Skip to main content
Log in

Nanocellulose nanocomposite aerogel towards efficient oil and organic solvent adsorption

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

In this work, in order to ameliorate the hydrophobic property and adsorption capacity of nanocellulose (NC) aerogel, the nanochitosan (NCS) and reduced graphene oxide (rGO) have been introduced into the NC aerogel to construct the NC/NCS/rGO nanocomposite aerogel by a hydrothermal method combined with freeze-drying method. The optimal conditions including the effect of NC and NCS weight percentages for preparation of NC/NCS/rGO nanocomposite aerogel with good porous microstructures and excellent adsorption capacities have been evaluated. The results demonstrate that the NC/NCS/rGO nanocomposite aerogel produced under the fabrication condition of 0.1 wt% NCS and 0.05 wt% NC exhibits a very low density of 9.3 mg cm−3, a high hydrophobicity with a large water contact angle (115.26°) and the high adsorption capacities of 171.85 ± 3.02, 159.64 ± 1.83, 153.22 ± 2.92, 149.60 ± 6.26, 139.93 ± 3.69, 132.47 ± 3.45, 176.82 ± 4.66, 128.70 ± 0.69, and 120.34 ± 5.57 g g−1 to mineral oil, sesame oil, acetone, ethyl acetate, thiophene, pump oil, waste pump oil, kerosene, and ethyl alcohol, respectively. In addition, this aerogel adsorbent could efficiently and continuously remove/collect the oil from wastewater confirmed by a designed oil/water pump apparatus. As a consequence, this NC/NCS/rGO nanocomposite aerogel has a potential application in the oil and organic solvent adsorption.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cheng XQ, Jiao Y, Sun ZK, Yang XB, Cheng ZJ, Bai Q, Zhang YJ, Wang K, Shao L (2021) Constructing scalable superhydrophobic membranes for ultrafast water-oil separation. ACS Nano 15(2):3500–3508

    Article  CAS  Google Scholar 

  2. Hao Q (2021) Continuous improvement for manufacturing techniques: thin film coating and more. ES Mater Manuf 11:1–2

    Google Scholar 

  3. Kordjazi S, Kamyab K, Hemmatinejad N (2020) Super-hydrophilic/oleophobic chitosan/acrylamide hydrogel: an efficient water/oil separation filter. Adv Compos Hybrid Mater 3(2):167–176

    Article  CAS  Google Scholar 

  4. Rezakazemi M, Khajeh A, Mesbah M (2018) Membrane filtration of wastewater from gas and oil production. Environ Chem Lett 16(2):367–388

    Article  CAS  Google Scholar 

  5. Xia WC, Zhou CL, Peng YL (2017) Enhancing flotation cleaning of intruded coal dry-ground with heavy oil. J Cleaner Prod 161:591–597

    Article  CAS  Google Scholar 

  6. Prince JA, Bhuvana S, Anbharasi V, Ayyanar N, Boodhoo KVK, Singh G (2016) Ultra-wetting graphene-based PES ultrafiltration membrane - a novel approach for successful oil-water separation. Water Res 103:311–318

    Article  CAS  Google Scholar 

  7. Zhang T, Kong LY, Dai YT, Yue XJ, Rong J, Qiu FX, Pan JM (2017) Enhanced oils and organic solvents absorption by polyurethane foams composites modified with MnO2 nanowires. Chem Eng J 309:7–14

    Article  CAS  Google Scholar 

  8. Dai JD, Zhang RL, Ge WN, Xie AT, Chang ZS, Tian SJ, Zhou ZP, Yan YS (2018) 3D macroscopic superhydrophobic magnetic porous carbon aerogel converted from biorenewable popcorn for selective oil-water separation. Mater Des 139:122–131

    Article  CAS  Google Scholar 

  9. Zhou XM, Fu QG, Liu H, Gu HB, Guo ZH (2021) Solvent-free nanoalumina loaded nanocellulose aerogel for efficient oil and organic solvent adsorption. J Colloid Interface Sci 581:299–306

    Article  CAS  Google Scholar 

  10. Xue YW, Gao B, Yao Y, Inyang M, Zhang M, Zimmerman AR, Ro KS (2012) Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: Batch and column tests. Chem Eng J 200:673–680

    Article  CAS  Google Scholar 

  11. Angelova D, Uzunov I, Uzunova S, Gigova A, Minchev L (2011) Kinetics of oil and oil products adsorption by carbonized rice husks. Chem Eng J 172(1):306–311

    Article  CAS  Google Scholar 

  12. Chong KY, Chia CH, Zakaria S, Sajab MS, Chook SW, Khiew PS (2015) CaCO3-decorated cellulose aerogel for removal of Congo Red from aqueous solution. Cellulose 22(4):2683–2691

    Article  CAS  Google Scholar 

  13. Liu Q, Yu HH, Zeng FM, Li X, Sun J, Li C, Lin H, Su ZM (2021) HKUST-1 modified ultrastability cellulose/chitosan composite aerogel for highly efficient removal of methylene blue. Carbohydr Polym 255:117402

  14. Chhajed M, Yadav C, Agrawal AK, Maji PK (2019) Esterified superhydrophobic nanofibrillated cellulose based aerogel for oil spill treatment. Carbohydr Polym 226:115286

  15. Mi HY, Jing X, Politowicz AL, Chen E, Huang HX, Turng LS (2018) Highly compressible ultra-light anisotropic cellulose/graphene aerogel fabricated by bidirectional freeze drying for selective oil absorption. Carbon 132:199–209

    Article  CAS  Google Scholar 

  16. Lu YQ, Yuan WZ (2017) Superhydrophobic/superoleophilic and reinforced ethyl cellulose sponges for oil/water separation: synergistic strategies of cross-linking, carbon nanotube composite, and nanosilica modification. ACS Appl Mater Interfaces 9(34):29167–29176

    Article  CAS  Google Scholar 

  17. Zhang CP, Zhang Y, Hao XY, Liu H, Lv X, Zhu JF, Han WL, Zhang YH (2018) Fabrication of reduced graphene oxide/chitosan composite fiber by dry-jet wet spinning. Adv Compos Hybrid Mater 1(2):347–355

    Article  CAS  Google Scholar 

  18. Chaudhary JP, Vadodariya N, Nataraj SK, Meena R (2015) Chitosan-based aerogel membrane for robust oil-in-water emulsion separation. ACS Appl Mater Interfaces 7(44):24957–24962

    Article  CAS  Google Scholar 

  19. Takeshita S, Zhao SY, Malfait WJ, Koebel MM (2020) Chemistry of chitosan aerogels: three-dimensional pore control for tailored applications. Angew Chem Int Edit 60:9828–9851

    Article  CAS  Google Scholar 

  20. Cao N, Lyu Q, Li J, Wang Y, Yang B, Szunerits S, Boukherroub R (2017) Facile synthesis of fluorinated polydopamine/chitosan/reduced graphene oxide composite aerogel for efficient oil/water separation. Chem Eng J 326:17–28

    Article  CAS  Google Scholar 

  21. Li YQ, Guo CF, Shi RH, Zhang H, Gong LZ, Dai LB (2019) Chitosan/nanofibrillated cellulose aerogel with highly oriented microchannel structure for rapid removal of Pb (II) ions from aqueous solution. Carbohydr Polym 223:115048

  22. Li BB, Jin XY, Lin JJ, Chen ZL (2018) Green reduction of graphene oxide by sugarcane bagasse extract and its application for the removal of cadmium in aqueous solution. J Cleaner Prod 189:128–134

    Article  CAS  Google Scholar 

  23. Wei HG, Li A, Kong DS, Li ZZ, Cui DP, Li T, Dong BB, Guo ZH (2021) Polypyrrole/reduced graphene aerogel film for wearable piezoresisitic sensors with high sensing performances. Adv Compos Hybrid Mater 4(1):86–95

    Article  CAS  Google Scholar 

  24. Cai J, Tian J, Gu H, Guo Z (2019) Amino carbon nanotube modified reduced graphene oxide aerogel for oil/water separation. ES Mater Manuf 6:68–74

    Google Scholar 

  25. Yang H, Li Q, Wang Z, Wu H, Wu Y, Hou P, Cheng X (2021) Effect of graphene on microstructure and mechanical properties of Si3N4/SiC ceramics. ES Mater Manuf 12:29–34

    CAS  Google Scholar 

  26. He MR, Zhang RN, Zhang K, Liu YA, Su YL, Jiang ZY (2019) Reduced graphene oxide aerogel membranes fabricated through hydrogen bond mediation for highly efficient oil/water separation. J Mater Chem A 7(18):11468–11477

    Article  CAS  Google Scholar 

  27. Xiang C, Wang C, Guo RH, Lan JW, Lin SJ, Jiang SX, Lai XX, Zhang Y, Xiao HY (2019) Synthesis of carboxymethyl cellulose-reduced graphene oxide aerogel for efficient removal of organic liquids and dyes. J Mater Sci 54(2):1872–1883

    Article  CAS  Google Scholar 

  28. Wang YQ, Xie WH, Liu H, Gu HB (2020) Hyperelastic magnetic reduced graphene oxide three-dimensional framework with superb oil and organic solvent adsorption capability. Adv Compos Hybrid Mater 3(4):473–484

    Article  CAS  Google Scholar 

  29. Guo J, Bao HF, Zhang YQ, Shen X, Kim JK, Ma J, Shao L (2021) Unravelling intercalation-regulated nanoconfinement for durably ultrafast sieving graphene oxide membranes. J Membr Sci 619:118791

  30. Zhou YY, Wang P, Ruan G, Xu P, Ding YS (2020) Synergistic effect of P[MPEGMA-IL] modified graphene on morphology and dielectric properties of PLA/PCL blends. ES Mater Manuf 11:20–29

    Google Scholar 

  31. Mao H, Liu LM, Shi L, Wu H, Lang JX, Wang K, Zhu TX, Gao YY, Sun ZH, Zhao J, Gao GX, Zhang DY, Yan W, Ding SJ (2020) High loading cotton cellulose-based aerogel self-standing electrode for Li-S batteries. Sci Bull 65(10):803–811

    Article  CAS  Google Scholar 

  32. Salam A, Venditti RA, Pawlak JJ, El-Tahlawy K (2011) Crosslinked hemicellulose citrate-chitosan aerogel foams. Carbohydr Polym 84(4):1221–1229

    Article  CAS  Google Scholar 

  33. Wang XY, Lu YK, Zhu T, Chang SC, Wang W (2020) CoFe2O4/N-doped reduced graphene oxide aerogels for high-performance microwave absorption. Chem Eng J 388:124317

  34. Xu MM, Huang QB, Wang XH, Sun RC (2015) Highly tough cellulose/graphene composite hydrogels prepared from ionic liquids. Ind Crops Prod 70:56–63

    Article  CAS  Google Scholar 

  35. Kakade PM, Kachere AR, Mandlik NT, Rondiya SR, Jadkar SR, Bhosale SV (2020) Graphene oxide assisted synthesis of magnesium oxide nanorods. ES Mater Manuf 12:63–71

    Google Scholar 

  36. Song P, Liang CB, Wang L, Qiu H, Gu HB, Kong J, Gu JW (2019) Obviously improved electromagnetic interference shielding performances for epoxy composites via constructing honeycomb structural reduced graphene oxide. Compos Sci Technol 181:107698

  37. Zheng B (2019) One-step synthesis of nitrogen-doped graphene from a sole aromatic precursor. Mater Lett 236:583–586

    Article  CAS  Google Scholar 

  38. Fu Y, Pei X, Dai Y, Mo D, Lyu S (2019) Three-dimensional graphene-like carbon prepared from CO2 as anode material for high-performance lithium-ion batteries. ES Energy Environ 4:66–73

    Google Scholar 

  39. Intaro T, Hodak J, Suwanyangyaun P, Botta R, Nuntawong N, Niki M, Kosuga S, Watanabe T, Koh S, Taychatanapat T, Sanorpim S (2020) Characterization of graphene grown by direct-liquid-injection chemical vapor deposition with cyclohexane precursor in N2 ambient. Diamond Relat Mater 104:107717

  40. Gu HB, Xu XJ, Dong MY, Xie PT, Shao Q, Fan RH, Liu CT, Wu SD, Wei RB, Guo ZH (2019) Carbon nanospheres induced high negative permittivity in nanosilver-polydopamine metacomposites. Carbon 147:550–558

    Article  CAS  Google Scholar 

  41. Peng HD, Meng LJ, Niu LY, Lu QH (2012) Simultaneous reduction and surface functionalization of graphene oxide by natural cellulose with the assistance of the ionic liquid. J Phys Chem C 116(30):16294–16299

    Article  CAS  Google Scholar 

  42. Zhang X (2020) Applications of kinetic methods in thermal analysis: a review. Eng Sci 14:1–13

    Google Scholar 

  43. Fu Y, Zhao P, Yang L, Miao R, Zhang C, Guo Z, Liu Y (2018) Effect of cocrystal behavior on sensitivity and thermal decomposition mechanisms of CL-20/HMX via molecular dynamics simulations. ES Mater Manuf 1:50–56

    Google Scholar 

  44. Gu HB, Zhou XM, Lyu SY, Pan D, Dong MY, Wu SD, Ding T, Wei X, Seok I, Wei SY, Guo ZH (2020) Magnetic nanocellulose-magnetite aerogel for easy oil adsorption. J Colloid Interface Sci 560:849–856

    Article  CAS  Google Scholar 

  45. Bi HC, Xie X, Yin KB, Zhou YL, Wan S, He LB, Xu F, Banhart F, Sun LT, Ruoff RS (2012) Spongy graphene as a highly efficient and recyclable sorbent for oils and organic solvents. Adv Funct Mater 22(21):4421–4425

    Article  CAS  Google Scholar 

  46. Ji KD, Gao Y, Zhang LF, Wang SE, Yue QY, Xu X, Kong WJ, Gao BY, Cai ZS, Chen YH (2021) A tunable amphiphilic Enteromorpha-modified graphene aerogel for oil/water separation. Sci Total Environ 763:142958

  47. Zhao Y, Sun TB, Liao WD, Wang YQ, Yu JL, Zhang M, Yu ZQ, Yang B, Gui DY, Zhu CZ, Xu J (2019) Amphiphilic graphene aerogel with high oil and water adsorption capacity and high contact area for interface reaction. ACS Appl Mater Interfaces 11(25):22794–22800

    Article  CAS  Google Scholar 

  48. Liu S, Wang SS, Wang H, Lv CJ, Miao YC, Chen L, Yang SD (2021) Gold nanoparticles modified graphene foam with superhydrophobicity and superoleophilicity for oil-water separation. Sci Total Environ 758:143660

  49. Yue XJ, Zhang T, Yang DY, Qiu FX, Li ZD (2018) Hybrid aerogels derived from banana peel and waste paper for efficient oil absorption and emulsion separation. J Cleaner Prod 199:411–419

    Article  CAS  Google Scholar 

  50. Yin ZC, Sun XJ, Bao MT, Li Y (2020) Construction of a hydrophobic magnetic aerogel based on chitosan for oil/water separation applications. Int J Biol Macromol 165:1869–1880

    Article  CAS  Google Scholar 

  51. Yi LF, Yang JY, Fang X, Xia Y, Zhao LJ, Wu H, Guo SY (2020) Facile fabrication of wood-inspired aerogel from chitosan for efficient removal of oil from Water. J Hazard Mater 385:121507

  52. Zhang XF, Liu P, Duan YX, Jiang M, Zhang JM (2017) Graphene/cellulose nanocrystals hybrid aerogel with tunable mechanical strength and hydrophilicity fabricated by ambient pressure drying technique. RSC Adv 7(27):16467–16473

    Article  CAS  Google Scholar 

  53. Zhao YF, Zhong K, Liu W, Cui S, Zhong Y, Jiang SJ (2020) Preparation and oil adsorption properties of hydrophobic microcrystalline cellulose aerogel. Cellulose 27(13):7663–7675

    Article  CAS  Google Scholar 

  54. Qin Y, Li S, Li Y, Pan F, Han L, Chen ZM, Yin XZ, Wang LX, Wang H (2020) Mechanically robust polybenzoxazine/reduced graphene oxide wrapped-cellulose sponge towards highly efficient oil/water separation, and solar-driven for cleaning up crude oil. Compos Sci Technol 197:108254

Download references

Funding

The authors are grateful for the support and funding from the Foundation of the National Key Research and Development Program of China (2017YFA0204600) and Shanghai Rising Star Program (No. 19QA1409400). This work is supported by Shanghai Science and Technology Commission (19DZ2271500).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongbo Gu or Zhanhu Guo.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 1508 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, H., Gao, C., Zhou, X. et al. Nanocellulose nanocomposite aerogel towards efficient oil and organic solvent adsorption. Adv Compos Hybrid Mater 4, 459–468 (2021). https://doi.org/10.1007/s42114-021-00289-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-021-00289-y

Keywords

Navigation