Skip to main content
Log in

Superior wear resistance of epoxy composite with highly dispersed graphene spheres

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Graphene has been proved to have an obvious superiority in suppression of the wear of polymers. However, the wide industrial application was suppressed by the bad graphene dispersion and complex preparation procedure. In this work, we employed carbon spheres coated with dispersed graphene (graphene spheres, g-AM) as filler to prepare the epoxy composites with direct mixing and curing. Comparing with neat epoxy and composites filled with calcined carbon spheres (CM, without graphene), the thermal and tribological properties of g-AM/EP composites were improved when the g-AM content was low. When chemical functionalization by grafting epoxy chain on the graphene (E–g-AM) was conducted, the total performance, especially the wear resistance, was remarkably improved even at high graphene content. The wear rate of E–g-AM/EP composites was reduced by 95% at 20 wt.% E–g-AM, compared to pure cured epoxy resin. This superior wear resistance was related to the synergistic effect of carbon spheres and graphene. Carbon spheres improved shore hardness and flexural strength, thus reducing the wear rate. The graphene had the high dispersion and good interface adhesion with epoxy, leading to the excellent lubricating effect and the improved mechanical and thermal performance of the composites.

Graphical abstract

Graphene spheres with high dispersion state were firstly used as fillers of epoxy and made the composite excellent wear resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Rafiee R (2016) On the mechanical performance of glass-fiber-reinforced thermosetting-resin pipes: a review. Compos Struct 143:151–164. https://doi.org/10.1016/j.compstruct.2016.02.037

    Article  Google Scholar 

  2. Tang LC, Wan YJ, Yan D, Pei YB, Zhao L, Li YB, Wu LB, Jiang JX, Lai GQ (2013) The effect of graphene dispersion on the mechanical properties of graphene/epoxy composites. Carbon 60:16–27. https://doi.org/10.1016/j.carbon.2013.03.050

    Article  CAS  Google Scholar 

  3. Ahmad S, Gupta AP, Sharmin E, Alam M, Pandey SK (2005) Synthesis, characterization and development of high performance siloxane-modified epoxy paints. Prog Org Coat 54:248–255. https://doi.org/10.1016/j.porgcoat.2005.06.013

    Article  CAS  Google Scholar 

  4. Xavier JR (2020) Investigation on the anticorrosion, adhesion and mechanical performance of epoxy nanocomposite coatings containing epoxy-silane treated nano-MoO3 on mild steel. J Adhes Sci Technol 34:115–134. https://doi.org/10.1080/01694243.2019.1661658

    Article  CAS  Google Scholar 

  5. Bustero I, Gaztelumendi I, Obieta I, Mendizabal MA, Zurutuza A, Ortega A, Alonso B (2020) Free-standing graphene films embedded in epoxy resin with enhanced thermal properties. Adv Compos Hybrid Mater 3(1):31–40. https://doi.org/10.1007/s42114-020-00136-6

  6. Zhang JX, Liang YX, Wang XJ, Zhou HJ, Li SY, Zhang J, Feng YN, Lu N, Wang Q, Guo ZH (2018) Strengthened epoxy resin with hyperbranched polyamine-ester anchored graphene oxide via novel phase transfer approach. Adv Compos Hybrid Mater 1(2):300–309. https://doi.org/10.1007/s42114-017-0007-0

  7. He Y, Wu D, Zhou M, Liu H, Zhang L, Chen Q, Yao B, Yao D, Jiang D, Liu C, Guo Z (2020) Effect of MoO3/carbon nanotubes on friction and wear performance of glass fabric-reinforced epoxy composites under dry sliding. Appl Surf Sci 506:144946. https://doi.org/10.1016/j.apsusc.2019.144946

    Article  CAS  Google Scholar 

  8. Österle W, Dmitriev AI, Gradt T, Häusler I, Hammouri B, Morales Guzman PI, Wetzel B, Yigit D, Zhang G (2015) Exploring the beneficial role of tribofilms formed from an epoxy-based hybrid nanocomposite. Tribol Int 88:126–134. https://doi.org/10.1016/j.triboint.2015.03.006

    Article  CAS  Google Scholar 

  9. EL-Tayeb NSM, Liew KW (2009) On the dry and wet sliding performance of potentially new frictional brake pad materials for automotive industry. Wear 266:275–287. https://doi.org/10.1016/j.wear.2008.07.003

    Article  CAS  Google Scholar 

  10. Shen XJ, Pei XQ, Fu SY, Friedrich K (2013) Significantly modified tribological performance of epoxy nanocomposites at very low graphene oxide content. Polymer 54:1234–1242. https://doi.org/10.1016/j.polymer.2012.12.064

    Article  CAS  Google Scholar 

  11. Shen XJ, Pei XQ, Liu Y, Fu SY (2014) Tribological performance of carbon nanotube–graphene oxide hybrid/ epoxy composites. Compos B Eng 57:120–125. https://doi.org/10.1016/j.compositesb.2013.09.050

    Article  CAS  Google Scholar 

  12. Lahiri D, Hec F, Thiesse M, Durygin A, Zhang C, Agarwal A (2014) Nanotribological behavior of graphene nanoplatelet reinforced ultra high molecular weight polyethylene composites. Tribol Int 70:165–169. https://doi.org/10.1016/j.triboint.2013.10.012

    Article  CAS  Google Scholar 

  13. Wang H, Xie GY, Zhu ZG, Ying Z, Zeng Y (2014) Enhanced tribological performance of the multi-layer graphene filledpoly(vinyl chloride) composites. Compos Part A Appl Sci Manuf 67:268–273. https://doi.org/10.1016/j.compositesa.2014.09.011

    Article  CAS  Google Scholar 

  14. Zhao F, Zhang L, Li G, Guo Y, Qi H, Zhang G (2018) Significantly enhancing tribological performance of epoxy by filling with ionic liquid functionalized graphene oxide. Carbon 136:309–319. https://doi.org/10.1016/j.carbon.2018.05.002

    Article  CAS  Google Scholar 

  15. Tai ZX, Chen YF, An YF, Yan XB, Xue QJ (2012) Tribological behavior of UHMWPE reinforced with graphene oxide nanosheets. Tribol Lett 46:55–63. https://doi.org/10.1007/s11249-012-9919-6

    Article  CAS  Google Scholar 

  16. Wang TC, Xiong DS, Zhou T (2010) Preparation and wear behavior of carbon/epoxy resin composites with an interpenetrating network structure derived from natural sponge. Carbon 48:2435–2441. https://doi.org/10.1016/j.carbon.2010.03.011

    Article  CAS  Google Scholar 

  17. Wetzela B, Hauperta F, Zhang MQ (2003) Epoxy nanocomposites with high mechanical and tribological performance. Compos Sci Technol 63:2055–2067. https://doi.org/10.1016/S0266-3538(03)00115-5

    Article  CAS  Google Scholar 

  18. Mo Y, Yang ML, Lu ZX, Huang FC (2013) Preparation and tribological performance of chemically-modified reduced graphene oxide/polyacrylonitrile composites. Compos Part A Appl Sci Manuf 54:153–158. https://doi.org/10.1016/j.compositesa.2013.07.014

    Article  CAS  Google Scholar 

  19. Kandanur SS, Rafiee MA, Yavari F, Schrameyer M, Yu ZZ, Blanchet TA, Koratkar N (2012) Suppression of wear in graphene polymer composites. Carbon 50:3178–3183. https://doi.org/10.1016/j.carbon.2011.10.038

    Article  CAS  Google Scholar 

  20. Chen C, Qiu SH, Cui MJ, Qin SL, Yan GP, Zhao HC, Wang LP, Xue QJ (2017) Achieving high performance corrosion and wear resistant epoxy coatings via incorporation of noncovalent functionalized graphene. Carbon 114:356–366. https://doi.org/10.1016/j.carbon.2016.12.044

    Article  CAS  Google Scholar 

  21. Min CY, Nie P, Song HJ, Zhang ZZ, Zhao KL (2014) Study of tribological properties of polyimide/graphene oxide nanocomposite films under seawater-lubricated condition. Tribol Int 80:131–140. https://doi.org/10.1016/j.triboint.2014.06.022

    Article  CAS  Google Scholar 

  22. Yi M, Shen ZG (2015) A review on mechanical exfoliation for the scalable production of graphene. J Mater Chem A 3:11700–11715. https://doi.org/10.1039/C5TA00252D

    Article  CAS  Google Scholar 

  23. Nicolosi V, Chhowalla M, Kanatzidis MG, Strano MS, Coleman JN (2013) Liquid exfoliation of layered materials. Science 340:1226419. https://doi.org/10.1126/science.1226419

    Article  CAS  Google Scholar 

  24. Park SJ, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4:217–224. https://doi.org/10.1038/nnano.2009.58

  25. Allen MJ, Tung VC, Kaner RB (2010) Honeycomb carbon: a review of graphene. Chem Rev 110:132–145. https://doi.org/10.1021/cr900070d

  26. Viculis LM, Mack JJ, Kaner RB (2003) A chemical route to carbon nanoscrolls. Science 299:1361. https://doi.org/10.1126/science.1078842

  27. Reina A, Jia XT, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus SM, Kong J (2009) Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett 9:30–35. https://doi.org/10.1021/nl801827v

  28. Ryu J, Kim Y, Won D, Kim N, Park JS, Lee EK, Cho D, Cho SP, Kim SJ, Ryu GH, Shin HAS, Lee Z, Hong BH, Cho S (2014) Fast synthesis of high-performance graphene films by hydrogen-free rapid thermal chemical vapor deposition. ACS Nano 8:950–956. https://doi.org/10.1021/nn405754d

    Article  CAS  Google Scholar 

  29. Kuila T, Bose S, Hong CE, Uddin ME, Khanra P, Kim NH, Lee JH (2011) Preparation of functionalized graphene/linear low density polyethylene composites by a solution mixing method. Carbon 49:1033–1037. https://doi.org/10.1016/j.carbon.2010.10.031

    Article  CAS  Google Scholar 

  30. Potts JR, Lee SH, Alam TM, An J, Stoller MD, Piner RD, Ruoff RS (2011) Thermomechanical properties of chemically modified graphene/poly(methyl methacrylate) composites made by in situ polymerization. Carbon 49:2615–2623. https://doi.org/10.1016/j.carbon.2011.02.023

    Article  CAS  Google Scholar 

  31. Wang JY, Yang SY, Huang YL, Tien HW, Chin WK, Ma CCM (2011) Preparation and properties of graphene oxide/polyimide composite films with low dielectric constant and ultrahigh strength via in situ polymerization. J Mater Chem 21:13569–13575. https://doi.org/10.1039/C1JM11766A

    Article  CAS  Google Scholar 

  32. Xu X, Yang C, Yang J, Huang T, Zhang N, Wang Y, Zhou Z (2017) Excellent dielectric properties of poly(vinylidene fluoride) composites based on partially reduced graphene oxide. Compos B Eng 109:91–100. https://doi.org/10.1016/j.compositesb.2016.10.056

    Article  CAS  Google Scholar 

  33. Wang P, Chong H, Zhang J, Yang Y, Lu H (2018) Ultralow electrical percolation in melt-compounded polymer composites based on chemically expanded graphite. Compos Sci Technol 158:147–155. https://doi.org/10.1016/j.compscitech.2018.01.022

    Article  CAS  Google Scholar 

  34. Zaheer U, Khurram AA, Subhani T (2018) A treatise on multiscale glass fiber epoxy matrix composites containing graphene nanoplatelets. Adv Compos Hybrid Mater 1(4):705–721. https://doi.org/10.1007/s42114-018-0057-y

  35. Xia H, Wang K, Yang S, Shi Z, Wang H, Wang J (2016) Formation of graphene flowers during high temperature activation of mesocarbon microbeads with KOH. Microporous Mesoporous Mater 234:384–391. https://doi.org/10.1016/j.micromeso.2016.07.046

    Article  CAS  Google Scholar 

  36. Shen B, Zhai W, Tao M, Lu D, Zheng W (2013) Chemical functionalization of graphene oxide toward the tailoring of the interface in polymer composites. Compos Sci Technol 77:87–94. https://doi.org/10.1016/j.compscitech.2013.01.014

    Article  CAS  Google Scholar 

  37. Sadagopan K, Ratna D, Samui AB (2003) Synthesis and characterization of liquid-crystalline epoxy and its blend with conventional epoxy. J Polym Sci Part A: Polym Chem 41:3375–3383. https://doi.org/10.1002/pola.10923

    Article  CAS  Google Scholar 

  38. Tang L, Zhang JL, Gu JW (2021) Random copolymer membrane coated PBO fibers with significantly improved interfacial adhesion for PBO fibers/cyanate ester composites. Chinese J Aeronaut 34(2):659–668. https://doi.org/10.1016/j.cja.2020.03.007

    Article  Google Scholar 

  39. Xia HY, Wang JP, Shi ZQ, Liu GW, Qiao GJ (2012) Sliding wear behavior of mesocarbon microbeads based carbon materials. Wear 274–275:260–266. https://doi.org/10.1016/j.wear.2011.09.004

    Article  CAS  Google Scholar 

  40. Xia HY, Qiao GJ, Zhou SL, Wang JP (2013) Reciprocating friction and wear behavior of reaction–formed SiC ceramic against bearing steel ball. Wear 303:276–285. https://doi.org/10.1016/j.wear.2013.03.038

    Article  CAS  Google Scholar 

  41. Dhieb H, Buijnsters JG, Eddoumy F, Celis JP (2011) Surface damage of unidirectional carbon fiber reinforced epoxy composites under reciprocating sliding in ambient air. Compos Sci Technol 71:1769–1776. https://doi.org/10.1016/j.compscitech.2011.08.012

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Shaanxi Innovation Capacity Support Program (2018TD-031), Natural Science Foundation of Shaanxi (2018JQ5008), Fundamental Research Funds for the Central University (XJJ2018003), and Science and Technology project from Headquarters of State Grid Co., LTD (SGAH0000KJJS1900437).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyan Xia.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, H., Li, J., Wang, K. et al. Superior wear resistance of epoxy composite with highly dispersed graphene spheres. Adv Compos Hybrid Mater 5, 173–183 (2022). https://doi.org/10.1007/s42114-021-00259-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-021-00259-4

Keywords

Navigation