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Abstract 
Since extracorporeal membrane oxygenator (ECMO) has been utilized to save countless lives by providing continuous 
extracorporeal breathing and circulation to patients with severe cardiopulmonary failure. In particular, it has played an 
important role during the COVID-19 epidemic. One of the important composites of ECMO is membrane oxygenator, and 
the core composite of the membrane oxygenator is hollow fiber membrane, which is not only a place for blood oxygena-
tion, but also is a barrier between the blood and gas side. However, the formation of blood clots in the oxygenator is a key 
problem in the using process. According to the study of the mechanism of thrombosis generation, it was found that improv-
ing the hemocompatibility is an efficient approach to reduce thrombus formation by modifying the surface of materials. In 
this review, the corresponding modification methods (surface property regulation, anticoagulant grafting, and bio-interface 
design) of hollow fiber membranes in ECMO are classified and discussed, and then, the research status and development 
prospects are summarized.
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Nomenclature
ECMO  Extracorporeal membrane oxygenation
CPB  Cardiopulmonary bypass
ARDS  Acute respiratory distress syndrome
COVID-19  Corona Virus Disease 2019
VV access  Vein blood back into the vein
VA access  Vein blood back into the artery
CS  Chitosan
PE  Polyethylene
PDMS  Polydimethylsiloxane
PES  Polyethersulfone
PSU  Polysulfone
PP  Polypropylene

PMP  Poly(4-methyl-1-pentene)
OTR  Oxygen transmission rate
PLLA  Poly (L-lactide)
PMEA  Poly (2-Methoxyethyl acrylate)
PEO  Polyethylene oxide
PEG  Poly (ethylene glycol)
NWF  Nonwoven fabric membrane
MPC  2-Methacryloyloxyethyl phosphorylcholine
BMA  Butyl methacrylate
TSMA  Trimethoxysilyl propyl methacrylate
CABA  Poly[(2-(methacryloxy) ethyl)] 

carboxybetaine
SMAs  Surface-modifying additives
PU  Polyurethane
PCVD  Plasma chemical vapor deposition
LbL  Layer by layer
DOPA  3,4-Dihydroxyphenylalanine
PDA  Polydopamine
BSA  Bovine serum albumin
DTS  Alkyl trichlorosilane
AA  Arachidonic acid
cAMP  Adenosine cyclic phosphate
AT III  Antithrombin III
PF4  Platelet factor 4
APTT  Activated partial thromboplastin time
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AG  Argatroban
BVLD  Bivalirudin
ECs  Endothelial cell
PGI  Prostaglandin
EPC  Endothelial progenitor cell
PC  Phosphorylcholine
TF  Tissue factors

1 Introduction

Extracorporeal membrane oxygenation (ECMO) is an advanced 
medical equipment, which acts a vital role in the treatment of 
critically ill patients with cardiopulmonary impairment caused 
by infectious diseases such as “New Coronavirus”, “H1N1”, 
and “SARS” or other causes. Artificial lung has been applied 
in clinic for the first time since 1953. The initial use of artifi-
cial lung was limited to cardiopulmonary bypass (CPB) in car-
diac surgery [1]. In 1972, ECMO was derived from traditional 
extracorporeal CPB technology and used to cure severe acute 
respiratory distress syndrome (ARDS) [2–4]. Great progress 
has been obtained in the fields of internal medicine, pediatrics, 
intensive care, and transplantation [5].

Since the end of 2019, humans have been concerned 
about the medical treatment of critically ill patients in 
the outbreak of Corona Virus Disease 2019 (COVID-19) 
[6]. ECMO has been very effective in the therapy pro-
cess, because novel coronavirus attacks alveolar cells and 
causes the lungs to lose ventilation and then patients can-
not normally breathe. ECMO medical equipment is used 
to replace the patient’s natural lung function in emergency 
process. As shown in Fig. 1a, the main principle of ECMO 
is that as blood passes through the oxygenator, the oxy-
gen  (O2) concentration increases and the carbon dioxide 
 (CO2) concentration decreases [7, 8]. After the ECMO 
cycle, the non-oxygenated blood turns into oxygenated 
blood [9]. And then, it can be pumped back into the vein 
(VV access) or back into the artery (VA access) [5, 10]. 
This kind of machine provides continuous extracorpor-
eal respiration and circulation for patients with severe 
cardiopulmonary failure, thus extending treatment time 
and reducing deaths due to severe hypoxia or  CO2 reten- 
tion. Nowadays, as the core facility for the treatment of 
severe cardiopulmonary failure, ECMO is also known as 
the “last straw” and “golden weapon” for severe patients.

The essence of ECMO is a modified artificial heart-
lung machine, mainly composed of membrane oxygenator 
and blood pump [11, 12]. The former is mainly used to 
realize external respiratory, while the latter can maintain 
external respiration and replace the work of the heart 
because the blood pump has a heart-like pumping func-
tion [13, 14]. As shown in Fig. 1b, when a patient’s lung 
function is seriously impaired and conventional treatment 

fails, membrane oxygenator can undertake the task of 
gas exchange and gain precious time for the recovery 
of patients [15]. Similarly, when the cardiac function of 
patients is seriously damaged, the blood pump can perform 
the heart pumping function to achieve blood circulation.

The early artificial lung is to spread the blood on the plane to 
form a blood membrane and contact with oxygen to achieve the 
purpose of gas exchange and the later development of the bubble 
type artificial lung is to directly transfer oxygen into the blood 
for gas exchange [16, 17]. Both of them are to make oxygen and 
blood contact directly, which can cause damage to the blood to a 
certain extent, and also easily lead to gas embolism [18]. Nowa-
days, the separation membrane oxygenator is widely utilized in 
the artificial lung, and the use form has also developed from the 
original drum type and flat type to the hollow fiber membrane 
type [19, 20]. Since the late 1950s, the research on membrane 
materials with high permeability, high mechanical strength, free 
defects, and high biocompatibility has never stopped [13]. Mem-
brane oxygenator which carries blood oxygen and function is the 
core component of ECMO system, so it is very vital to study 
the design, fabrication, and further modification of membrane.

In this paper, it is reviewed that the common types of hol-
low fiber membranes are applied for ECMO, and the influ-
ence of various natural or synthetic polymer biomaterials 
on the membrane properties is discussed and summarized. 
However, problems such as protein deposition, blood leak-
age, thrombosis, and hemolysis have appeared in the practi-
cal application of ECMO. Therefore, the membrane materi-
als applied for blood oxygenation need to meet a series of 
requirements such as high-efficiency biocompatibility and 
hydrophobicity. Surface modification of membrane materi-
als is one of the most important investigation strategies in 
the design and development of ECMO. This paper intro-
duced and discussed the mechanism of thrombosis on the 
polymer materials surface and the modification methods of 
biomaterials surface to enhance their blood compatibility. 
Finally, some directions and views on the future modifica-
tion methods of ECMO membrane materials are proposed.

2  Polymeric hollow fiber membranes 
for ECMO

The gas permeable membrane is one of the main compo-
nents of the ECMO unit, which is a barrier between blood 
and sweep gas. Silicone rubber has good oxygen permeabil-
ity and blood compatibility, but its function of discharging 
carbon dioxide is poor. Nowadays, polymeric hollow fiber 
membranes are mostly applied for the membrane oxygenator 
in the ECMO system, in which basic structural characteris-
tics are uniform pore size and high porosity. The pore struc-
ture of hollow fiber membranes has an extremely impor-
tant effect on gas permeability and leakage of blood [21]. 
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Inappropriate pore size or pore distribution will affect the 
realization of hollow fiber membrane oxygenation function.

Too large pore size causes blood leakage, while too small 
pore size causes a decrease in gas transmission capacity. The 
oxygenation effect is poor when the pore size distribution 
is uneven or the ratio is too small [18]. Various natural or 
synthetic polymeric biomaterials are widely introduced in 
the manufacture of biomedical materials, but the most of 
employed polymers are still traditional materials, such as 
cellulose [22], chitosan (CS) [23], polyethylene (PE) [24], 
polydimethylsiloxane (PDMS) [25–28], polyethersulfone 
(PES) [29–31], polysulfone (PSU) [32], and the combination 

of acrylate and polyurethane-silicone polymer carbon com-
pound [33]. Highly hydrophilic materials such as ethyl cel-
lulose arouse the leakage of blood, which greatly shortens its 
service life. Therefore, materials such as polyethylene with 
stronger mechanical strength and hydrophobicity are used 
to replace the hydrophilic materials to solve this problem. 
However, the transition to hydrophobic materials initially 
had the limitation of low  O2 and  CO2 transport speed. This 
problem has been partially solved by adding a highly oxygen-
permeable hydrophobic polyorganosilane film [34].

For polydimethylsiloxane (PDMS), the coefficient of oxy-
gen permeability P(O2) is 600 Barrer, while it is 20 Barrer 

Fig. 1  a ECMO system work 
flow chart. b Membrane 
separation mechanism in the 
oxygenator
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for ethyl cellulose, 1 to 8 Barrer for polyethylene [35]. How-
ever, the oxygen permeability for PDMS membranes with 
different thicknesses of the continuous layer varies from 
35 ×  1010 to 90 ×  1010 Barrer [16].

Although PDMS-based materials are the most widely uti-
lized materials [36] in the preparation of ECMO membranes, 
they possess a series of major shortcomings. For example, the 
hydrophobic properties of these membranes lead to serious 
protein adhesion and thrombosis, so researchers will increase 
biocompatibility by changing the physico-chemical performance 
of the membrane surface, such as surface hydrophilic modifi-
cation, which will have a certain influence on the membrane 
performance [37–40].

Polypropylene (PP), composed of –CH2CH(CH3)–  
repeating units, is a linear hydrocarbon polymer [41]. It is the 
classical utilized polymer for microporous membrane prepa-
ration [42, 43]. PP membranes are not only widely used in 
water treatment, gas separation, and membrane crystallization, 
but also applied in the biomedical fields such as hemodialy-
sis, blood separation, blood oxygen exchanger, and biosensor 
[44]. Many hydrophilic modification methods are adopted to 
realize the functionalized PP membranes, including physical 
modification, graft polymerization, and plasma treatment. In 
a blood oxygenator application, platelet adhesion and protein 
adsorption are occurrence on the unmodified PP hollow fiber 
membrane surface. The products of Terumo Group in Japan 
(X-Coating) are coated with zwitterionic on the surface of PP 
material to make the material show hydrophilic properties and 
thus reduce surface protein fouling. However, PP membrane is 
prone to blood leakage defects during use [42].

The research of poly(4-methyl-1-pentene) (PMP) mem-
brane has realized the integration of the microporous inter-
nal structure and the dense outer layer in contact with blood, 
which is the most important recent practical achievement in the 
field of ECMO membrane materials [13]. Hollow fiber PMP 
oxygenator has excellent performance in gas exchange and 
maximum solves the problem of PP hollow fiber membrane 
blood leakage. The blood flow resistance is relatively low and 
it is easier to start. There are different kind of PMP membrane 
oxygenators currently commercially available, including Hilite 
LT (Medos), Lilliput 2 (Sorin), Quadrox-ID (Maquet), and so 
on [11]. As shown in Fig. 2, compared with other polymers, the 
oxygen transmission rate (OTR) of PMP has a great advantage 

[45–47]. And Table 1 summarizes the development process of 
ECMO dedicated gas-blood exchange membrane.

3  Hemocompatibility modification of ECMO 
membrane materials

Compared with other medical devices, ECMO has larger 
blood contact area. The surface area of oxygenator contact-
ing blood ranges from 0.8 to 2.5  m2, and the volume reaches 
75 to 250 ml. When the blood contacts with the surface of 
any non-autogenous materials, a series of reactions will occur 
rapidly, which will affect the human coagulation system and 
immune system, and eventually lead to thrombosis or hemol-
ysis. Therefore, it is necessary to promote the biocompat-
ibility by systemic anticoagulation or adjusting the physical 
and chemical characteristics of the material surface, which is 
huge challenges in clinical application of ECMO, especially 
in the term of lung transplantation or lung recovery. Bleed-
ing occurs in 27% to 60% of adult patients, and thrombosis 
occurs in approximately 10% of patients [48]. Thrombus is 
composed of platelets, red blood cells and fibrin network on 
the surface. Cells cannot adhere to the polymeric membrane 
directly, which need the receptor to bind with the protein on 
the membrane surface. Hence, the occurrence of coagulation 

Table 1  Development process of ECMO dedicated gas-blood exchange membrane

Development history Advantage Disadvantage

PDMS flat membrane 1. Good biocompatibility
2. Completely isolated from gas and blood
3. Suitable for long-term perfusion

The homogeneous film is thick 
and the gas permeation rate 
is low

PP hollow fiber membrane High gas permeation rate High incidence of blood leakage
PMP hollow fiber membrane 1. High gas permeation rate

2. Low incidence of blood leakage
1. Preparation difficulties
2. Difficult clinical operation

Fig. 2  Oxygen transmission rate of polymeric membranes
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and inflammation in ECMO is the adsorption of plasma pro-
teins (covalent or ionic reactions) [49]. As the plasma protein 
adsorption on the material surface, platelet adhesion to the  
surface of the plasma protein and complete their activation, 
platelet activation after release tissue factors (TF), which can 
promote the generation of thrombin and further activate plate- 
let, finally fibrin and platelets and red blood cells on the mate- 
rial surface to form the thrombus and accumulating expand  
[50, 51]. The cell-based model can accurately describe  
the enzyme cascade, and more clearly express the interaction 

between the inflammatory system and the coagulation system 
(Fig. 3), which are interrelated, and the activation of one sys-
tem tends to cross-activation of the other. According to the 
cell coagulation model, in order to alleviate the formation 
of thrombus, it can be intervened in two aspects roughly: (1) 
reduce the adhesion of fibrin on the material surface and (2) 
block or reduce the activation of thrombin. For the thrombosis 
pathway, several modification strategies can be proposed as 
shown in Fig. 4. The modification of membrane surface is very 
important to reduce the harmful phenomena such as thrombus.

Nowadays, the top three suppliers in the global ECMO mar-
ket: The first is Germany’s Maquet, which occupies more than 
70% of the Chinese market, followed by Medtronic at 10%. 
In addition, Sorin accounts for 10%. Other manufacturers are 
Terumo, Medos, and so on. The material modification methods 
of each company are summarized in Table 2. It can be found 
that the most commonly adopted modification approaches can 
be classified as chemical modification and biological modifi-
cation, chemical modification by grafting or coated polymer 
to change membrane surface properties or grafting heparin to 
reduce the activation of thrombin. Biological modification is 
through the utilization of albumin and phosphoryl choline build 
imitation biological cell membrane interface in the material 
surface. Combined with the relevant literature, the modification 
methods of membrane materials have always been concerned 

Fig. 3  Cell-based coagulation 
model [49]. In the cell-based 
model of coagulation, three 
phases of coagulation take 
place on the surface of cellular 
elements of the blood. While 
platelets take center stage, the 
impact of TF-bearing cells 
cannot be overlooked because 
multiple cell types can express 
TF, including endothelial cells, 
monocytes, and macrophages. 
Inactive forms of the coagula-
tion factors are presented in 
blue ovals while activated 
versions are presented in red 
ovals. Coagulation complexes 
are enclosed in parallelograms 
or hexagons. Drugs that interact 
with the coagulation cascade 
are identified and point to the 
specific factors they inhibit

Fig. 4  Modification strategies for thrombosis pathways
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by researchers, and the utilized modification approaches are 
also very extensive [52–56]. In this review, we analyze and 
summarize those methods; the modification strategies currently 
used were roughly classified into the following three types:

1. Change the physicochemical properties of the membrane 
surface to obtain relatively inert in response to blood;

2. Graft anticoagulant onto the membrane surface;
3. Design the biomimetic membrane interface.

Various methods of surface modification to enhance 
blood compatibility will be discussed. In this review, the 
representative methods of polymer surface modification are 
described in detail according to the above classification.

4  Physicochemical modification 
of the membrane surface

By changing the physical and chemical performance of mem-
brane surface, the reaction between the membrane material 
surface and blood can be reduced. According to different prin-
ciples, modification methods include hydrophilic modification, 
superhydrophobic modification, and so on. Hydrophilic modi-
fication is a widely used modification method [37, 62, 63]. As 
shown in Fig. 5a, after hydrophilic modification, the surface 
of the material forms a hydration layer, and protein does not 
directly contact with membrane surface. A great deal of protein 
adsorbed on the membrane surface decreases, followed by a 
decrease in platelet adhesion and activation, thus reducing the 
generation of thrombus. In contrast to surface hydrophilicity, 
surface superhydrophobic structure uses the interface with very 
low surface energy to make the interface tension between solid 
and liquid equal to that between gas and liquid under such a 
state [64, 65]. As shows in Fig. 5b, the interpretation of super-
hydrophobic surface is that the contact of liquid droplets on the 
rough surface is a composite contact. The liquid droplets cannot 

fill the grooves on the rough surface because of the trapped air 
under the liquid droplets. The blood compatibility of superhy-
drophobic structure has been reported. The superhydrophobic 
structure has excellent self-cleaning and anti-corrosion char-
acteristics; therefore, it possesses very low adhesion to protein 
substances in blood. Correspondingly, there is still a lack of lit-
erature support for the research on the durability of superhydro-
phobic structure characteristics in long-term continuous contact 
with water. There are many approaches to regulate the surface 
properties of ECMO membranes, such as chemical grafting, 
physical adsorption, ion deposition, etc., as following discussed.

Table 2  ECMO manufacturers and their coating materials

Manufacturer Coating name Modification technology Reference

Medtronic Carmeda heparin (anticoagulant) [57]
Trilium Compose Sulfonate groups, polyethylene oxide chains and heparin covalently bonded into the coat-

ing
[57]

Maquet Bioline human albumin (biomimetic)and heparin(anticoagulant) [58]
Safeline synthetic albumin (biomimetic) [58]
Softline A heparin free biopassive polymer(hydrophillic) [58]

Sorin Cobe Smart-X Polycaprolactone-Polydimethylsiloxane-Polycaprolactone (zwitterionic) [59]
P.h.i.s.i.o Phosphorylcholine (biomimetic) [60]

Terumo X-Coating Poly 2-methoxylacrylate (PMEA) (zwitterionic) [58]
Medos Hilite LT Covalently bonded heparin(anticoagulant) and albumin (biomimetic) [61]

Fig. 5  a Schematic diagram of hydrophilic modification. b Surface 
roughness for surface wetting models [66]
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4.1  Surface chemical modification

Grafting polymer onto the surface by chemical methods 
is the most common approaches in material modification. 
Initially, the researchers conducted a series of hydrophobic 
modification studies to reduce blood leakage, including poly 
(L-lactide) (PLLA), poly (choline phosphate methacrylate) 
copolymers, and poly (2-methoxyethyl acrylate) (PMEA) 
[67]; however, hydrophobic surface can aggravate protein 
adhesion fouling [68]. Hydrophilic modification is an effec-
tive method to enhance the biocompatibility, such as polyeth-
ylene oxide (PEO) or poly (ethylene glycol) (PEG), which are 
employed to enhance the surface hydrophilicity of materials 
and achieve antifouling ability [69–71]. Because of hydro-
philic properties of PEO, it can interact with water to generate 
a hydration layer, which repels proteins [72]. Meanwhile, the 
configurational migration of the PEO polymer backbone also 
fabricates a large repulsive volume, making it spatially repel 
protein adhesion and blocking potential adsorption sites. The 
extensive application of PEO in antifouling is due to its bio-
compatibility and oxidation stability [73]. In fact, when PEO 
is utilized to the surface of model substrates with physically 
stable (e.g., silicon [74, 75], glass [76], and gold [77]), protein 
resistance has been established. In this case, the silicone resin 
can be directly grafted and batch modified, and the PEO chain 
can be stably maintained on the film surface, which is inde-
pendent of environmental changes (air or water) [78].

In addition, there are also many studies using zwitterionic 
modification, including carboxyl betaine, betaine sulfate, and 
betaine phosphate, etc. [79]. Zwitterionic polymer is a kind 
of polymer that maintains neutral charge, with negative and 
positive charges within the same side chain, and has many 
modification applications in the blood contact materials. 
Therefore, zwitterionic polymer-modified materials exhib-
ited excellent resistance to non-specific bacterial adhesion, 
platelet adhesion, and protein adsorption. For example, just 
as Fig. 6 shows, Zhao et al. selected poly[(2-(methacryloxy) 
ethyl)] carboxybetaine (poly(CABA)) ester monomer covered 

in surface and introduced this monomer on the polypropyl-
ene nonwoven fabric membrane (PP NWF) surface to realize 
hemocompatibility modification by the technique of plasma 
pretreatment and a UV-induced graft polymerization [80]. Gu 
et al. prepared functional PSU membrane with zwitterionic 
sulfobetaine, which has better antifouling performance and 
stability [32]. Bao et al. synthesized an amphiphilic random 
copolymer composed of 2-methacryloyloxyethyl phosphoryl-
choline (MPC), butyl methacrylate (BMA), and trimethox-
ysilyl propyl methacrylate (TSMA) [81]. The copolymer has 
zwitterionic phosphorylated choline group and hydrophobic 
butyl side chain, which can be adsorbed on the hydrophobic 
surface to generate an outer membrane simulation coating.

4.2  Physical adsorption modification

In general, the chemical modification process is complex, 
and toxic monomer residues are often mixed; therefore, 
physical adsorption modification is sometimes selected 
[82]. Because van der Waals force generates between any 
two molecules, physical adsorption can occur on any solid 
surface. The molecules on the adsorbent surface have a free 
force field to attract the adsorbate due to the unbalanced 
force. Because it is caused by the adsorption between mol-
ecules, including the weak binding force, the low adsorp-
tion heat, and the rapid adsorption and desorption speed. 
To a certain extent, adsorbed substances are easy to resolve; 
therefore, physical adsorption is reversible.

The most difficult point of using physical dip-coating instead 
of chemical grafting is the stability of the coating [83]. Due to 
the lack of stability, physical dip-coating must be mixed with 
some chemicals which are easy to adhere to the substrate, such 
as surface-modifying additives (SMAs); it was an amphiphilic 
coupling polymer. For example, SMAs can be selected to mod-
ify polyurethane (PU) membrane, by spraying a stable SMA 
and poly (ether-urethane) on the outer wall of the membrane; 
the anticoagulation performance of PU membrane surface is 
finally realized and the stability was ensured [84]. Amiji and 
Park also reported that PEO homopolymer and block copoly-
mer were physically adsorbed on the biomaterial surface to 
prepare PEO-modified surface, and further enhance the blood 
compatibility of biomaterials [85]. Additionally, some simple 
physical approaches (e.g., flame and corona discharge) are cho-
sen to apply at the industrial level, as shown in Fig. 7.

4.3  Plasma deposition

Plasma chemical vapor deposition (PCVD) is a technology 
that uses plasma to activate reactive gases and promote them 
to chemically react on the substrate surface or near-surface 
space to form solid films [87]. The basic principle of PCVD 
technology is under the action of high frequency or direct cur-
rent electric field, and then, the source gas is ionized to form 

Fig. 6  Schematic illustration of the procedure for the preparation of 
the poly(CABA)-modified NWF membrane [80]
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plasma. Using low-temperature plasma as energy source, a 
proper amount of reaction gas is introduced, and plasma dis-
charge is used to activate the reaction gas and realize chemi-
cal vapor deposition; the flow is shown in the Fig. 8. The 
advantage of PCVD is that the collision between electrons and 
gas molecules can promote the breaking and recombination 
of chemical bonds of reaction gas molecules, leading to the 
generation of more active chemical groups, while the whole 
reaction system maintains a low temperature [86].

Pulsed vacuum cathode arc plasma deposition technology 
has been introduced to coat the poly (4-methyl-1-pentene) 
(PMP) gas exchange membrane with titanium dioxide to 
form a stable intermediate layer, which provides conditions 
for subsequent adhesion of proteins to the PMP membrane 
with strong hydrophobicity [88]. PCVD can also form amine 
functional groups on the surface of PMP fibers, and then bind 
functional amphoteric polymers (such as sulfonate betaine) 
to the material surface through ammonium functional groups 
[89]; the modified PMP membrane showed the decrease of 
80–95% in platelet deposition from whole ovine blood in 
comparison with non‐modified PMP membrane [90]. How- 

ever, the energy consumption of PCVD technology is higher 
than that of other chemical modification methods.

4.4  Self‑assembly technology

Layer by layer (LbL) assembly has gradually become a 
common approach to fabricate multilayer films on the 
surface of materials [91]. Multilayer films are gener-
ally composed of non-covalent electrostatic. Due to 
the salt structure of zwitterionic polymers, multilayer 
zwitterionic polymers are difficult to fabricate by ordi-
nary non-covalent electrostatic interactions. In addi-
tion, under the inf luence of different environments, 
covalent cross-linked multilayers are more stable than 
non-covalent electrostatically assembled multilayers. 
3,4-Dihydroxyphenylalanine (DOPA) and other catechol 
composite can be easily self-assembled in alkaline aque-
ous mixtures to form crosslinked polydopamine (PDA) 

Fig. 7  a Principles of corona 
treatment. b Principles of flame 
treatment [86]

Fig. 8  Plasma modification flow chart Fig. 9  The specific composition of each layer in LbL coating [95]
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structure and can strongly bind to different substances 
[92, 93]. Zhao and co-workers prepared cross-linked 
zwitterionic polymer multilayer and citric acid compos-
ite multilayer on PSU membrane through click chemistry 
enabled LbL assembly [94]. The composite multilayer 
membrane has resistance to platelet adhesion and protein 
adsorption and leads to more blood coagulation time. 
As shown in Fig. 9, on the paclitaxel/chitosan (PTX/
CS) NF membrane, the PMA polyanion and CS polyca-
tion were performed by layer-by-layer (LbL) assembly. 
The hemocompatibility of modified membrane surface 
was importantly enhanced, as shown by 60–70% adsorp-
tion suppression for bovine serum albumin (BSA) and 
bovine plasma fibrinogen and 94% adhesion suppression 
for platelets [95].

4.5  Design membrane surface structure

Nowadays, it has been studied that the bio-adhesion behavior 
could be adjusted on the chemical gradient surface [96, 97]. 
Some reports have also shown that the gradient surface of 
the material has good hemocompatibility and can reduce 
thrombosis, which further means that due to the spontane-
ous droplet movement of the gradient surface, it may be uti-
lized to modify the material surface to alleviate thrombosis 
[98, 99]. So far, many methods have been investigated to 
obtain gradient surfaces, including the creation of chemical 
gradients, structural morphologies, temperature, and power 
gradients [100, 101]. The creation of surface chemistry and 
structural terrain gradients is of increasing interest due to the 
reduction in external energy supply.

For example, PDMS surfaces can be prepared by single-
step laser treatment, or on this basis, Zhang et al. also com-
bine the adhesion resistance, flow resistance, and hemolysis 
rate of the wettability gradient surface to improve the perfor-
mance of the membrane surface. As can be seen in Fig. 10, 
a wettability gradient surface was fabricated via ultra-short 
pulse laser etching technology, and then coated with stearic 
acid [102]. After treatment, the surface could form a superhy- 
drophobic self-cleaning interface, which effectively reduces  
the fouling of blood on the material surface. It can also be  
done by simple diffusion and adsorption; an alkyl trichlorosi- 

lane (DTS) paraffin oil solution was used to form a wettabil-
ity gradient surface on the silicon surface [100]. However, the 
membrane surface may lose its super-hydrophobic property 
easily due to immersion in long-term aqueous solution [103]; 
based on the current investigation, it is still difficult to meet 
the requirements of practical application.

5  Graft anticoagulant

Anticoagulants are used to prevent and treat diseases of 
endovascular embolism or thrombosis. It can be divided 
into antiplatelet drugs and anticoagulant agents [104]. 
Antiplatelet drugs can inhibit the metabolism of arachi-
donic acid (AA) and increase the concentration of adeno-
sine cyclic phosphate (cAMP), thereby inhibiting platelet 
adhesion and aggregation. Common types include aspi-
rin, dipyridamole, clopidogrel, etc. Anticoagulants can 
avoid blood clotting by affecting certain coagulation fac-
tors during the coagulation process, including heparin, 
low molecular weight heparin, Warfarin, Rivaroxaban, 
Dabigatrine etidic acid, and Agratoban, etc. [104]. The 
action mechanism and dose type of common antico-
agulants are shown in Table 3. Anticoagulants used for 
injection usually can be directly conducted to modify 
the surface of membrane materials. Figure 11 summa-
rizes the specific blocking sites of major anticoagulants 
in the market during the coagulation process. Grafting 
anticoagulant on the basis of polymer modification to 
enhance the blood compatibility of polymer is a vital 
direction of surface modification of ECMO membrane 
materials [105].

5.1  Heparin

Heparin is a kind of widely used, powerful anticoagulant 
drugs [107]. As can be seen from Fig. 11, heparin is a 
highly effective natural systemic anticoagulant, which 
is mainly used to prevent and treat thrombosis or embo-
lism diseases, such as myocardial infarction, thrombo-
phlebitis, pulmonary embolism, etc., and also used in 
hemodialysis, extracorporeal circulation, catheterization, 
microvascular surgery, and other operations. It relies on 
antithrombin III (AT III) to inhibit thrombin, by chang-
ing the AT III conformation, increased its attached to the 
ability of thrombin. Therefore, heparin can effectively 
inactivate thrombin and contains serine proteases (such 
as XII alpha factor, XI alpha factor, IX alpha factor, X 
alpha factor, etc.) [108].

Heparin immobilization is usually accomplished by 
surface covalent bonding and surface polymerization or 
surface ion interaction. Heparin contains acidic muco-
polysaccharides of varying lengths, so one can add a layer 

Fig. 10  Schematic illustration of the fabrication process of wettability 
gradient surface [102]
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of amino group on the surface, and then reacts with the 
end of the polysaccharide chain of heparin. The link-
ing process is relatively simple and suitable for various 
compounds (Fig. 12). The end-point covalent bonding 
between polymer surface and heparin was first marketed 
in the form of Carmeda bioactive surfactant (Carmeda, 
Switzerland). Later, similar heparin coatings (such as 
Hilite LT (MEDOS) and Bioline (MAQUET)) have been 
used by other manufacturers. Generally, the application 
of heparin coating is considered to be successful in the 
medical field, but heparin will non-specifically bind other 
molecules, such as platelet factor 4 (PF4), plasma pro- 
tein, and white blood cells, which not only decreases the 
availability of heparin binding, but leads to side effects 
such as thrombocytopenia [109]. It may further improve 

the risk of bleeding complications in patients with bleed-
ing, and therefore, the use of heparin requires constant 
monitoring of activated partial thromboplastin time 
(APTT).

5.2  Argatroban

Argatroban (AG), as a piperidine carboxylic acid deriva-
tive of the synthesized L-arginine, can directly inhibit the 
activity of thrombin reversibly [110]. Both free thrombin in 
circulation and thrombin in blood clots can combine with it 
rapidly to produce anticoagulant effect [111].

Many literatures have reported the use of AG in ECMO 
therapy for thrombocytopenia patients [106, 112]. In 
imitation of the idea of the surface of heparin modified 
material, researchers used AG to improve the anticoagu-
lant energy on the material surface. AG was applied to 
coat polyurethane stent and found that the stent had good 
anticoagulant effect [113]. As shown in Fig. 13, Dai et al. 
proposed the strategy of using AG instead of heparin as 
coagulant to modify the surface of PES membrane, and 
use PDA as intermediate linker to graft AG to modify PES 
membrane surface can effectively reduce thrombocytope-
nia caused by heparin [29]. As we all know, AG is not 
absorbed in the gastrointestinal tract; therefore, it must 
be administered in parenteral way. However, this drug by 
intravenous injection can be toxic to the liver.

5.3  Bivalirudin

As a synthetic version of the leech-derived anticoagu-
lant hirudin, bivalirudin (BVLD) has two thrombin 
binding sites [114, 115]. The remainder of the drug is 
cleared through a renal mechanism, so bivalirudin is 
more attractive than argatroban for patients with liver 
failure. Because of the partial enzymatic cleavage, biva-
lirudin has a short half-life (30 min), which is suitable for 

Table 3  Summary of common 
anticoagulants

Drug name Mechanism Dose type Reference

Clopidogrel ADP receptor/P2Y12 receptor antagonist Tablet [104]
Enoxaparin Indirect coagulation factor Xa inhibitors Injection [104]
Rivaroxaban Direct coagulation factor Xa inhibitors Tablet [104]
Dabigatran etexilate Direct thrombin inhibitor Capsule [104]
Bivalirudin Direct thrombin inhibitor Injection [104]
Apixaban Direct coagulation factor Xa inhibition Injection [106]
Warfarin Vitamin K antagonists Tablet [104]
Argatroban Direct thrombin inhibitor Injection [106]
Heparin sodium Indirect thrombin inhibitors Injection [106]
Treprostinil sodium Adenylyl cyclase activators Injection [104]

Fig. 11  The specific blocking sites of anticoagulants during the coag-
ulation process [106]
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short-term treatments, such as extracorporeal circulation 
and percutaneous coronary intervention [49]. Although 
the drug degrades with stagnation of blood flow, it may 
cause unintended clotting in the extracorporeal circula-
tion machine’s repository or in any stagnation region of 
the ECMO circuit. This property increases the difficulty 
of clinical use.

Fixing the Bivalirudin to the membrane material can  
further control the drug’s slow release and reduce the  
blood clotting caused by the drug during circulation. By 

introduce plasma polymerized allylamine coating or intro-
duce a hydrophobic cap onto the membrane surface, then 
connect the BVLD to the membrane surface [116]. Or as 
shown in Fig. 14, Yang et al. used PDA to functionalize  
 TiO2 nanotube arrays. Meanwhile, the BVLD was selected 
as a model drug. Modified membrane material both  
in vitro and ex vivo blood evaluation results confirmed  
that this coating was importantly enhanced the hemo- 
compatibility [117]. However, only little corresponding 
work on covalent immobilization of BVLD on biomedical 

Fig. 12  The scheme for the 
dopamine cross-linking on 
PE porous membranes and 
subsequent heparin immobiliza-
tion [24]

Fig. 13  PDA coating and AG/mPEG-NH2 immobilization onto the PES membrane surface [29]

857Advanced Composites and Hybrid Materials (2021) 4:847–864



1 3

materials was reported for enhancing hemocompatibility, 
because the hydrophobic cap may prevent the hydrophilic 
drug release into an aqueous solution.

6  Design biofilm biomimetic interface

Endothelial cells (ECs) constituted the inner wall of  
the blood vessel that are the interface between blood  
in the vascular lumen and other blood vessel walls  
(single-layer squamous epithelium) [118]. ECs are 
located along the entire circulatory system, from the 
heart to the smallest capillaries, located between the 

blood and the vascular tissue. It cannot only ensure the 
metabolic exchange of plasma and tissue fluid, but also 
synthesize and secrete a great deal of biologically active 
substances, so that it guarantees the normal contraction 
and relaxation of blood vessels [119]. The most impor-
tant thing is to achieve a balance between coagulation 
and anticoagulation and preserve the normal f low of 
blood. And there are natural anticoagulant composites 
on the endothelial cell membrane (e.g., prostaglandin 
(PGI) and heparin).

Just as shown in Fig. 15b, anticoagulant material on the 
endothelial cell surface can lessen the formation of throm-
bosis and platelet activation. Endothelial change not only 
on the physical cover the thrombus cells and blood coagu-
lation factor to the outer surface of the adhesive, but also 
by resisting thrombosis and the expression of surface of 
anti-inflammatory molecules inhibit thrombosis, actively 
stop the bleeding [120].

6.1  Surface endothelialization

Endothelialization on the anticoagulant material surface 
can decrease thrombus formation and platelet activa-
tion. It is considered to be an effective method to obtain 
complete compatibility between biological blood and 
materials; thrombosis is inhibited to actively maintain 
hemostasis through the expression of anti-thrombosis 
and anti-inflammatory surface molecules [121, 122]. 
As shown in Fig. 16, by establishing a continuous layer 
of endothelial cells on the PMP membrane surface, the 
blood compatibility of the membrane surface can be 
effectively improved.

Fig. 14  Scheme of the possible loading mechanisms of BVLD to the NTs [117]

Fig. 15  a The membrane structure. b Schematic diagram of biomi-
metic interface of biofilm
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Endothelialization of the surface can be obtained by 
two different approaches: in vitro pre-endothelialization 
of the EC or endothelial progenitor cells (EPCs)-based 
in  vivo induced self-endothelialization [47]. In  vitro 
endothelialization was initially developed by direct 
implantation of autologous endothelium into the luminal 
surfaces of synthetic vascular grafts, scaffolds, and tissue-
engineered vessels prior to implantation. EPCs are mon-
onuclear cells derived from bone marrow and have the 
potential to differentiate into mature functional ECs. They 
can form functional endothelium in vivo and act a sig-
nificant role in vascular repair and re-endothelialization 
[123]. However, the complex structure of endothelial cells 
and the high difficulty operation of material endotheliali-
zation, the current research on how to establish a single 
layer of endothelial tissue on the gas exchange of ECMO 
equipment is not mature enough.

6.2  Graft phosphorylcholine

Because it is difficult to construct endothelial cells on the 
surface of the material, it is also an effective modifica-
tion method to graft the components of biofilm on the 
material surface to imitate the biological interface. As 
shown in Fig. 15a, the theme structure of the membrane 
is the phospholipid molecular layer. Phosphorylcholine 
(PC) group is the hydrophilic part of phospholipid, widely 
exists in biofilms, and can be utilized as biomimetic part 
of materials [124, 125]. After the surface modification 
of PC layer, the material has been proved to have excel-
lent anti-platelet adhesion and anti-protein adsorption 
performance [126, 127], coating PC on the PDMS sur-
face to change surface properties (Fig. 17). The biomi-
metic synthetic phospholipid polymer, composed of MPC 
and phosphorylcholine group, has enhanced the surface 
characteristics of biomaterials. During the research, the 
base material can also be changed into PMP material, and 
a layer of PC is coated on the PMP hollow fiber mem-
brane surface to prepare the PC fully coated oxygenator; 

the results show that the biocompatibility is effectively 
improved [90].

6.3  Graft protein

Coating the material with natural or synthetic proteins 
to reduce fibrin adhesion and platelet activation is also a 
widely used modification method. Protein-coated meth-
ods have been used in many companies’ products such as 
Hilite LT (MEDOS), Bioline, and Safeline (MAQUET).

The first protein used to pre-coat the blood contact 
surface is albumin [128]. Using ionic or covalent bond-
ing to the surface of the material, the aim of the albu-
min pre-coating is to supply a protein base layer that 
can delay or reduce the biological response to severely 
hydrophobic surfaces. The adsorbed albumin not only 
improves the hydrophilicity of the surface, but also 

Fig. 16  ECs established cell-
cell and cell-substrate contacts 
on  TiO2-coated PMP films [88]

Fig. 17  Schematic drawing for protein adsorption and platelet adhe-
sion at a CS-GA/water interface and b cell outer membrane mimetic 
phosphorylcholine/water interface [127]
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offers a competitive protein for fibrin to replace the 
adhesion of fibrin. Albumin covalently attached to the 
surface (e.g., Safeline manufactured by Maquet) guaran-
tees that it remains on the surface of the material with-
out being replaced. Subsequent anticoagulation studies 
of this coating implied the concentration of surface 
fibrinogen and platelets will decrease in a short period 
of time. Some evidence indicated that it will reduce the 
activation of coagulation factors [129]. BSA is a kind of 
natural globulin and is often used in a modified protein, 
can go through grafting polymerization by multiphase 
light to acrylic acid grafted membranes, and fix the BSA 
on the surface (Fig. 18), its protein can significantly 
reduce pollution of the modified membrane surface, 
Fang et al. transplanted BSA into the same polyether 
sulfone membrane surface to improve its biocompat-
ibility [130].

7  Conclusion and prospect

ECMO has developed for several decades, and it is vital to 
human survival and development. The key point in its long-
term application is to enhance the property of membrane 
materials, and oxygen exchange efficiency is a vital indicator 
for evaluating the property of membrane materials. After 
decades of research progress, it is gradually developed into 
hollow fiber membrane material prepared by PP or PMP, 
which can meet the requirements of oxygen exchange for 
blood oxygenation [132–136].

On the premise of ensuring the blood oxygen exchange 
of membrane materials, the blood biocompatibility of 
membrane materials determines the use time of membrane 

oxygenator. At present, commercial hollow fiber membrane 
materials are mainly surface inertia modification based on 
PP and PMP materials, or surface modification using anti-
coagulant drugs and biomimetic interface strategies. Con-
sidering the limitation of single modification to enhance the 
performance, the future research can combine two or more 
modification strategies to carry out multi-layer modifica-
tion to further improve the material performance. Although 
now, there have been several manufacturers of products on 
the market, for patients, the shortage of equipment and the 
high cost of ECMO treatment still prevent many patients 
from receiving effective treatment. Oxygenator needs fre-
quent replacement, resulting in that the treatment cost and 
the operation difficulty increases, but the modification con-
ditions far cannot satisfy the needs of patients with long 
time use of the medical profession. Thus, for the scientific 
researchers, modification of membrane materials for long-
term operation is still a big challenge.
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