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Abstract
Habits often conflict with goal-directed behaviors and this phenomenon continues to attract interests from neuroscientists, 
experimental psychologists, and applied health psychologists. Recent computational models explain habit-goal conflicts 
as the competitions between two learning systems, arbitrated by a central unit. Based on recent research that combined 
reinforcement learning and sequential sampling, we show that habit-goal conflicts can be more parsimoniously explained 
by a dynamic integration of habit and goal values in a sequential sampling model, without any arbitration. A computational 
model was developed by extending the multialternative decision field theory with the assumptions that habits bias starting 
points of preference accumulation, and that goal importance and goal relevance determine sampling probabilities of goal-
related attributes. Simulation studies demonstrated our approach’s ability to qualitatively reproduce important empirical 
findings from three paradigms – classic devaluation, devaluation with a concurrent schedule, and reversal learning, and to 
predict gradual changes in decision times. In addition, a parameter recovery exercise using approximate Bayesian computa-
tion showcased the possibility of fitting the model to empirical data in future research. Implications of our work for habit 
theories and applications are discussed.

Keywords  Habit formation · Reinforcement learning · Habit-goal conflict · Sequential sampling models · Computational 
modeling · Decision field theory

Introduction

Habits and routines make up a large part of motivated behav-
iors in humans and animals. While habits often serve goal-
pursuits, psychologists have been fascinated by the situations 
where they conflict with each other. In daily life, people 
often repeat behaviors that benefited them in the past but 
compromise their current best interests. For example, at a 
road junction, a driver may quickly turn to the route that 

they usually take for years, despite being aware of an ongo-
ing construction that blocks that road. In laboratory instru-
mental learning experiments, when humans and animals are 
extensively trained to behave in certain ways, their behaviors 
become insensitive to the devaluation of the original goals 
that motivate those behaviors (e.g., Adams, 1982; Dickinson, 
1985; Tricomi et al., 2009; but see de Wit et al., 2018 for 
failed replications in humans). In social and health psychol-
ogy, strong habits have been shown to attenuate the influ-
ences of goal-related constructs (i.e., attitude, intention) on 
health behaviors (e.g., Triandis, 1977; Verplanken et al., 
1994; Zhang et al., 2022a, b; for reviews, see Gardner, 2015; 
Gardner et al., 2020). It is generally believed in psychol-
ogy and neuroscience that goal-directed learning and habit 
learning are two distinct yet interacting systems in the brain 
(Daw, 2018; Dolan & Dayan, 2013; Wood et al., 2022; Yin 
& Knowlton, 2006), but the exact mechanism of their inter-
action remains an open and intriguing question.

A principal way to understand the functioning of cogni-
tive systems is through computational modeling (Farrell & 
Lewandowsky, 2018). Following a general reinforcement 
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learning framework, many researchers have attempted to 
model habit-goal interaction as a competition between two 
distinct learning systems (e.g., model-free and model-based 
reinforcement learning), arbitrated by a central control unit 
(e.g., Daw et al., 2005; Keramati et al., 2011; Miller et al., 
2019; Pezzulo et al., 2013). Despite the differences among 
these models in terms of theoretical perspective and algo-
rithmic implementation, arbitration models share the same 
conceptual scheme (Fig. 1a). In two distinct learning sys-
tems, action values of different behavioral responses are 
learned, representing how much these responses satisfy the 
current or past goals of a learning agent. Because action val-
ues learned in the two systems may be in disagreement, an 
arbitration or meta-choice process is needed to decide which 
system controls behavior based on the relative strengths of 
the two systems. For example, either the habit or the goal 
system takes control if that system estimates action values 
with less uncertainty (Daw et al., 2005) or maximizes the 
variance of action-outcome contingencies or habit strengths 
among different behavioral responses (Miller et al., 2019). 
Other models use the “cached” action values from the habit 
system by default, but switches to the action values updated 
by the goal-directed system when the arbitrator recognizes 
that the benefit of the switching (e.g., increased accuracy) 
exceed its cost (e.g., extra time spent on model-based tree 
search) (e.g., Keramati et al., 2011; Pezzulo et al., 2013; 
see also Kool et al., 2017). After arbitration, the probability 
of selecting each behavioral response is proportional to its 
final action value (i.e., passing through a softmax function). 
Because the habit system lags behind the goal system in 
reaching its maximum performance but is ultimately more 
efficient, the control of behavior shifts from the goal-directed 
system to the habit system in the later stage of learning (see 
Fig. 1b). Note that our discussion so far assumes a “winner-
takes-all” mechanism, but the relative influences of the two 

systems on response selection can also be weighted based 
on the same arbitration rules (e.g., by their uncertainties) 
and the shift from goal-directed control to habit control will 
then be gradual.

Arbitration models have been successful in qualita-
tively reproducing some classic empirical findings in the 
instrumental learning literature, such as the insensitivity to 
goal devaluation effect (Daw et al., 2005; Keramati et al., 
2011; Miller et al., 2019), and new predictions from the 
models were supported by results from sequential decision 
experiments (e.g., Kool et al., 2017). Despite this success, 
arbitration models are not without problems. While the 
two separate learning systems and their neurological sub-
strates are well-established (Yin & Knowlton, 2006), the 
existence of an additional arbitrator in the brain remains 
a critical assumption, awaiting more neurophysiological 
evidence (but see Lee et al., 2014). Moreover, compared 
to the sophisticated reinforcement learning algorithms used 
for habit and goal-directed learning, response selection in 
all previous models is simplified as a softmax function. In 
other words, the response selection process is an “empty” 
model, with no cognitive process nor mechanism specified 
(Pedersen et al., 2017). This creates two further problems. 
First, after arbitration, the response selection process is the 
same, regardless of which system is in control. This contra-
dicts with the seemingly qualitative differences in how habits 
and goals influence behaviors – habitual responses are often 
conceptualized as impulses triggered by environmental cues 
(see Wood & Neal, 2007), which are sometimes overruled 
by goals. Second, the lack of a process model for response 
selection makes arbitration models ill-suited for accounting 
for the change of decision time over the course of habitu-
alization. Some arbitration models imply identical decision 
times for responses controlled by habits and goals (e.g., Daw 
et al., 2005; Miller et al., 2019), while other models produce 

Fig. 1   a A common scheme for 
arbitration models; b Predicted 
by arbitration models, control 
of response selection shifts 
from the goal-directed system 
to the habit system after a 
certain amount of training. 
These representations assume a 
“winner-takes-all” mechanism 
for response selection
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unrealistic sudden switches between very fast (habitual) and 
very slow (goal-directed) responses (e.g., Keramati et al., 
2011).

Very recently, there is a growing interest in using sequen-
tial sampling models as the response selection module in 
reinforcement learning models (Dunovan & Verstynen, 
2016; Fontanesi et al., 2019; Frank et al., 2015; Miletić et al., 
2020; Pedersen et al., 2017). In decision-making research, 
sequential sampling (also known as evidence accumulation) 
refers to a class of dynamic models implementing a “race-
to-threshold” mechanism (for reviews, see Forstmann et al., 
2016; Oppenheimer & Kelso, 2015), including drift diffu-
sion models (e.g., Ratcliff, 1978; Ratcliff & Rouder, 1998), 
the linear ballistic accumulator model (e.g., Trueblood 
et al., 2014), and decision field theories (e.g., Busemeyer & 
Townsend, 1993; Roe et al., 2001). All these models assume 
that a decision-maker accumulates evidence or preferences 
for different response options by sampling information from 
their environment and/or memory, and once the accumulated 
evidence or preference for a certain response option exceeds 
a decision threshold, the final decision is made. Within a 
sequential sampling framework, the learned action values 
from reinforcement learning algorithms can be mapped to 
the speeds of accumulation for different response options 
(i.e., drift rates), instead of being fed to a softmax function. 
Recent empirical studies have shown that models combin-
ing reinforcement learning and drift diffusion models can 
adequately account for both choice and decision time data 
obtained from human instrumental learning experiments 
(Fontanesi et al., 2019; Frank et al., 2015; Pedersen et al., 
2017). Given these results and the success of sequential sam-
pling models in many other areas (Forstmann et al., 2016), 
we hypothesized that a sequential sampling approach can 
also be used to explain habit-goal interactions, if habits and 
goals can be mapped to distinct parameters in a sequential 
sampling model.

Two distinct determinants of any sequential sampling pro-
cess are the starting point of evidence or preference accumu-
lation (baseline evidence strength or preference) and the drift 
rate at each step of accumulation (Forstmann et al., 2016). 
When introducing the multialternative decision field theory 
(MDFT), Roe et al. (2001) discussed a possible mapping of 
habits and goals to starting point and drift rate respectively, 
but the idea was not examined any further in the context 
of value-based decision-making. It is now customized to 
assume that the goal-directed system influences the sequen-
tial sampling process by changing the drift rates of different 
response options based on the action-values learned from 
reinforcement learning (Fontanesi et al., 2019; Frank et al., 
2015; Pedersen et al., 2017), but the mapping between habit 
strength and starting point remains unexplored. Empirical 
evidence for the latter mapping comes mainly indirectly 
from perceptual decision-making research, where a typical 

task requires judging the movement direction of groups of 
dots. It was found that while drift rate related to stimulus 
ambiguity in the current trial, starting point related instead 
to past choices (Bode et al., 2012; Mulder et al., 2012; van 
Ravenzwaaij et al., 2012; but see Urai et al., 2019). If a simi-
lar distinction between past and current information applies 
to value-based decision-making, then habits and goal-related 
action values may play the same roles as past choices and 
current perceptual evidence respectively. Furthermore, 
Akaishi and colleagues (Akaishi et al., 2014) found that 
the way past choices influence current choice in the per-
ceptual domain is mathematically equivalent to a form of 
Hebbian learning (Hebb, 1949), which has been previously 
theorized to also underlie habit learning (Klein et al., 2011; 
Miller et al., 2019). Finally, the idea of having different start-
ing points for different response options is mathematically 
equivalent to an idea that some response options start the 
accumulation process earlier in time or certain options gain 
some preferences in a separate initial stage of accumulation. 
The latter idea has been explored in a two-stage drift diffu-
sion model where sampling from memory precedes a second 
stage of sampling from perceptual information (Bornstein 
et al., 2018; Wang et al., 2022). In a more general sense, ele-
vated starting points can be understood as stronger baseline 
preferences or a form of early preparation for the habitual 
response (see Hardwick et al., 2019).

In this paper, we formally propose a sequential sampling 
model in which habits and goals are integrated dynami-
cally and examine whether our model can qualitatively 
reproduce some well-known empirical demonstrations 
of habit-goal conflicts that were previously explained by 
arbitration models. We argue that a successful application 
of sequential sampling to habit-goal interaction can make 
three theoretical contributions. First, by mapping habits and 
goals directly to parameters in a sequential sampling model, 
our new approach does not require an arbitration between 
two learning systems and thus circumvent the need of find-
ing an “arbitrator” in the brain. Of course, we do not rule 
out the possibility that some arbitration-like processes are 
functionally useful and neurobiologically plausible, but as 
long as there is no strong evidence, sequential sampling pro-
vides a neurobiologically-plausible alternative (see Buse-
meyer et al., 2019; Dunovan & Verstynen, 2016). Second, 
the sequential sampling approach offers a principal way of 
explaining both decisions (behavioral responses) and deci-
sion time over the course of learning and habitualization. 
Conceptually, one can easily expect that as strong habits lead 
to starting points closer to the decision threshold, it would 
take less time to make a decision (i.e., reaching the thresh-
old) and leave less opportunities for the goal-directed sys-
tem to influence the accumulation process. Finally and more 
broadly, adding to previous works (Dunovan & Verstynen, 
2016; Fontanesi et al., 2019; Frank et al., 2015; Miletić 
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et al., 2020; Pedersen et al., 2017), a useful model that com-
bines reinforcement learning and sequential sampling con-
tributes to a more unified approach for modeling learning 
and decision-making in humans and other organisms.

In the remainder of the paper, we first present our com-
putational model that extends the MDFT by adding a goal-
directed and a habit learning component. Next, in three 
simulation studies, we show that the proposed model can 
reproduce choice and decision time patterns found in three 
instrumental learning tasks – classic devaluation paradigm, 
devaluation paradigm with a concurrent schedule, and rever-
sal learning, which were all used previously to validate the 
arbitration models. Furthermore, in order to evaluate the 
possibility of estimating model parameters from data, we 
report the results of a small-scale parameter recovery exer-
cise.1 Finally, implications of the findings for habit research 
and value-based decision-making are discussed, as well as 
limitations and suggestions for future work.

The Conceptual and the Computational 
Model

We first defined the structure of a typical instrumental learn-
ing task using an example of rodents learning to press a 
lever to obtain food (Fig. 2a), but the same task definition 
also applies to humans. In a constrained environment (e.g., 
a feeding cage), a learning agent is assumed to have a fixed 
number of goals that differ in their importance or goal val-
ues. For example, a rodent may strive primarily to obtain 
food, water, and mating opportunities, but sometimes also to 

enjoy leisure. To satisfy its goals, the agent needs to engage 
in certain behaviors, and it can be assumed that given the 
constrained environment, only a limited number of behav-
ioral responses are available, for example, to press a lever or 
to rest. For each goal-response pair, an attribute value rep-
resents the likelihood of achieving the goal by executing the 
behavior (e.g., lever-pressing scores high on attribute food, 
resting scores high on attribute leisure). Note that among 
all the goal-related attributes, some can be called unattain-
able attributes as no behavioral response in the constrained 
environment satisfies the associated goals (e.g., mating 
is an unattainable attribute given no other rodents in the 
cage). Finally, unrelated to goals,2 each behavioral response 
also holds a habit value, depending on how frequently the 
response was selected in the same task environment in the 
past (Thorndike, 1932). Cognitively, habit values reflect 
the strengths of mental associations between behaviors and 
environmental cues (Wood & Neal, 2007; Wood & Rünger, 
2016).

Overall, the task of a learning agent is to search for the 
behavioral response that maximizes the satisfaction of its 
various goals through repeated decisions. This representa-
tion is similar to the multi-armed bandit task in the rein-
forcement learning literature, where an agent learns the 
pay-offs of multiple slot machines through repeated deci-
sion trials (Sutton & Barto, 1998; for a similar representa-
tion of instrumental learning, see Fontanesi et al., 2019). 

Fig. 2   a A representation of 
behavioral responses, goals, 
and goal-related attribute values 
(thicker lines represent higher 
values) in a typical instrumen-
tal learning experiment with 
rodents; b A representation of 
the task as repeated alternations 
between decision-making and 
learning

1   R code for the model, simulation studies, and parameter recovery 
exercise can be found in the Open Science Framework (OSF) reposi-
tory: https://​osf.​io/​ycqdj/. Data sharing is not applicable to this arti-
cle as no empirical datasets were generated or analyzed during the 
reported studies.

2   There is an ongoing debate on whether habit learning depends on 
the decisions alone (value-free, see e.g., Miller et  al., 2018, 2019; 
Pauli et al., 2018) or also on decision outcomes (e.g., value-based, see 
Daw et al., 2005; Keramati et al., 2011). Because our objective was to 
propose a new model of habit-goal integration in response selection, 
we took the value-free view of habit learning for its simplicity and its 
similarity to the updating rule of prior choice’s effect in perceptual 
decision-making (Akaishi et al., 2014). In theory, our sequential sam-
pling approach should remain effective under the alternative view of 
habit learning.

https://osf.io/ycqdj/
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Conceptually, the learning task consists of a sequence of 
interconnected decision-making (response-selection) and 
learning processes (Fig. 2b). At each iteration, the cur-
rent goal values, attribute values, and habit values are 
integrated in a sequential sampling process to produce a 
decision (e.g., press the lever) and its associated outcomes 
(e.g., food delivered). Following the decision, perceived 
outcomes are used to update the agent’s beliefs about 
the attribute values of the behavioral responses (goal-
directed learning). Also, the habit values of the behav-
ioral responses are updated based simply on whether the 
responses are selected at this iteration (habit learning). The 
updated attribute values and habit values are used for the 
subsequent decisions.

Modeling Response Selection as a Sequential 
Sampling Process

For modeling response selection in the instrumental learning 
task, we adopted the general framework of the MDFT (Roe 
et al., 2001), but other sequential sampling models of value-
based decision-making should also work in principle (e.g., 
Trueblood et al., 2014; Usher & McClelland, 2001). Figure 3 
illustrates the model conceptually, showing how the outcome 
and time course of a response selection are determined in a 
sequential sampling process as influenced by four variables 

– starting points, sampling probabilities, drift rates at each 
time step, and a decision threshold.3

At the start of a sequential sampling process, starting 
points represent a learning agent’s baseline preference 
towards a set of behavioral responses. The model proposes 
that habitual responses are by default more favorable than 
the less habitual ones, represented by higher starting points4 
(Roe et al., 2001). The starting points or the preferences at 
t0 for all responses equal to their habit values (H) scaled by 
a scalar parameter �:

From their starting points, the agent’s preferences 
for different responses drift over time, and at each time 
step, the drifts depend on which goal-related attribute 
is sampled and how each response scores on the sam-
pled attribute. For example, if attribute food is sampled, 

(1)�(0) = ��

Fig. 3   A conceptual representation of a sequential sampling process and its inputs

3   For our applications, we assumed that decision-making processes 
are terminated internally by a decision threshold. However, decision-
making processes can also be forced to terminate at a time t, and the 
response with the highest preference at that time is chosen.
4   A different cognitive mechanism with the same consequence is 
that the agent starts to accumulate preferences for habitual responses 
earlier than other responses (see also Psarra, 2016).
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the preference for the response lever-press will increase 
greatly because lever-press scores high on attribute food. 
A key assumption of MDFT is that at one time step, the 
agent only samples one attribute, for example, either 
food or leisure. In the original MDFT, the sampling 
probabilities are equal for all attributes (i.e., sampling 
randomly). Instead, our model proposes that sampling 
probabilities of attributes are determined by two vari-
ables – the goal values of the attributes and the attain-
ability of attributes, which measure the importance and 
relevance of the attributes respectively in the current 
task. If, for example, obtaining food is more important 
than conserving energy for rodents, food will be sam-
pled more than leisure. Also, if one attribute is more 
attainable in the current task (contained more in the 
responses) than another attribute (e.g., some behavioral 
responses result in food, but none results in mating), it 
will be more likely to be sampled. Mathematically, a 
softmax function is used to calculate sampling prob-
ability ( Prj ), with the multiplications of goal value ( Gj ) 
and the attainability of attributes ( Aj ) as inputs and � as 
a scaling parameter,

where the attainability of each attribute is the sum of 
all responses’ scores on that attribute (Xij) , Aj =

∑N

i=1
Xij . 

Attribute values are often given externally in choice 
experiments, but in our learning task they are derived 
from learned probability distributions for each attribute. 
For the calculation of Aj , the model assumes that the 
expected mean reward values (EMRs) of the distribu-
tions are used. Later, attribute values sampled at each 
time step (Mij) are instead randomly sampled from the 
distributions.

Two implications of Eq. 2 are worth noting. First, the 
unattainable attributes will have very low though non-
zero sampling probabilities. As there can be many unat-
tainable attributes in a constrained task environment, the 
sum probability of sampling any unattainable attribute 
can be non-trivial, and it is similar to the probability of 
sampling noise, which is usually arbitrarily defined in 
sequential sampling models (e.g., Roe et al., 2001). Sec-
ond, goal values for different attributes are assumed to 
be stable in short time frames for each agent, but can be 
substantially changed through experimental procedures 
such as goal devaluation (e.g., Adams, 1982; Dickinson, 
1985). Consequently, if a food is devalued, its sampling 
probability decreases towards zero.

The rest of the model follows MDFT closely. When an 
attribute is selected based on sampling probabilities at time 
t, the momentary drift rates of behavioral responses (or 

(2)Prj =
e�GjAj

∑K

k=1
e�GkAk

valences as in Roe et al., 2001) are their attribute values on 
the sampled attribute, as in the matrix form:5

where �(t) is an N-dimensional valence vector represent-
ing the drift rates of different behavioral responses at dif-
ferent time steps. �(t) is a J-dimensional vector of attribute 
weights, in which the sampled attribute is weighed 1 and 
all others are weighed 0. Lastly, �(t) is an N-by-J matrix 
containing all attribute values for all responses. Unlike the 
original MDFT, where �(t) is fixed at all t, �(t)elements are 
randomly sampled according to the underlying probability 
distribution learned for each response-attribute pair at each 
time step.

Next, preferences �(t) at time t are determined by the 
preferences at the previous time step ( �(t−1) ) and the cur-
rent drift rates �(t) . Between two successive time steps, 
there is a decay or leakage of each preference itself, and 
there are influences from the preferences of competing 
responses in the form of lateral inhibition. Both processes 
are summarized in an N-by-N matrix S, in which elements 
on the main diagonal are equal to a self-decay parameter 
( Sself  ) and all other elements are equal to a lateral inhibi-
tion parameter (Slateral) . Thus, preferences are calculated 
in the matrix form:

When a behavioral response’s preference exceeds the deci-
sion threshold, a decision is made and the behavior is executed 
by the learning agent. Reward to be received relating to each 
attribute or goal is calculated by reward probabilities pre-
defined by the learning task (e.g., the reinforcement schedule 
of a learning experiment). Before making the next decision, 
habit values and goal-related attribute value distributions are 
updated.

Modeling Habit Learning

We assumed that habits are value-free, meaning that their 
updates depend only on the decisions themselves but not 
on the consequences brought by the decisions. Specifically, 
the model for habit learning uses the same Hebbian learning 
equation as in Miller et al. (2019), but is also conceptually 
compatible with other equations (Klein et al., 2011; Psarra, 
2016; Tobias, 2009):

(3)�(t) = �(t)�(t)

(4)�(t) = ��(t−1) + �(t)

5   In the original MDFT, valence is computed as �(t) = ��(t)�(t) , 
where � is an N-by-N contrast matrix with all the elements on the 
main diagonal equal to 1 and all other elements equal to −1∕(N − 1) . 
We comment on this change we made in the Discussion section.
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where learning rate �H controls how much habit values ( � ) 
change from one time point to the next,6 and �H is a scaling 
parameter which limits the upper-bound of habit values. The 
equation implies that with repeated behaviors, habit values 
increase fast at the beginning and then their growth slow 
down until the values reach their asymptotes. This pattern 
is consistent with empirical data on the dynamics of self-
reported habit strength (Lally et al., 2010).

Modeling Goal‑Directed Learning

Previous models have implemented model-based rein-
forcement learning algorithms for goal-directed learning 
(Daw et al., 2005; Keramati et al., 2011; Miller et al., 
2019). Since we simplified our task representation to 
a single-state repeated decision-making or multi-armed 
bandit problem rather than a Markov decision process, 

(5)�(T) = �(T−1) + �H(�H −�(T−1))
goal-directed learning is modeled with a simple algo-
rithm of Bayesian belief update – combining prior dis-
tributions (beliefs about attribute values before a deci-
sion) and data (perceived rewards) to obtain posterior 
distributions (beliefs after a decision). Assuming that 
the reward generation processes in learning experiments 
are Bernoulli processes, beta distributions can be used 
for both priors and posteriors. Formally, the updating 
rule is expressed as:

where the alpha and beta parameters defining the beta dis-
tribution of response i on attribute j are only updated by 
reward Rj(T) , if decision at T ( D(T) ) is to choose response i. 
To account for the nonstationary environments in typical 
experimental setups (e.g., reward functions can be suddenly 
changed by the experimenter), parameter � is used to inject 
uncertainty in the distributions. In other words, belief dis-
tributions always regress to a default distribution defined 
by � and � (a uniform beta distributions with both equaling 

(6)

�
�ij, �ij

�
←

⎧⎪⎨⎪⎩

�
(1 − �)�ij + ��, (1 − �)�ij + ��

�
, D(T) ≠ i�

(1 − �)�ij + �� + Rj(T), (1 − �)�ij + �� + 1 − Rj(T)

�
, D(T) = i

Table 1   Parameter values used in all three studies

Parameter Explanation Value

 Decision-making 
(Sequential sam-
pling)

� Scaling parameter for transforming habit strengths to starting points. The exact value is 
arbitrary, but it should scale the largest habit strength possible (close to 1) to the decision 
threshold (e.g., 1).

1

� Scaling parameter for the softmax function used in Eq. 2. The larger the value, the more 
dominant the largest input is in calculating the outputs. The value is arbitrary, but depends 
on the scale used for goal values, e.g., [0, 1]).

10

Sself Leakage parameter that measures on the information loss ( 1 − Sself ) in preference accumula-
tion (e.g., 0.94 used in Roe et al., 2001).

0.99

Slateral Lateral inhibition parameter that measures the competition among behavioral responses 
(e.g., -0.001 and − 0.025 used in Roe et al., 2001).

-0.03

DT Decision threshold for sequential sampling. The exact value is arbitrary, as it depends on the 
scales used for attribute values (e.g., [0, 1] in our studies).

1

maxStep The maximum time step allowed in a sequential sampling process if no response’s prefer-
ence exceeds decision threshold.

100

Nunattain Number of unattainable attributes. 10
 Habit learning �H Learning rate in the Hebbian equation for habit learning. The larger its value, the faster habit 

strengths update. Miller et al. (2019) used much smaller values (e.g., 0.001), and indeed 
many more training trials were required to reach full habit strengths (e.g., 6000).

0.04

AH Scaling parameter determining the upper bound of habit strength (usually 1, Miller et al., 
2019).

1

 Goal-directed learning � Uncertainty parameter that determines the rate of uncertainty injected in the Bayesian belief 
updates. The larger its value, the faster a learner discounts “old” information, or “forgets” 
faster (e.g., 0.01 used in Russo et al., 2018).

0.1

� Alpha parameter of the convergence distribution in the absence of observations (uniform 
beta distribution was used, see Russo et al., 2018).

1

� Beta parameter of the convergence distribution in the absence of observations. 1

6   The uppercase T in the equation denotes time point or decision 
point (e.g., trial number in experiments), which is different from the 
time step t in the sequential sampling of each decision.
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1), ensuring fast reactions of learning agents to changes in 
the environment.

Simulation Studies

In all three simulation studies to be discussed, except for 
task-specific variables, the same parameter values were used 
for all model parameters introduced in the last section (see 
Table 1).

Study 1: Classic Devaluation Effect

The classic devaluation effect shows that learning agents 
become insensitive to goal devaluation after extensive train-
ing, but remain sensitive after moderate training. The effect 
has been repeatedly replicated for both animals and humans 
(e.g., Adams, 1982; Dickinson, 1985; Killcross & Coutu-
reau, 2003; Liljeholm et al., 2015; Tricomi et al., 2009; Yin 
et al., 2004; Yin et al., 2005), and it has been considered a 
seminal finding for differentiating habits from goal-directed 
behaviors. The ability of reproducing the effect was also 
treated as a key empirical validation for the arbitration mod-
els (Daw et al., 2005; Keramati et al., 2011; Miller et al., 
2019).

In a typical animal devaluation experiment, rodents learn 
to press a lever to obtain food pallets through either moder-
ate or extensive pairing of the response and the food. After 
training, half of the rodents are subjected to a devaluation 
procedure, where the food becomes undesirable because of 
either a satiation procedure or a food-aversive conditioning 

(indicated as the “devalued” or “paired” group). The other 
half undertakes a similar procedure but with a different 
food not used in training (indicated as the “non-devalued” 
or “control” group). Finally, in an extinction test, no food 
pallets are delivered no matter how frequently the rodents 
press the lever. The devaluation effect manifests as an inter-
action effect. After moderate training, rodents in the deval-
ued group press the lever less often than their peers in the 
control group. For rodents that receive extensive training, 
their lever-pressing responses seem to become insensitive to 
goal devaluation – both the devalued and the control group 
press the lever with equal frequency.

In the simulated experiment, learning agents were trained 
to press the lever for either 40 or 240 trials (as in Keramati 
et al., 2011), in which they were assumed to have a higher 
goal value for obtaining food ( Gfood = 0.8 ) than for having 
some rest ( Gleisure = 0.4 ). Pressing the lever would lead to 
food 60% of the time,7 but never any leisure. Relaxing (no 
lever-pressing), on the other hand, always led to leisure but 
no food. Besides food and leisure, the agents were assumed to 
have 10 other important goals (Gunattain = 0.8) , but these goals 
were unattainable by either of the two responses. Devaluation 
was implemented as the diminishing of Gfood to 0 for half 
of the agents. In the 100 extinction trials, the probability of 
obtaining food by lever-pressing was reduced from 0.6 to 0. 
Five-hundred simulations of homogenous agents were run.

Fig. 4   Simulated behavioral results for a classic devaluation experiment. a Change of choice probability over time; b Aggregated lever-pressing 
rates in the first 20 trials after devaluation relative to the level at the end of training

7   The exact reward probability for food was not decisive for repro-
ducing the devaluation effect, as long as it was high enough so that 
the full acquisition of the lever-pressing response was achieved.
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Figure 4 shows simulated choice probabilities over time 
and aggregated response rates. Our model produced a main 
effect of training (higher lever-pressing rates after exten-
sive training), a main effect of devaluation (lower lever-
pressing rates when Gfood is devalued), and most impor-
tantly a clear training duration by devaluation interaction 
effect. As can be seen in Fig. 4a, the lever-pressing rates in 
the two groups decreased almost in parallel after extensive 
training, while after moderate training the lever-pressing 
rate of the devalued group declined sharply as compared 
to the non-devalued group. Note that it was almost always 
the case that lever-pressing rate in the devalued group was 

slightly lower than in the control group (Fig. 4b), while 
in empirical studies equal rates in both groups or even 
slightly higher rate in the devalued group have been found 
(e.g., Dickinson, 1985). But this particular empirical pat-
tern has also not been shown by the arbitration models 
(Daw et al., 2005; Keramati et al., 2011; Miller et al., 
2019): they mainly compared response rates before and 
after devaluation, but not the relative response rates in the 
devalued and control groups after devaluation as usually 
reported in the empirical studies.

Our model also predicted that decision times decreased 
gradually over the course of training, but increased abruptly 

Fig. 5   Temporal changes of decision times and underlying cognitive 
variables in the simulated devaluation experiment. a Decision time; b 
Habit value; c Sampling probability of attributes; d EMR of attribute 

food’s distributions; e EMR of attribute leisure’s distributions; f EMR 
of unattainable attributes’ distributions
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after devaluation, before eventually decreasing again (see 
Fig. 5a). A notable novel prediction was an increase of deci-
sion times after devaluation was observed in all conditions, 
regardless of whether strong habits were formed or not (cf. 
Keramati et al., 2011).

The effect-generating mechanisms of the model are 
reflected in the temporal changes of the underlying cog-
nitive variables in the model, especially at the transition 
from training to extinction (point of devaluation for the 
devalued group). First, as expected, the habit values for 
the two groups after extensive training were very close 

to 1, while the habit values after moderate training were 
just below 0.75 (Fig. 5b). Second, there was a sudden 
change in sampling probabilities for the devalued group 
– these agents stopped to sample attribute food because 
of the goal devaluation, but instead started to sample the 
unattainable attributes a lot (Fig. 5c, left). In contrast, 
agents in the control group continued to sample food 
frequently before they gradually unlearned the associa-
tion between lever-pressing and food in the extinction 
phase (Fig. 5c, right). Thus, when looking at the expected 
mean reward values (EMR) for attribute food and the 

Fig. 6   Sensitivity of the devaluation effect to different parameter val-
ues. a Training duration; b Leakage parameter 

(
S
self

)
 ; c Lateral inhi-

bition parameter ( S
lateral

 ); d Habit learning rate ( �
H

 ); e Uncertainty 

parameter in Bayesian belief updating ( � ); f Number of unattainable 
attributes (N

unattin
) . The dashed squares indicate the effect-producing 

ranges
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unattainable attributes (Fig. 5d & f), it was clear that 
the response lever-pressing was at disadvantage in the 
devalued group compared to the control group. The lever-
pressing rate of the devalued group dropped significantly 
faster (Fig. 4a, left), unless the high habit values for the 
agents after extensive training functioned as a counteract-
ing mechanism. 

Sensitivity analyses showed that the model was rea-
sonably robust in reproducing the devaluation effect 
against changes in parameter values. First, as expected, 
lever-pressing rates in the devalued and control group 
only became comparable when the training was more 
than approximately 170 trials (Fig.  6a). This result 
reaffirmed the devaluation effect that insensitivity to 
goal devaluation only happens when the response is 
overtrained. Second, a very high value for the memory 
parameter ( Sself  ) was needed to reproduce the devalua-
tion effect (Fig. 6b), consistent with the small memory 
leakages implemented in sequential sampling models 
in the literature (e.g., Roe et al., 2001). Third, the lat-
eral inhibition parameter ( Slateral ) in the range of -0.3 
and 0 did not change simulation results to any extent 
(Fig. 6c), and the relative low values used were con-
sistent with the literature (e.g., Roe et al., 2001). Since 
theoretically lateral inhibition has an effect of reinforc-
ing the responses with default high preferences (due 
to strong habits), a very large Slateral would result in an 
unrealistic pattern of no decay of lever-pressing rate in 
the extinction phase.

Fourth, the curves for habit learning rate confirmed 
that some habit formation was needed to reproduce the 
devaluation effect, but if habits were made to form too 
fast (e.g., �H  > 0.15), responses would become insen-
sitive to goal devaluation even after moderate training 
(Fig. 6d). Fifth, results of the gamma parameter sug-
gested that a small uncertainty injection was needed to 
reproduce the devaluation effect (Fig. 6e), as the param-
eter positively related to the value distributions of the 
unattainable attributes that were mostly sampled for the 
devaluated groups. If there was little uncertainty (e.g., 
� < 0.05), the resultant low value distributions would 
lead to drift rates that were too small to push the base-
line preference of lever-pressing to the decision thresh-
old even after extensive training. In contrast, if a lot 
of uncertainty was injected (e.g., � > 0.15), very large 
drift rates would be sampled from the value distributions 
of unattainable attributes and they would push baseline 
preferences of lever-pressing after both moderate and 
extensive training to the decision threshold. Finally, the 
number of unattainable attributes did not seem to have 
any substantial impact on the generation of the devalu-
ation effect (Fig. 6f).

Study 2: Devaluation Paradigm with a Concurrent 
Schedule

We extended our simulation to devaluation experiments with 
a concurrent schedule. In Kosaki and Dickinson (2010), 
instead of training one response-outcome pair, rodents were 
trained to learn two instrumental responses with two types 
of food concurrently. With this schedule, even if extensive 
training was used, rodents remained sensitive as to which 
food was devalued. Thus, we simulated 500 homogeneous 
agents only in extensive training to see if the model would 
produce a clear difference between responses to the deval-
ued and non-devalued food. Other setups were similar to 
the previous scenario, except that two food attributes (with 
goal values Gfood_A = Gfood_B = 0.8 ) and two lever-pressing 
responses were used. Each food was again reinforced to the 
correct response 60% of the time.

As in Fig. 7a and b, results were consistent with the 
empirical finding: at the point of devaluation, choice prob-
ability decreased sharply for the devalued response (lever-
press A), while it increased for the non-devalued one (lever-
press B). Unlike the classic devaluation experiments, even 
after extensive training, habit strengths for both responses 
were only moderate (around 0.5, see Fig. 7c) because of the 
competition, so the shift in starting points could not com-
pensate for the disadvantages of the devalued response in 
terms of sampled attribute values. The model also predicted 
decision time to decrease gradually during training, and to 
increase greatly in the extinction phase, eventually becoming 
slower than the decision time at the start of training.

Study 3: Reversal Learning

Reversal learning refers to learning tasks where payoffs of 
behavioral responses are occasionally reversed during the task. 
For example, in Pessiglione et al. (2005), following two stimuli 
with equal appearance probability, human participants learned 
in three phases to either press a button (go response) or with-
draw from pressing a button (no-go (NG) response) in order 
to earn as many points as they could. In the training phase, 
the go-response earns points for one stimulus, while the NG-
response earns points for the other. In the reversal phase, the 
reward-generating stimulus-response mapping was reversed. In 
the final extinction phase,8 the NG-response earns points for 
both stimuli. The basic finding was that people needed time to 
gradually learn the changes in the underlying reward probabili-
ties and decision time fluctuated in time: responses became 

8   To avoid confusion, it is important to note that extinction phase 
in Pessiglione et  al. (2005) does not mean “no reward” as in other 
animal learning experiments, but only implies that the active go-
response (button-pressing) is unlearned.
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faster when a reward-structure was learned and slower when 
the structure was reversed.

We used the same task structure as in Pessiglione et al. 
(2005). Learning agents were assumed to primarily focus 
on accumulating points ( Gpoint = 0.8 ) and to a lesser degree 
on conserving energy (or to obtain leisure, Gleisure = 0.1 ). 
Probabilities of obtaining points were either 0 or 1 for the 
responses depending on the phases (training, reversal, or 
extinction), while probabilities of obtaining leisure were 
all set to 1, since the button-pressing responses do not 
consume much energy for humans. The numbers of tri-
als in the three phases were set to 150, 200, and 150 (as 
in Keramati et al., 2011). Five-hundred simulations with 
homogenous agents were run to obtain the results.

Consistent with previous studies (Keramati et al., 2011; 
Miller et al., 2019), results confirmed that the simulated agents 
could learn to adapt to changes in reward structure, and indeed 
the changes of response patterns were gradual rather than 
steep (Fig. 8a). It should be noted that the habit system or 

a non-zero �H is not essential for producing the basic pat-
tern. Even without habit formation ( �H = 0), the changes in 
response pattern cannot be completely abrupt, as it takes time 
to update beliefs about reward probabilities (Fig. 8b). How-
ever, it was clear that the changes were much slower with habit 
formation (in over 100 trials instead of only 30 trials).

Unlike Keramati et al. (2011), our model predicted grad-
ual rather than sudden changes of decision time (Fig. 8c). 
Consistent with the empirical results (Pessiglione et al., 
2005), decision time after the extinction phase increased 
about 1/2 less than after the extinction phase, because in the 
extinction phase reversal only applied to one stimuli.

Parameter Recovery Exercise

So far, we have shown that our sequential sampling model 
can qualitatively reproduce data patterns found in several 
empirical studies. A logical next step is to fit the model 

Fig. 7   Simulated results for devaluation paradigm with concurrent schedule. a Change of choice probability over time; b Aggregated response 
rates (relative to the end of training) after devaluation (first 20 trials used); c Habit value; d Decision time
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quantitatively to empirical data with its free parameters to be 
estimated from the data. Not only can model fitting -provide 
more rigorous tests of the model, but it can also be used to 
examine individual differences in key model parameters, as 
well as the influences of specific experimental manipulations 
on model parameters. Fitting a complex cognitive model as 
the one we have developed to data entails two big challenges. 
First, the complexity of the model makes it very difficult to 
derive the likelihood function of the model, rendering most 
traditional (likelihood-based) estimation methods infeasi-
ble. Second, given the large number of free parameters, it is 
questionable to what extent the parameters can be uniquely 
identified from data as different combinations of parameter 
values may produce indistinguishable data patterns.

While it is beyond the scope of the paper to fully address 
these challenges, we evaluated whether and to what extent 
free model parameters could be estimated through a param-
eter recovery exercise, i.e., comparing estimated model 
parameters from simulated data to the true parameter values 
that were used to generate the data. In the absence of a likeli-
hood function, model fitting was made possible by a tech-
nique called the approximate Bayesian computation (ABC; 
Turner & Van Zandt, 2012), one of several likelihood-
free estimation techniques that have been applied to other 

sequential sampling models (e.g., Miletić et al., 2017; Turner 
& Van Zandt, 2018; Turner et al., 2018). In short, with ABC, 
one attempts to approximate the posterior distribution of a 
model parameter by sampling candidate values from its prior 
distribution and then evaluating the candidates in terms of 
whether the model with the candidate values can simulate 
data that are close enough to their empirical counterpart. 
If the simulated data and empirical data are close enough 
– distance between their corresponding summary statistics 
smaller than a tolerance threshold – those candidate value 
are retained for building the posterior (accepted). Otherwise, 
they are disregarded (rejected). It has been shown that under 
certain conditions (e.g., proper distance function, sufficient 
summary statistics, and small enough tolerance), an ABC-
approximated posterior will be equal to the true posterior 
(Beaumont, 2010). For the exercise, we followed the tutorial 
paper by Turner and Van Zandt (2012), which provides a 
thorough and accessible introduction to ABC.

We started by trying to recover only one model parameter, 
the habit learning rate ( �H ). This initial step was used to see 
if ABC would be feasible for our modeling problem and to 
explore the impact of data type on the estimation perfor-
mance. For this step, parameter estimation was based on data 
simulated for a sample of agents’ behaviors in the moderate 

Fig. 8   Simulation results of 
reversal learning. a Choice 
probabilities with �

H
 = 0.04; 

b Choice probability with �
H

 
= 0; c Decision time with �

H
 

= 0.04
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training with devaluation condition9 in a typical outcome-
devaluation experiment (as in simulation Study 1). We 
repeated the parameter estimation procedure in nine different 
conditions, i.e., with three different true values for �H (0.005, 
0.04, and 0.2) and three different data types – choice, deci-
sion time, and habit value. In each condition, a simple ABC 
rejection algorithm was used for evaluating candidate values 
and 1000 accepted candidates were required for forming the 

posterior distributions (see Supplementary Information for 
more details about the methods and procedure). Using R 
and the doParallel package (Weston & Calaway, 2022), the 
computation time for each condition was between 1.6 and 
4.1 h on Window computers with 9- or 16-core CPUs.

Figure 9 shows the estimated posteriors of �H for the nine 
conditions. For �H = 0.04 (the value used in the simula-
tion studies), results for all three data types were very good, 
as evidenced by the narrow posterior distributions around 
the true parameter value and the accurate point estimates 
(means) and credibility intervals (CI) (choice: �̂H = 0.041, 
95% CI = [0.027, 0.057]; decision time: �̂H = 0.042, 95% 
CI = [0.025, 0.064]; habit value: �̂H = 0.039, 95% CI = 

Fig. 9   Estimated posteriors for �
H

 for the nine parameter recovery conditions using ABC. The read verticals lines indicate the true parameter 
values for �

H

9   Given the time constraint, we only obtained full results this con-
dition, but quick explorations suggested that using any of the other 
three conditions were unlikely to substantially change our main 
results.
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[0.031, 0.048]). Parameter recovery was also quite success-
ful for very small �H (0.005), although using choice and 
decision time data resulted in slight overestimation (choice: 
�̂H = 0.013, 95% CI = [0.002, 0.027]; decision time: �̂H = 
0.008, 95% CI = [0.003, 0.016]; habit value: �̂H = 0.006, 
95% CI = [0.002, 0.011]). Performance of ABC for larger 
�H (0.2) was visibly worse, as shown by the much wider 
posterior distributions. Both choice and decision time data 
led to overestimation (choice: �̂H = 0.26, 95% CI = [0.14, 
0.44]; decision time: �̂H = 0.24, 95% CI = [0.17, 0.32]), 
while using habit value resulted in underestimation ( ̂�H = 
0.17, 95% CI = [0.09, 0.28]). In general, using habit value 
data for parameter estimation led to the best results given 
the close relationship between the variable habit value and 
the habit learning parameter. However, since habit value is 
not directly observable in empirical studies, we only used 
it to demonstrate the capability of ABC algorithms under 
the most favorable conditions. In contrast, both choice and 
decision time are variables that can be easily measured in 
empirical experiments. Therefore, the good results in those 
conditions suggest the promise of using ABC for estimating 
model parameters from real empirical data.

We went further to explore the possibility of recover-
ing multiple model parameters at the same time. In addi-
tion to �H , two more parameters were considered – the 
uncertainty parameter (γ) in goal-directed learning and 

the leakage parameter ( Sself ) in preference accumulation. 
The same parameter values as in the simulation studies 
were used for generating the data for parameter recovery 
( �H = 0.04, = 0.1, and Sself  = 0.99). Because the increased 
dimensionality, a more sophisticated algorithm called 
ABC population Monte Carlo sampling (ABC PMC) was 
used to search through the much larger parameter space 
(see Supplementary Information for detailed procedure; 
also see Turner & Van Zandt, 2012 for a tutorial). Work-
ing in the same computing environment, around 40 h were 
needed to approximate posterior distributions (1000 can-
didates) for choice and decision time data respectively.

Figure 10 shows the estimated joint posterior distribu-
tions for each pair of the three parameters in the sequential 
sampling model. For both choice and decision time data, 
the recovery of �H and γ was very precise. The estimates 
were unbiased for γ (choice: γ̂ = 0.10, 95% CI = [0.09, 
0.12]; decision time: γ̂ = 0.10, 95% CI = [0.08, 0.13]) and 
only a minor overestimation for �Hwhen estimated from 
choice data (choice: �̂H = 0.052, 95% CI = [0.031, 0.081]; 
decision time: �̂H = 0.042, 95% CI = [0.030, 0.059]). For 
the leakage parameter Sself  , the much wider posterior dis-
tributions (see Fig. 10, middle and right panels, along the 
y-axis) suggested less precise estimations (choice: Ŝself  = 
0.96, 95% CI = [0.90, 1.00]; decision time: Ŝself  = 0.98, 
95% CI = [0.95, 1.00]). Still, the simulated data were 

Fig. 10   Scatter plots showing the estimated joint distributions for pairs of the three model parameters, habit learning rate ( �
H

 ), uncertainty 
parameter (γ) and leakage parameter ( S

self
 ). The dashed lines indicate the true parameter values used for generating the reference data
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able to move the uninformative prior between 0.8 and 1 
to a much smaller region in the parameter space. Overall, 
the results suggested that estimating multiple parameters 
simultaneously did not undermine the performance of 
ABC in working with our sequential sampling model of 
habit-goal interaction.

General Discussion

We have shown that a sequential sampling approach to the 
integration of habits and goals can reproduce empirical 
results from three instrumental learning paradigms: classic 
devaluation, devaluation with a concurrent schedule, and 
reversal learning. This was achieved by a rather straight-
forward implementation of the MDFT, with only two addi-
tional theoretical assumptions: (1) Starting points of pref-
erence accumulation are determined by the habit values of 
behavioral responses; (2) Attribute sampling probabilities 
are based on the importance and task-relevance of the cor-
responding goals. The sensitivity analysis and the fact that 
the same parameters were used in all three studies speak to 
the strength of our central theoretical propositions.

Comments on Effect‑Generating Mechanisms

One of the many merits of computational modeling is that 
it helps researchers to think more deeply about the cog-
nitive mechanisms underlying a behavioral phenomenon 
(Smaldino, 2017). In a modeling and simulation exercise, 
very often some theory-based mechanisms are expected 
and are built into the model on purpose, but other con-
tributing factors to an effect are only discovered after the 
simulation. In our case, the anticipated central theoretical 
tenet is that habitual responses are “mistakenly” selected 
even after outcome devaluation or action-outcome re-map-
ping because baseline preferences for the habitual options 
are elevated through past choices. This specific mechanism 
was speculated by the creator of MDFT (Roe et al., 2001) 
and is indirectly supported by the research on “choice iner-
tia” in perceptual decisions (Akaishi, et al., 2014; Bode 
et al., 2012; Mulder et al., 2012; van Ravenzwaaij et al., 
2012). While this mechanism proves to be important, two 
additional mechanisms were necessary for reproducing the 
effects, especially the insensitivity to outcome devaluation 
after extensive training.

First, the unattainable goals in a task environment turned 
out to be important. Even though the preference signal for 
the habitual response is elevated to be close to the deci-
sion threshold at baseline, it still needs additional uplifts to 
go over the threshold. After outcome devaluation, the pri-
mary goal (e.g., obtaining food) is rarely sampled and the 

remaining “attainable” goal (e.g., leisure) is incompatible 
with the habitual response (e.g., lever-pressing). It is the 
occasional sampling of the unattainable goals that pushes the 
elevated preference signal to reach the threshold. Intuitively, 
when an agent is deprived of its primary goal in a task envi-
ronment, the agent starts to explore other goals (albeit unre-
alistic ones), which accidentally trigger habitual responses.

Second, the uncertainty-injection parameter γ in goal-
directed learning moderates the extent to which the unat-
tainable goals contribute to the habitual responses. Sen-
sitivity analysis shows that some uncertainty injection 
(0.05 < γ < 0.15) is needed for an agent to maintain some 
associations between the habitual response (e.g., lever-press-
ing) and the potential satisfactions of the unattainable goals. 
This can be considered adaptive if the response-outcome 
or action-reward mappings in the agent’s environment are 
expected to change over time. We suspect that the γ param-
eter may also provide an explanation why it is hard to rep-
licate the training-dependent outcome devaluation effect in 
humans (see de Wit et al., 2018). While human studies are 
designed to emulate the paradigm of outcome devaluation in 
rodents, it is reasonable to assume that human participants 
have considerably lower γ than rodents in their task environ-
ments. For human participants, they should understand that 
the reward structure (i.e., response-outcome mappings) in a 
controlled laboratory experiment is unlikely to change dra-
matically. For example, in an experiment where they press 
keys to obtain sugary drinks, pressing the keys won’t reward 
any of their personal goals outside the context of the experi-
ment. In contrast, rodents are likely to lack this knowledge 
and treat the experiment environment (their feeding cage) as 
the “real-world” where they live in. Our sensitivity analysis 
indeed suggests that with lower values of γ (< 0.05), the 
model produces data patterns that are more similar to those 
in the human studies (de Wit et al., 2018).

Third, it is worth mentioning that one modification to 
the original MDFT is required to reproduce the outcome 
devaluation effect, i.e., the removal of the contrast matrix 
� in calculating valence or drift rate. The inclusion of the 
contrast matrix in MDFT implies that valence measures the 
relative advantages and disadvantages of different responses 
considering their attribute values for the sampled attribute, 
rather than their own attribute values. There is currently no 
consensus in the field on whether preference signals (accu-
mulators) should represent the competitive advantages/dis-
advantages among responses (relative accumulators) or the 
independent attribute values of the responses (absolute accu-
mulators). For example, this contrast matrix is not used in 
other sequential sampling models of value-based decision-
making, such as the associative accumulation model (Bhatia, 
2013), the multiattribute linear accumulator ballistic model 
(Trueblood et al., 2014), and the leaky, competing accumu-
lator model (Usher & McClelland, 2001). Even without the 
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contrast matrix, competitions among responses options are 
still captured by the lateral inhibition in the temporal prefer-
ence accumulation in our model and in the models above. 
We found that the inclusion of the contrast matrix severely 
attenuated the impact of habit strength on the sequential 
sampling process, thus obliterating the outcome devalua-
tion effect.

Relations to Other Computational Models

Our work provides a theoretically plausible alternative to 
arbitration models (Daw et al., 2005; Keramati et al., 2011; 
Miller et al., 2019; Pezzulo et al., 2013). Instead of compet-
ing with each other through centralized arbitration, habits 
and goals may be integrated dynamically to produce behav-
ioral responses. Sometimes, habits and goals are congruent, 
so they jointly push responses in the same direction (e.g., the 
start of any learning process). In other cases, habit-goal con-
flicts emerge from the same process, when the goal-related 
attribute values become incongruent with the habit values 
obtained from prior behavior repetitions, for example, after 
goal devaluation or reward structure reversal. It remains 
plausible that habit values and goal-related attribute values 
are learned in distinct neural systems (Yin & Knowlton, 
2006), but at decision moments both value signals are inte-
grated into a single decision-making circuit. This hypothesis 
should be evaluated in future neurophysiological research, 
preferably combining existing insights about the neural 
underpinning of learning (e.g., Dolan & Dayan, 2013; Yin 
& Knowlton, 2006) and of decision-making (e.g., Dunovan 
& Verstynen, 2016; Kable & Glimcher, 2009; Rangel et al., 
2008; Shadlen & Shohamy, 2016).

Given that quantitative model comparison is beyond the 
scope of the current paper, the feasibility of our approach 
does not lend itself to being superior to the arbitration mod-
els. It should be also noted that arbitration models do not 
necessarily implement a “winner-takes-all” approach to 
response selection. For several models in the literature, a 
“weighted-average” approach can be taken so that inputs 
from the habitual and goal-directed systems are weighted 
by the arbitrator to influence response selection (e.g., 
Miller et al., 2019; Pezzulo et al., 2013). One can argue 
that this approach also “integrates” habits and goals. What 
distinguishes our model from the abstraction model is that 
it replaces the softmax function with a cognitive process 
model, i.e., sequential sampling and preference accumula-
tion. If one only looks at responses or choices, we expect the 
“weighted-average” arbitration models to be able to approxi-
mate the behaviors of our process model, thus making it 
difficult to compare their verisimilitudes based on choice 
data alone. However, only our process model can make the-
ory-based predictions about decision time, which has been 

recognized as crucial for demonstrating habits in humans 
(e.g., Hardwick et al., 2019; Luque et al., 2020).

Our model shares two theoretical stances with Miller 
et  al. (2019). First, both models separate goals values 
from goal-related attribute values, even though goal val-
ues as static decision weights in their model rather than 
the dynamic precursors of attribute sampling probabilities 
as in ours. This separation implies a double disassociation 
that devaluation only depletes goal values, while extinction 
test only affects goal-related attribute values. In contrast, 
other models implement both devaluation and extinction as 
changes to reward probabilities or directly to state-action 
values (Daw et al., 2005; Keramati et al., 2011). We believe 
that a separation is theoretically favorable, as it has been 
made in other theoretical frameworks (e.g., as outcome 
value and outcome contingency in learning theories, and 
as decision weight and attribute value in decision-mak-
ing models), and there is evidence that they have distinct 
neural substrates (Kable & Glimcher, 2009; Rangel et al., 
2008). Second, our work adds to Miller et al. (2019) that 
for explaining classic findings in instrumental learning, a 
value-free view of habit (Miller et al., 2018; Pauli et al., 
2018) is at least as effective as the previous value-based 
view of habit (Dolan & Dayan, 2013). Our work cannot 
directly evaluate the verisimilitudes of the two views, but 
the assumption of mapping habit values to starting points 
in sequential sampling models is more consistent with Heb-
bian learning algorithms (value-free) than with model-free 
reinforcement learning algorithms (value-based) of habit 
learning (see Akaishi et al., 2014).

We are not the first to combine reinforcement learning 
and sequential sampling models. As reviewed in the intro-
duction, several researchers have explored this idea and 
showed that using a drift diffusion model as the response 
selection model in reinforcement learning can explain choice 
and decision time data from a human decision-making task 
with reward feedback (i.e., a bandit task) (Fontanesi et al., 
2019; Frank et al., 2015; Pedersen et al., 2017). Still, we are 
the first to implement a separate habit learning component 
in the overall model and to examine the interaction between 
two learning systems – habit and goal-directed learning. 
An obvious difference is the use of drift diffusion model 
in earlier works versus a modified MDFT in our work. Our 
choice was motivated by the wide application of MDFT in 
value-based decision-making, especially its superiority in 
accounting for context effects in multialternative multiattrib-
ute choices (Berkowitsch et al., 2014; Hotaling & Rieskamp, 
2019). Given the many similarities between the two models, 
one can expect the earlier models (the so-called reinforce-
ment learning drift diffusion models or RLDDM) may also 
be able to reproduce our findings if habit strength is modeled 
in RLDDM in the same way.
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Theoretical Implications for Habit Research 
and Value‑based Decision‑making

A major controversy in habit research is the debate over the 
relationship between habits and goals, or whether habitual 
behaviors are goal-dependent or goal-independent (Gard-
ner & Lally, 2022; Kruglanski & Szumowska, 2020; Marien 
et al., 2019; Wood et al., 2022). There is no doubt that hab-
its originate from instrumental learning where the repeated 
behaviors serve to satisfy the goals of an organism. How-
ever, there is not much consensus beyond this point. We 
believe that a general distinction between goal-dependence 
and goal-independence is not useful and researchers need to 
ask a more nuanced question – in which part of the cogni-
tive and behavioral processes of motivated actions are habits 
dependent on or independent from goals?

In terms of learning processes, both the traditional and the 
current dominant views see habit learning and goal-directed 
learning as two distinct systems. As early as in Thorndike’s 
time, a distinction between stimulus-response association 
(S-R) and action-outcome association (A-O) was made, as 
well a distinction between “law of exercise” and “law of 
effect” (Thorndike, 1932). In the current view in neurosci-
ence, two distinct systems exist and different brain regions 
are believed to underlie habit learning (e.g., dorsolateral 
striatum) and goal-directed learning (e.g., dorsomedial stri-
atum) (Dolan & Dayan, 2013; Yin & Knowlton, 2006). It 
should be noted that the traditional distinction was blurred 
to some extent since Daw et al. (2005)’s seminal work on 
modeling habit learning as model-free reinforcement learn-
ing that depends on goal-related action outcomes, but still 
the two learning systems are treated as largely separate or 
independent (but see Daw et al., 2011; Gläscher et al., 2010).

In terms of decision-making or the control of behavior, 
one can also ask the question when a behavior is habitual, 
whether goal-related constructs (e.g., attitude and intention) 
still influence behavior. Although many researchers may 
not believe in fully automatic behaviors, they sometimes 
define habits as such. For instance, Wood and Neal (2009) 
described habits as “a type of automaticity characterized by 
a rigid contextual cuing of behavior that does not depend on 
people’s goals and intentions” (p. 56). However, both empir-
ical studies in controlled environments and causal observa-
tions of real-life habits suggest that in the absence of the 
original goal (e.g., devalued by an experimental manipula-
tion), even highly habitual behavior will gradually disappear, 
even though more intensive training leads to slower extinc-
tion (Adams, 1982; Dickinson, 1985; Tricomi et al., 2009).

These formal and informal observations are not at odds 
with most arbitration models. If an “weighted-average” 
mechanism is used, then clearly after arbitration inputs from 
both systems are “integrated” to influence behavior, even 
though the underlying cognitive process is not specified. 

Even when a “winner-takes-all” approach is employed, 
abstraction models will simulate decaying habits after 
goal devaluation if habit learning is modeled as a form of 
response-outcome learning (e.g., model-free reinforcement 
learning, Daw et al., 2005). In line with these models, our 
sequential sampling approach predicates a precise form of 
habit-goal integration at all times. Even when a habit is very 
strong (starting point close to the decision threshold), still 
goal-related attribute values can influence the accumula-
tion process, albeit to a very limited extent. The attenuated 
impact of goals is consistent with the group-level habit-
intention or habit-attitude interaction effect found in applied 
health psychology research, i.e., strong habits attenuate the 
influence of intention and attitude on behavior (e.g., Trian-
dis, 1977; Verplanken et al., 1994; Zhang et al., 2022a, b; for 
reviews, see Gardner, 2015; Gardner et al., 2020).

Our model also has implications for the role of uncer-
tainty and speed-accuracy trade-offs in value-based deci-
sion-making. Conceptualizations of uncertainty and speed-
accuracy trade-offs have been made in earlier models (Daw 
et al., 2005; Keramati et al., 2011; Kool et al., 2017), but 
uncertainty was computed as a higher-order mathematical 
property, such as variance of distributions. Rather, uncer-
tainty is realized in our model as the sampling of values 
from distributions in a stochastic process of preference accu-
mulation. In addition, speed-accuracy trade-offs are natu-
rally incorporated in any sequential sampling model (e.g., 
Ratcliff & Rouder, 1998), as more accumulation steps reduce 
uncertainty but lead to longer decision times.

Finally, the idea of sampling values from distributions 
for decision-making coincides with the Thompson sampling 
approach of solving repeated decision problems (Bandit 
problems), which usually achieves optimal balance between 
exploration and exploitation (Russo et al., 2018). Thompson 
sampling can be seen as a special case of sequential sam-
pling with only one step. In this sense, sequential sampling 
with more than one step would favor exploitation more than 
exploration, depending also on the decision threshold. By 
shifting starting points closer to threshold, strong habits fur-
ther enhance exploitation. In contrast, unattainable attributes 
in our model provide a mechanism against over-exploitation, 
since the under-explored responses tend to have higher mean 
expected values for those attributes (Fig. 5f). In the events of 
sudden environmental changes (e.g., devaluation of primary 
goals), this mechanism counteracts habits to promote explo-
ration. Future research should examine the role of habits in 
the exploration-exploitation dilemma and in reverse the role 
of the dilemma in instrumental learning.

Limitations, Applications, and Future Work

One strength of the sequential sampling approach is its abil-
ity to predict decision time. We have exploited this strength 
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only to a limited extent, for example, in producing the tem-
poral change of decision time that closely matches the one in 
the reversal learning experiment, but much more can be done 
in future work. This strength has become even more valu-
able as recent studies pointed to the importance of exam-
ining decision time in studying human habits (Hardwick 
et al., 2019; Luque et al., 2020). For instance, Hardwick 
et al. (2019) argued strong habits (cue-behavior mappings) 
might only trigger the preparation of a response, but not nec-
essarily its initiation and execution. Habitual preparations 
are often overridden by goal-directed control, but can be 
unmasked by forcing people to respond at a faster pace. Our 
computation model can be considered as a formalization of 
their proposal – habitual response preparations can be rep-
resented by the elevated baseline preferences in preference 
accumulation, and the forced fast decisions makes it more 
likely that the preference signal for the habitual response 
is still higher than the one for the non-habitual but correct 
response at the moment of committing to a decision.

A particularly interesting prediction from our model is 
that decision time for the habitual response after outcome 
devaluation will also increase. The reason is that it takes 
more time for the habitual preference signal to reach the 
threshold when the positive drifts only come from the sam-
pling of unattainable goals rather than the devalued primary 
goal. Intuitively, this means that when people mistakenly 
respond in a habitual way, these “slips of actions” are still 
slower than their counterparts before the devaluation. In 
Luque et al. (2020), the authors used the response time 
switch cost as a measure of habit, but they looked at the 
time cost of switching from a habitual response before out-
come devaluation to the correct and non-habitual response 
after devaluation. The prediction that habitual responses also 
become slower after devaluation has not been examined. 
This prediction is “risky” and would be “surprising” in the 
absence of our model (e.g., not predicted by Keramati et al., 
2011), so it provides a strong test for our model in future 
research (Meehl, 1990; Roberts & Pashler, 2000).

While our current contributions primarily concern model 
development and simulation, we also performed a small-
scale parameter recovery exercise using ABC algorithms. 
The preliminary findings suggest that fitting our model to 
data to estimate model parameters is feasible at least in prin-
ciple. Still, several limitations and challenges need to be 
considered before interfacing the model with real empiri-
cal data. First, our exercise was limited to the estimation 
of three parameters, while the full model contains many 
more potential free parameters. Given that the recovery of 
only three parameters took more than one day, computation 
time is a concern. However, computation time will be less 
of an issue over time and it can be substantially reduced by 
using more computing resources and/or by implementing the 
algorithm in faster programming languages than R. Another 

strategy would be to constrain some parameters (e.g., scaling 
parameters and parameters that are strongly constrained by 
theories) and leave only the parameters that relate to mean-
ingful individual differences to be estimated (e.g., �H , � , 
Sself , Sother , and individual differences in task-specific goal 
values). Second, given the stochastic nature of the model 
and the true underlying processes, relatively large sample 
sizes (e.g., at least 50 to 100; see Supplementary Informa-
tion for the exact number used) are required for obtaining 
good results using ABC. In our exercise, those 50 or 100 
simulated agents had the exact same cognitive parameters, 
but empirically, individual differences exist for most of the 
cognitive parameters. Thus, an ABC-version of the popular 
hierarchical Bayesian modeling will be required (see Turner 
& Van Zandt, 2012). Finally, working with empirical data 
will mean much less correspondence between the meas-
ured variables and the simulated quantities by the cognitive 
model. For example, while the model predicts pure decision 
time in terms of accumulation steps, measured decision time 
in behavioral experiments is much noisier and reflects more 
than just decision-making processes.

Despite the remaining challenges, the demonstrated pos-
sibility of parameter estimation is particularly important for 
the practical value of our model. One of the greatest chal-
lenges in applied habit research is to reliably measure indi-
vidual differences in how fast people form and break habits. 
While habit strength has been measured by self-reports to 
estimate the speeds of habit formation and decay in the real-
world (e.g., Lally et al., 2010), the usefulness of the results is 
bounded by the validity of the scale and the general limita-
tions of self-report (see de Wit et al., 2018). Our modeling 
approach provides an attractive alternative: individual differ-
ences in habit growth and decay parameters10 can be studied 
by fitting our model to human choice and decision time data 
obtained from various instrumental learning experiments. 
The estimated individual differences can then be used in 
many ways, including predicting habit formation in the real-
world, comparing different healthy and clinical populations, 
and informing strategies for changing habits.

Conclusion

In summary, our work has demonstrated the potential of 
considering sequential sampling as a key cognitive mecha-
nism underlying habit-goal interactions. Because sequential 
sampling models are well-suited for modeling value-based 

10   While our model currently uses the habit learning equation from 
Miller et  al. (2019), which has a single parameter for habit growth 
and decay, other models of habit change use two separate parameters, 
thus allowing different speeds in forming and breaking habits (e.g., 
Klein et al., 2011).
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decision-making, they can help researchers to better con-
nect basic instrumental learning research to human habits 
in real-world contexts (see Marien et al., 2019) and to study 
individual differences through model fitting. More broadly, 
our work extends an emerging research line of applying 
sequential sampling models to human reinforcement learn-
ing, and encourages a more unified approach to learning and 
decision-making theories in psychological science.
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