Skip to main content
Log in

Facile preparation of FL-Ti3C2/BiOCl/SnO2 ternary composite for photocatalytic degradation of indoor formaldehyde

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Formaldehyde is recognized as a potential human carcinogen by the International Cancer Research Center (IARC). Conventional methods for removing volatile organic compounds (VOCs), such as catalytic combustion, low-temperature plasma method, and condensation recovery method, are not suitable for indoor formaldehyde removal. The ternary composite photocatalysts FL-Ti3C2 (few-layer Ti3C2)/BiOCl/SnO2 (FBS) were prepared and loaded on the melamine sponge in this work. According to the number of soaking times in the FBS solution by the sponge, the sample was named nSFBS. Due to the special composition, suitable energy band structure and large gas–solid reaction interface, the degradation rate of formaldehyde over the sample of 3SFBS under ultraviolet (UV) irradiation was 90.3%, higher than that of single-component FL-Ti3C2, BiOCl, or SnO2. As the number of immersion of the ternary composite photocatalysts increases, the degradation rate for formaldehyde first increased and then decreased. FL-Ti3C2 has super-hydrophilic properties, which makes the composite material SFBS a good affinity for the polar gas formaldehyde. The stability of the ternary composite was also verified, and the degradation rate was only reduced by 14.8% after 5 recycles. The ternary structure extends the lifetime of photogenerated carriers. This work provides new insights that will help to further develop photocatalysts for indoor air purification.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kim J, Kim H, Lim D, Lee YK, Kim JH (2016) Effects of indoor air pollutants on atopic dermatitis. Int J Environ Res Public Health 13:1220. https://doi.org/10.3390/ijerph13121220

    Article  CAS  Google Scholar 

  2. Reingruber H, Pontel LB (2018) Formaldehyde metabolism and its impact on human health. Curr Opin Toxicol 9:28–34. https://doi.org/10.1016/j.cotox.2018.07.001

    Article  Google Scholar 

  3. Yuan H, Peng H, Guan J, Liu Y, Dai J, Su R, Guo Z, Chen Y, Hu Q, Yuan B, Wu H (2020) Photodegradation of gaseous toluene by vacuum ultraviolet light: performance and mechanism. Eng Sci 9:68–76. https://doi.org/10.30919/es8d910

  4. IARC (2021) List of classifications by cancer sites with sufficient or limited evidence in humans. IARC Monographs 129:1–10

    Google Scholar 

  5. Al-Hamdi AM, Sillanpää M, Dutta J (2015) Intermediate formation during photodegradation of phenol using lanthanum doped tin dioxide nanoparticles. Res Chem Intermed 42:3055–3069. https://doi.org/10.1007/s11164-015-2197-9

    Article  CAS  Google Scholar 

  6. Rao NG, Kumar A, Wong JS, Shridhar R, Goswami DY (2018) Effect of a novel photoelectrochemical oxidation air purifier on nasal and ocular allergy symptoms. Allergy Rhinol (Providence) 9:1–9. https://doi.org/10.1177/2152656718781609

    Article  Google Scholar 

  7. Yu J, Wang S, Low J, Xiao W (2013) Enhanced photocatalytic performance of direct Z-scheme g-C3N4-TiO2 photocatalysts for the decomposition of formaldehyde in air. Phys Chem Chem Phys 15:16883. https://doi.org/10.1039/c3cp53131g

    Article  CAS  Google Scholar 

  8. Wang Y, Liu Z, Wei X, Liu K, Wang J, Hu J, Lin J (2021) An integrated strategy for achieving oil-in-water separation, removal, and anti-oil/dye/bacteria-fouling. Chem Eng J 413:127493. https://doi.org/10.1016/j.cej.2020.127493

    Article  CAS  Google Scholar 

  9. Sun L, Shao Q, Zhang Y, Jiang H, Ge S, Lou S, Lin J, Zhang J, Wu S, Dong M, Guo Z (2020) N self-doped ZnO derived from microwave hydrothermal synthesized zeolitic imidazolate framework-8 toward enhanced photocatalytic degradation of methylene blue. J Colloid Interface Sci 565:142–155. https://doi.org/10.1016/j.jcis.2019.12.107

    Article  CAS  Google Scholar 

  10. Lin C, Liu B, Pu L, Sun Y, Xue Y, Chang M, Li X, Lu X, Chen R, Zhang J (2021) Photocatalytic oxidation removal of fluoride ion in wastewater by g-C3N4/TiO2 under simulated visible light. Adv Compos Hybrid Mater 4:339–349. https://doi.org/10.1007/s42114-021-00228-x

    Article  CAS  Google Scholar 

  11. Zhao Z, An H, Lin J, Feng M, Murugadoss V, Ding T, Liu H, Shao Q, Mai X, Wang N, Gu H, Angaiah S, Guo Z (2019) Progress on the photocatalytic reduction removal of chromium contamination. Chem Rec 19:873–882. https://doi.org/10.1002/tcr.201800153

    Article  CAS  Google Scholar 

  12. Gao Y, Zhang J, Zhang Z, Li Z, Xiong Q, Deng L, Zhou Q, Meng L, Du Y, Zuo T, Yu Y, Lan Z, Gao P (2021) Plasmon-enhanced perovskite solar cells with efficiency beyond 21 %: the asynchronous synergistic effect of water and gold nanorods. ChemPlusChem 86:291–297. https://doi.org/10.1002/cplu.202000792

    Article  CAS  Google Scholar 

  13. Lin J, Hu J, Wang W, Liu K, Zhou C, Liu Z, Kong S, Lin S, Deng Y, Guo Z (2021) Thermo and light-responsive strategies of smart titanium-containing composite material surface for enhancing bacterially anti-adhesive property. Chem Eng J 407:125783. https://doi.org/10.1016/j.cej.2020.125783

    Article  CAS  Google Scholar 

  14. Wang B, Wei K, Mo X, Hu J, He G, Wang Y, Li W, He Q (2019) Improvement in recycling times and photodegradation efficiency of core-shell structured Fe3O4@C-TiO2 composites by pH adjustment. ES Mater Manufact 4:51–57. https://doi.org/10.30919/esmm5f215

  15. Lin C, Gao Y, Zhang J, Xue D, Fang H, Tian J, Zhou C, Zhang C, Li Y, Li H (2020) GO/TiO2 composites as a highly active photocatalyst for the degradation of methyl orange. J Mater Res 35:1307–1315. https://doi.org/10.1557/jmr.2020.41

    Article  CAS  Google Scholar 

  16. Fan T, Deng W, Gang Y, Du Z, Li Y (2021) Degradation of hazardous organics via cathodic flow-through process using a spinel FeCo2O4/CNT decorated stainless-steel mesh. ES Mater Manufact 12:53–62. https://doi.org/10.30919/esmm5f417

  17. Zhao Z, Ma H, Feng M, Li Z, Cao D, Guo Z (2019) In situ preparation of WO3/g-C3N4 composite and its enhanced photocatalytic ability, a comparative study on the preparation methods of chemical composite and mechanical mixing. Eng Sci 7:52–58. https://doi.org/10.30919/es8d689

  18. Yuan B, Zhang B, Wang Z, Lu S, Li J, Liu Y, Li C (2017) Photocatalytic aerobic oxidation of toluene and its derivatives to aldehydes on Pd/Bi2WO6. Chin J Catal 38:440–446. https://doi.org/10.1016/s1872-2067(17)62757-8

    Article  CAS  Google Scholar 

  19. Cheng R, Wen J, Xia J, Li Z, Sun W, Shen L, Shi L, Zheng X (2019) Visible-light photocatalytic activity and photo-corrosion mechanism of Ag3PO4/g-C3N4/PVA composite film in degrading gaseous toluene. Catal Today 335:565–573. https://doi.org/10.1016/j.cattod.2019.03.046

    Article  CAS  Google Scholar 

  20. Huang Y, Ho SS, Lu Y, Niu R, Xu L, Cao J, Lee S (2016) Removal of indoor volatile organic compounds via photocatalytic oxidation: a short review and prospect. Molecules 21:56. https://doi.org/10.3390/molecules21010056

    Article  CAS  Google Scholar 

  21. Jiang Y, Sun J, Wu S (2017) BiOCl Nanosheets with controlled exposed facets and improved photocatalytic activity. Catal Lett 147:2006–2012. https://doi.org/10.1007/s10562-017-2118-1

    Article  CAS  Google Scholar 

  22. Yu M, Yu T, Chen S, Guo Z, Seok I (2020) A facile synthesis of Ag/TiO2/rGO nanocomposites with enhanced visible light photocatalytic activity. ES Mater Manufact 7:64–69. https://doi.org/10.30919/esmm5f712

  23. Zhang J, Zhang W, Wei L, Pu L, Liu J, Liu H, Li Y, Fan J, Ding T, Guo Z (2019) Alternating multilayer structural epoxy composite coating for corrosion protection of steel. Macromol Mater Eng 304:1900374. https://doi.org/10.1002/mame.201900374

    Article  CAS  Google Scholar 

  24. Jiang H, Ge S, Zhang Y, Liu M, Zhang J, Lin J, Dong M, Wang J, Guo Z (2020) One-pot microwave-hydrothermally synthesized carbon nanotube-cerium oxide nanocomposites for enhanced visible photodegradation of acid orange 7. Phys Chem Chem Phys 22:23743–23753. https://doi.org/10.1039/d0cp00431f

    Article  CAS  Google Scholar 

  25. Liu J, Zhang J, Tang J, Pu L, Xue Y, Lu M, Xu L, Guo Z (2020) Polydimethylsiloxane resin nanocomposite coating with alternating multilayer structure for corrosion protection performance. ES Mater Manufact 10:29–38. https://doi.org/10.30919/esmm5f912

  26. Zhang Z, Zhang J, Li S, Liu J, Dong M, Li Y, Lu N, Lei S, Tang J, Fan J, Guo Z (2019) Effect of graphene liquid crystal on dielectric properties of polydimethylsiloxane nanocomposites. Compos B Eng 176:107338. https://doi.org/10.1016/j.compositesb.2019.107338

    Article  CAS  Google Scholar 

  27. Wang B, Wang M, Liu F, Zhang Q, Yao S, Liu X, Huang F (2020) Ti3C2: an ideal co-catalyst?. Angew Chem Int Ed Engl 59:1914–1918. https://doi.org/10.1002/anie.201913095

    Article  CAS  Google Scholar 

  28. Zhang L, Ma P, Dai L, Li S, Yu W, Guan J (2021) In situ crystallization and growth of TiO2 nanospheres between MXene layers for improved adsorption and visible light photocatalysis. Catal Sci Technol 11:3834–3844. https://doi.org/10.1039/d1cy00239b

    Article  CAS  Google Scholar 

  29. Lin C, Qiao Z, Zhang J, Tang J, Zhang Z, Guo Z (2019) Highly efficient fluoride adsorption in domestic water with RGO/Ag nanomaterials. ES Ene Environm 4:27–33. https://doi.org/10.30919/esee8c217

  30. Song B, Wang Q, Wang L, Lin J, Wei X, Murugadoss V, Wu S, Guo Z, Ding T, Wei S (2020) Carbon nitride nanoplatelet photocatalysts heterostructured with B-doped carbon nanodots for enhanced photodegradation of organic pollutants. J Colloid Interface Sci 559:124–133. https://doi.org/10.1016/j.jcis.2019.10.015

    Article  CAS  Google Scholar 

  31. Zhang H, Liu L, Zhou Z (2012) Towards better photocatalysts: first-principles studies of the alloying effects on the photocatalytic activities of bismuth oxyhalides under visible light. Phys Chem Chem Phys 14:1286–1292. https://doi.org/10.1039/c1cp23516h

    Article  CAS  Google Scholar 

  32. Sun M, Zhao Q, Du C, Liu Z (2015) Enhanced visible light photocatalytic activity in BiOCl/SnO2: heterojunction of two wide band-gap semiconductors. RSC Adv 5:22740–22752. https://doi.org/10.1039/c4ra14187c

    Article  CAS  Google Scholar 

  33. Zhang D, Cao J, Wu G, Cui L (2018) Dynamic adsorption model fitting studies of typical VOCs using commercial activated carbon in a fixed bed. Water Air Soil Pollut 229:178. https://doi.org/10.1007/s11270-018-3763-8

    Article  CAS  Google Scholar 

  34. Birlik Demirel G, Aygül E (2019) Robust and flexible superhydrophobic/superoleophilic melamine sponges for oil-water separation. Colloids Surf A 577:613–621. https://doi.org/10.1016/j.colsurfa.2019.05.081

    Article  CAS  Google Scholar 

  35. Zhang R, Ma M, Zhang Q, Dong F, Zhou Y (2018) Multifunctional g-C3N4 /graphene oxide wrapped sponge monoliths as highly efficient adsorbent and photocatalyst. Appl Catal B 235:17–25. https://doi.org/10.1016/j.apcatb.2018.04.061

    Article  CAS  Google Scholar 

  36. Di J, Xia J, Ji M, Wang B, Yin S, Zhang Q, Chen Z, Li H (2015) Carbon quantum dots modified BiOCl ultrathin nanosheets with enhanced molecular oxygen activation ability for broad spectrum photocatalytic properties and mechanism insight. ACS Appl Mater Interfaces 7:5268. https://doi.org/10.1021/acsami.5b05268

    Article  CAS  Google Scholar 

  37. Jia Z, Li T, Zheng Z, Zhang J, Liu J, Li R, Wang Y, Zhang X, Wang Y, Fan C (2020) The BiOCl/diatomite composites for rapid photocatalytic degradation of ciprofloxacin: efficiency, toxicity evaluation, mechanisms and pathways. Chem Eng J 380:122422. https://doi.org/10.1016/j.cej.2019.122422

    Article  CAS  Google Scholar 

  38. Kumari L, Li WZ (2010) Synthesis, structure and optical properties of zinc oxide hexagonal microprisms. Cryst Res Technol 45:311–315. https://doi.org/10.1002/crat.200900600

    Article  CAS  Google Scholar 

  39. Li Z, Zhang H, Wang L, Meng X, Shi J, Qi C, Zhang Z, Feng L, Li C (2020) 2D/2D BiOBr/Ti3C2 heterojunction with dual applications in both water detoxification and water splitting. J Photochem Photobiol, A 386:112099. https://doi.org/10.1016/j.jphotochem.2019.112099

    Article  CAS  Google Scholar 

  40. Peng C, Yang X, Li Y, Yu H, Wang H, Peng F (2016) Hybrids of two-dimensional Ti3C2 and TiO2 exposing 001 facets toward enhanced photocatalytic activity. ACS Appl Mater Interfaces 8:1–26. https://doi.org/10.1021/acsami.5b11973

    Article  CAS  Google Scholar 

  41. Zhang J, Wang X, Wang J, Wang J, Ji Z (2016) Effect of sulfate ions on the crystallization and photocatalytic activity of TiO2/diatomite composite photocatalyst. Chem Phys Lett 643:53–60. https://doi.org/10.1016/j.cplett.2015.11.020

    Article  CAS  Google Scholar 

  42. Huang G, Li S, Liu L, Zhu L, Wang Q (2020) Ti3C2 MXene-modified Bi2WO6 nanoplates for efficient photodegradation of volatile organic compounds. Appl Surf Sci 503:144183. https://doi.org/10.1016/j.apsusc.2019.144183

    Article  CAS  Google Scholar 

  43. Bafaqeer A, Tahir M, Amin NAS (2019) Well-designed ZnV2O6/g-C3N4 2D/2D nanosheets heterojunction with faster charges separation via pCN as mediator towards enhanced photocatalytic reduction of CO2 to fuels. Appl Catal B 242:312–326. https://doi.org/10.1016/j.apcatb.2018.09.097

    Article  CAS  Google Scholar 

Download references

Funding

The project was funded by Natural Science Foundation of China (Nos. 21806101, 52070127, 51590901) and Gaoyuan Discipline of Shanghai – Environmental Science and Engineering (Resource Recycling Science and Engineering).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Zhang or Wei Yu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, L., Li, X., Zhang, L. et al. Facile preparation of FL-Ti3C2/BiOCl/SnO2 ternary composite for photocatalytic degradation of indoor formaldehyde. Adv Compos Hybrid Mater 5, 2285–2296 (2022). https://doi.org/10.1007/s42114-021-00398-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-021-00398-8

Keywords

Navigation