Liu Y, Teo WL, Chen B, Jin F, Zhang L, Zeng Y, Zhao Y (2020) Construction of a sandwiched MOF@COF composite as a size-selective catalyst. Cell Rep Phys Sci 1:100272. https://doi.org/10.1016/j.xcrp.2020.100272

    Article  CAS  Google Scholar 

  114. Cai M, Li Y, Liu Q, Xue Z, Wang H, Fan Y, Zhu K, Ke Z, Su C, Li G (2019) One-step construction of hydrophobic MOFs@COFs core–shell composites for heterogeneous selective catalysis. Adv Sci 6:1802365. https://doi.org/10.1002/advs.201802365

    Article  CAS  Google Scholar 

  115. Chen Y, Yang D, Shi B, Dai W, Ren H, An K, Zhou Z, Zhao Z, Wang W, Jiang Z (2020) In-situ construction of hydrazone-linked COF-based core-shell hetero-frameworks for enhanced photocatalytic hydrogen evolution. J Mater Chem A 8:7724–7732. https://doi.org/10.1039/D0TA00901F

    Article  CAS  Google Scholar 

  116. Zhang F, Sheng J, Yang Z, Sun X, Tang H, Lu M, Dong H, Shen F, Liu J, Lan Y (2018) Rational design of MOF/COF hybrid materials for photocatalytic H2 evolution in the presence of sacrificial electron donors. Angew Chem Int Ed 57:12106–12110. https://doi.org/10.1002/anie.201806862

    Article  CAS  Google Scholar 

  117. Li F, Wang D, Xing Q, Zhou G, Liu S, Li Y, Zheng L, Ye P, Zou J (2019) Design and syntheses of MOF/COF hybrid materials via postsynthetic covalent modification: an efficient strategy to boost the visible-light-driven photocatalytic performance. Appl Catalysis B Environ 243:621–628. https://doi.org/10.1016/j.apcatb.2018.10.043

    Article  CAS  Google Scholar 

  118. Lu G, Huang X, Li Y, Zhao G, Pang G, Wang G (2020) Covalently integrated core-shell MOF@COF hybrids as efficient visible-light-driven photocatalysts for selective oxidation of alcohols. J Energy Chem 43:8–15. https://doi.org/10.1016/j.jechem.2019.07.014

    Article  Google Scholar 

  119. Sun D, Kim D (2020) Hydrophobic MOFs@metal nanoparticles@COFs for interfacially confined photocatalysis with high efficiency. ACS Appl Mater Interface 12:20589–20595. https://doi.org/10.1021/acsami.0c04537

    Article  CAS  Google Scholar 

  120. Sun D, Jang S, Yim S, Ye L, Kim D (2018) Metal doped core–shell metal-organic frameworks@covalent organic frameworks (MOFs@COFs) hybrids as a novel photocatalytic platform. Adv Funct Mater 28:1707110. https://doi.org/10.1002/adfm.201707110

    Article  CAS  Google Scholar 

  121. Zhao J, Jin B, Peng R (2020) New core−shell hybrid material IR-MOF3@COF-LZU1 for highly efficient visible-light photocatalyst degrading nitroaromatic explosives. Langmuir 36:5665–5670. https://doi.org/10.1021/acs.langmuir.9b03786

    Article  CAS  Google Scholar 

  122. He S, Rong Q, Niu H, Cai Y (2019) Platform for molecular-material dual regulation: a direct Z-scheme MOF/COF heterojunction with enhanced visible-light photocatalytic activity. Appl Catal B Environ 247:49–56. https://doi.org/10.1016/j.apcatb.2019.01.078

    Article  CAS  Google Scholar 

  123. Lv S, Liu J, Li C, Zhao N, Wang Z, Wang S (2020) Two novel MOFs@COFs hybrid-based photocatalytic platforms coupling with sulfate radical-involved advanced oxidation processes for enhanced degradation of bisphenol A. Chemosphere 243:125378. https://doi.org/10.1016/j.chemosphere.2019.125378

    Article  CAS  Google Scholar 

  124. Xue K, He R, Yang T, Wang J, Sun R, Wang L, Yu X, Omeoga U, Pi S, Ting Y, Wang W (2019) MOF-based In2S3-X2S3 (X = Bi; Sb)@TFPT-COFs hybrid materials for enhanced photocatalytic performance under visible light. Appl Surf Sci 493:41–54. https://doi.org/10.1016/j.apsusc.2019.06.247

    Article  CAS  Google Scholar 

  125. Garzón-Tovar L, Pérez-Carvajal J, Yazdi A, Hernández-Muñoz J, Tarazona P, Imaz I, Zamora F, Maspoch D (2019) A MOF@COF composite with enhanced uptake through interfacial pore generation. Angew Chem Int Ed 58:9512–9516. https://doi.org/10.1002/ange.201904766

    Article  Google Scholar 

  126. Das S, Ben T (2018) [COF-300]-[UiO-66] Composite membrane with remarkably high permeability and H2/CO2 separation selectivity. Dalton Trans 47:7206–7212. https://doi.org/10.1039/C8DT01353E

    Article  CAS  Google Scholar 

  127. Fu J, Das S, Xing G, Ben T, Valtchev V, Qiu S (2016) Fabrication of COF-MOF composite membranes and their highly selective separation of H2/CO2. J Am Chem Soc 138:7673–7680. https://doi.org/10.1021/jacs.6b03348

    Article  CAS  Google Scholar 

  128. Cheng Y, Ying Y, Zhai L, Liu G, Dong J, Wang Y, Christopher MP, Long S, Wang Y, Zhao D (2019) Mixed matrix membranes containing MOF@COF hybrid fillers for efficient CO2/CH4 separation. J Membrane Sci 573:97–106. https://doi.org/10.1016/j.memsci.2018.11.060

    Article  CAS  Google Scholar 

  129. Zhong X, Liu Y, Liang W, Zhu Y, Hu B (2021) Construction of core−shell MOFs@COF hybrids as a platform for the removal of UO22+ and Eu3+ ions from solution. ACS Appl Mater Interface 31:13883–13895. https://doi.org/10.1021/acsami.1c03151

    Article  CAS  Google Scholar 

  130. Karmakar A, Li J (2020) The best of both worlds: an MOP/COF-based hybrid material for highly selective and very fast sequestration of toxic oxoanions from water. ACS Cent Sci 6:1476–1478. https://doi.org/10.1021/acscentsci.0c01029

    Article  CAS  Google Scholar 

  131. Firoozi M, Rafiee Z, Dashtian K (2020) New MOF/COF hybrid as a robust adsorbent for simultaneous removal of auramine O and rhodamine B dyes. ACS Omega 5:9420–9428. https://doi.org/10.1021/acsomega.0c00539

    Article  CAS  Google Scholar 

  132. Zheng X, Wang L, Pei Q, He S, Liu S, Xie Z (2017) Metal-organic framework @porous organic polymer nanocomposite for photodynamic therapy. Chem Mater 29:2374–2381. https://doi.org/10.1021/acs.chemmater.7b00228

    Article  CAS  Google Scholar 

  133. Dong J, Qiao Z, Pan Y, Peh SB, Yuan YD, Wang Y, Zhai L, Yuan H, Cheng Y, Liang H, Liu B, Zhao D (2019) Encapsulation and protection of ultrathin two-dimensional porous organic nanosheets within biocompatible metal−organic frameworks for live-cell imaging. Chem Mater 31:4897–4912. https://doi.org/10.1021/acs.chemmater.9b01642

    Article  CAS  Google Scholar 

  134. Li M, Qiao S, Zheng Y, Andaloussi YH, Li X, Zhang Z, Li A, Cheng P, Ma S, Chen Y (2020) Fabricating covalent organic framework capsules with commodious microenvironment for enzymes. J Am Chem Soc 142:6675–6681. https://doi.org/10.1021/jacs.0c00285

    Article  CAS  Google Scholar 

  135. Wu M, Wang Y, Zhou G, Liu X (2021) Sparks from different worlds: collaboration of MOFs and COFs. Coord Chem Rev 430:213735. https://doi.org/10.1016/j.ccr.2020.213735

    Article  CAS  Google Scholar 

Download references

Funding

The authors are very grateful to the Fundamental Research Funds for the Central Universities, National Natural Science Foundation of China (21971011, 21831001) and the MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sheng-Li Huang or Guo-Yu Yang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, R., Guo, H., Yang, W. et al. Cooperation between covalent organic frameworks (COFs) and metal organic frameworks (MOFs): application of COFs-MOFs hybrids. Adv Compos Hybrid Mater 5, 1595–1611 (2022). https://doi.org/10.1007/s42114-022-00432-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-022-00432-3

Keywords

Navigation