Skip to main content
Log in

Synergistically improved methane production from anaerobic wastewater treatment by iron/polyaniline composite

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

The methane (CH4) production could be enhanced effectively by adding iron oxides and polyaniline (PANI) composite in anaerobic wastewater treatment. Synergic improvement on the methane production was observed in anaerobic system which was amended by the iron oxides/PANI composite. A total of ~530 mL of methane was produced from the anaerobic bio-system added composite, which was ~1.5 times of the sum of the systems added with the iron oxides and PANI. Then, the effect of the addition of the iron oxides/PANI composite on the degradation of organics, metabolism of the acetic acid, and the bio-electron transfer at the interface of composite was also investigated. The results showed that the iron oxide component in composite increases the activity of PTA enzymes to improve the production of acetic acid, thereby increase the methanogenesis by the acetoclastic methanogens. The PANI layer of the composites has a high bio-affinity, which makes the bio-electron transfer between the interface of electron-carrier and the material easier. Generally, the addition of iron oxides/PANI composite improved methanogenesis by the acetoclastic methanogens as well as improve the microbial extracellular electrons transfer at the interface of material.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Duan J, Jin W, Krishna R (2015) Natural gas purification using a porous coordination polymer with water and chemical stability. Inorg Chem 54(9):4279–4284

    Article  CAS  Google Scholar 

  2. Park HA, Choi JH, Choi KM, Lee DK, Kang JK (2012) Highly porous gallium oxide with a high CO2 affinity for the photocatalytic conversion of carbon dioxide into methane. J Mater Chem 22(12):5304–5307

    Article  CAS  Google Scholar 

  3. Joglekar M, Nguyen V, Pylypenko S, Ngo C, Li Q, O’Reilly ME, Gray TS, Hubbard WA, Gunnoe TB, Herring AM (2016) Organometallic complexes anchored to conductive carbon for electrocatalytic oxidation of methane at low temperature. J Am Chem Soc 138(1):116–125

    Article  CAS  Google Scholar 

  4. Wang Z, Yelishala SC, Yu G, Metghalchi H, Levendis YA (2019) Effects of carbon dioxide on laminar burning speed and flame instability of methane/air and propane/air mixtures: a literature review. Energ Fuel 33(10):9403–9418

    Article  CAS  Google Scholar 

  5. Lavoie TN, Shepson PB, Gore CA, Stirm BH, Kaeser R, Wulle B, Lyon D, Rudek J (2017) Assessing the methane emissions from natural gas-fired power plants and oil refineries. Environ Sci Technol 51(6):3373–3381

    Article  CAS  Google Scholar 

  6. Haider S, Lindbråthen A, Lie JA, Carstensen PV, Johannessen T, Hägg MB (2018) Vehicle fuel from biogas with carbon membranes; a comparison between simulation predictions and actual field demonstration. Green Energy Environ 3(3):266–276

    Article  Google Scholar 

  7. Speth DR, Guerrero-Cruz S, Dutilh BE, Jetten MS (2016) Genome-based microbial ecology of anammox granules in a full-scale wastewater treatment system. Nat Commun 7:11172

    Article  CAS  Google Scholar 

  8. Wu L, Ning D, Zhang B, Li Y, Zhang P, Shan X, Zhang Q, Brown M, Li Z, Van Nostrand JD (2019) Global diversity and biogeography of bacterial communities in wastewater treatment plants. Nat Microbiol 4(7):1183–1195

    Article  CAS  Google Scholar 

  9. Hu Y, Wang XC, Ngo HH, Sun Q, Yang Y (2018) Anaerobic dynamic membrane bioreactor (AnDMBR) for wastewater treatment: A review. Bioresource Technol 247:1107–1118

    Article  CAS  Google Scholar 

  10. Lei Z, Yang S, Li Y-y, Wen W, Wang XC, Chen R (2018) Application of anaerobic membrane bioreactors to municipal wastewater treatment at ambient temperature: a review of achievements, challenges, and perspectives. Bioresource Technol 267:756–768

    Article  CAS  Google Scholar 

  11. Li Y, Chen Y, Wu J (2019) Enhancement of methane production in anaerobic digestion process: a review. Appl Energ 240:120–137

    Article  CAS  Google Scholar 

  12. Xu H, Chang J, Wang H, Liu Y, Zhang X, Liang P, Huang X (2019) Enhancing direct interspecies electron transfer in syntrophic-methanogenic associations with (semi) conductive iron oxides: effects and mechanisms. Sci Total Environ 695:133876

    Article  CAS  Google Scholar 

  13. Wang T, Zhang D, Dai L, Chen Y, Dai X (2016) Effects of metal nanoparticles on methane production from waste-activated sludge and microorganism community shift in anaerobic granular sludge. Sci Rep 6(1):1–10

    Google Scholar 

  14. Kato S, Hashimoto K, Watanabe K (2012) Methanogenesis facilitated by electric syntrophy via (semi) conductive iron-oxide minerals. Environ Microbiol 14(7):1646–1654

    Article  CAS  Google Scholar 

  15. Hu Q, Sun D, Ma Y, Qiu B, Guo Z (2017) Conductive polyaniline nanorods enhanced methane production from anaerobic wastewater treatment. Polymer 120:236–243

    Article  CAS  Google Scholar 

  16. Li D, Huang J, Kaner RB (2009) Polyaniline nanofibers: a unique polymer nanostructure for versatile applications. Accounts Chem Res 42(1):135–145

    Article  CAS  Google Scholar 

  17. Bernard MC, Goff AHL, Joiret S, Dinh NN, Toan NN (1999) Polyaniline layer for iron protection in sulfate medium. Synthetic Met 102(1–3):1383–1384

    Article  CAS  Google Scholar 

  18. Webb B, Sali A (2016) Comparative protein structure modeling using MODELLER. Curr Protoc Bioinformatics 54(1):5.6. 1-5.6. 37

    Article  Google Scholar 

  19. Duhovny D, Nussinov R, Wolfson HJ (2002) Efficient unbound docking of rigid molecules. International workshop on algorithms in bioinformatics. Springer, pp 185–200

    Chapter  Google Scholar 

  20. Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ (2005) PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res 33(suppl_2):W363–W367

    Article  CAS  Google Scholar 

  21. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30(16):2785–2791

    Article  CAS  Google Scholar 

  22. Singh DB, Gupta MK, Singh DV, Singh SK, Misra K (2013) Docking and in silico ADMET studies of noraristeromycin, curcumin and its derivatives with Plasmodium falciparum SAH hydrolase: a molecular drug target against malaria. Interdiscip Sci 5(1):1–12

    Article  Google Scholar 

  23. Hou Y, Xu Z, Sun S (2007) Controlled synthesis and chemical conversions of FeO nanoparticles. Angew Chem 119(33):6445–6448

    Article  Google Scholar 

  24. Sanches E, Soares J, Mafud A, Fernandes E, Leite F, Mascarenhas YP (2013) Structural characterization of chloride salt of conducting polyaniline obtained by XRD, SAXD, SAXS and SEM. J Mol Struct 1036:121–126

    Article  CAS  Google Scholar 

  25. Sanches E, Soares J, Iost R, Marangoni V, Trovati G, Batista T, Mafud A, Zucolotto V, Mascarenhas Y (2011) Structural characterization of emeraldine-salt polyaniline/gold nanoparticles complexes. J Nanomaterial 2011.

  26. Sambaza S, Maity A, Pillay K (2019) Enhanced degradation of BPA in water by PANI supported Ag/TiO2 nanocomposite under UV and visible light. J Environ Chem Eng 7(1):102880

    Article  CAS  Google Scholar 

  27. Ghahari S, Ghafari E, Hou P, Lu N (2018) Hydration properties of cement pastes with al-zinc oxide and zinc oxide nanoparticles. ES Material Manuf 2:51–59

    Google Scholar 

  28. Waqas M, Kouotou PM, El Kasmi A, Wang Y, Tian Z-Y (2018) Facile synthesis of efficient Cu-Co-Fe ternary oxides by pulsed-spray evaporation CVD for CO oxidation. ES Energ Environ 1(2):67–73

    Google Scholar 

  29. Guivar JAR, Sanches EA, Bruns F, Sadrollahi E, Morales M, López EO, Litterst FJ (2016) Vacancy ordered γ-Fe2O3 nanoparticles functionalized with nanohydroxyapatite: XRD, FTIR, TEM, XPS and Mössbauer studies. Appl Surf Sci 389:721–734

    Article  Google Scholar 

  30. Bashir A, Mayedwa N, Kaviyarasu K, Razanamahandry L, Matinise N, Bharuth-Ram K, Tchokonté MT, Ezema F, Maaza M (2019) Investigation of electrochemical performance of the biosynthesized α-Fe2O3 nanorods. Surf Interfaces 17:100345

    Article  CAS  Google Scholar 

  31. Trchová M, Šeděnková I, Tobolková E, Stejskal J (2004) FTIR spectroscopic and conductivity study of the thermal degradation of polyaniline films. Polym Degrad Stabil 86(1):179–185

    Article  Google Scholar 

  32. Quillard S, Louam G, Buisson J, Boyer M, Lapkowski M, Pron A, Lefrant S (1997) Vibrational spectroscopic studies of the isotope effects in polyaniline. Synthetic Met 84(1–3):805–806

    Article  CAS  Google Scholar 

  33. Chen M, Wang M, Yang Z, Wang X (2017) High performance and durability of order-structured cathode catalyst layer based on TiO2@PANI core-shell nanowire arrays. Appl Surf Sci 406:69–76

    Article  CAS  Google Scholar 

  34. Lu XF, Chen XY, Zhou W, Tong YX, Li GR (2015) α-Fe2O3@PANI core–shell nanowire arrays as negative electrodes for asymmetric supercapacitors. ACS Appl Mater Inter 7(27):14843–14850

    Article  CAS  Google Scholar 

  35. Zhang Y, Jiang D, Wang Y, Zhang TC, Xiang G, Zhang Y-X, Yuan S (2020) Core-shell structured magnetic γ-Fe2O3@PANI nanocomposites for enhanced As (V) adsorption. Ind Eng Chem Res 59(16):7554–7563

    Article  CAS  Google Scholar 

  36. Qiu B, Xu X, Guo H, Dang Y, Cheng X, Sun D (2014) Anaerobic transformation of Cationic Red X-GRL with low levels of carbon source. Int Biodeter Biodegr 95:102–109

    Article  CAS  Google Scholar 

  37. Feng L, Chen Y, Zheng X (2009) Enhancement of waste activated sludge protein conversion and volatile fatty acids accumulation during waste activated sludge anaerobic fermentation by carbohydrate substrate addition: the effect of pH. Environ Sci Technol 43(12):4373–4380

    Article  CAS  Google Scholar 

  38. Weiland P (2010) Biogas production: current state and perspectives. Appl Microbiol Biot 85(4):849–860

    Article  CAS  Google Scholar 

  39. Rotaru A-E, Shrestha PM, Liu F, Shrestha M, Shrestha D, Embree M, Zengler K, Wardman C, Nevin KP, Lovley DR (2014) A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane. Energ Environ Sci 7(1):408–415

    Article  CAS  Google Scholar 

  40. Shima S, Warkentin E, Thauer RK, Ermler U (2002) Structure and function of enzymes involved in the methanogenic pathway utilizing carbon dioxide and molecular hydrogen. J Biosci Bioeng 93(6):519–530

    Article  CAS  Google Scholar 

  41. Pérez-Amigot D, Taleb V, Boneta S, Anoz-Carbonell E, Sebastián M, Velázquez-Campoy A, Polo V, Martínez-Júlvez M (1860) Medina M (2019) Towards the competent conformation for catalysis in the ferredoxin-NADP+ reductase from the Brucella ovis pathogen. BBA-Bioenergetics 10:148058

    Google Scholar 

  42. Spaans SK, Weusthuis RA, Van Der Oost J, Kengen SW (2015) NADPH-generating systems in bacteria and archaea. Front Microbiol 6:742

    Article  Google Scholar 

  43. Altschul SF, Wootton JC, Gertz EM, Agarwala R, Morgulis A, Schäffer AA, Yu YK (2005) Protein database searches using compositionally adjusted substitution matrices. FEBS J 272(20):5101–5109

    Article  CAS  Google Scholar 

Download references

Funding

This project is financially supported by the Fundamental Research Funds for the Central Universities (NO.2019YC04).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bin Qiu, Gang Song or Zhanhu Guo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Q., Zhou, J., Qiu, B. et al. Synergistically improved methane production from anaerobic wastewater treatment by iron/polyaniline composite. Adv Compos Hybrid Mater 4, 265–273 (2021). https://doi.org/10.1007/s42114-021-00236-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-021-00236-x

Keywords

Navigation