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Abstract
It is well known that preferences are formed through choices, known as choice-induced preference change (CIPC). However, 
whether value learned through externally provided rewards influences the preferences formed through CIPC remains unclear. 
To address this issue, we used tasks for decision-making guided by reward provided by the external environment (externally 
guided decision-making; EDM) and for decision-making guided by one’s internal preference (internally guided decision-
making; IDM). In the IDM task, we presented stimuli with learned value in the EDM and novel stimuli to examine whether 
the value in the EDM affects preferences. Stimuli reinforced by rewards given in the EDM were reflected in the IDM’s 
initial preference and further increased through CIPC in the IDM. However, such stimuli were not as strongly preferred as 
the most preferred novel stimulus in the IDM (superiority of intrinsically learned values; SIV), suggesting that the values 
learned by the EDM and IDM differ. The underlying process of this phenomenon is discussed in terms of the fundamental 
self-hypothesis.

Keywords  Reinforcement learning (RL) · Choice-based learning (CBL) · Computational modeling · Reward learning task · 
Self-prioritization effect

Introduction

We make many decisions every day. Depending on the situ-
ation, decisions are made based on criteria given by the 
external environment (such as a monetary reward), known 
as externally guided decision-making (EDM), or on one’s 
own internal criteria (such as a sense of value, beliefs, and 
preferences), referred to as internally guided decision-mak-
ing (IDM). For years, EDM and IDM have been studied as 
separate research areas. Although comparative studies on 
EDM and IDM have been reported in recent years, these 
have primarily focused on their differences (Nakao et al., 
2012, 2013, 2016, 2019; Ugazio et al., 2021; Wolff et al., 

2019). The EDM and IDM differ in their conceptual defini-
tion, experimental operation, and neural bases (Nakao et al., 
2012, 2013, 2016, 2019; Wolff et al., 2019). However, they 
are similar in that the option’s values are learned through 
decision-making (Akaishi et al., 2014; Lee & Daunizeau, 
2020; Nakao et al., 2016, 2019; Zhu et al., 2021).

In EDM, the value of an option is considered to be 
updated based on the predicted value and actual feedback 
given after the decision-making (Behrens et al., 2007; Biele 
et al., 2011; Gluth et al., 2014; Hauser et al., 2015; Katahira 
et al., 2011; Lindström et al., 2014; O’Doherty et al., 2007). 
For example, in a reward learning task where one item is 
chosen from two items and each is rewarded with a certain 
probability, the item’s value increases when rewarded feed-
back is received (Behrens et al., 2007; Hauser et al., 2015).

In IDM tasks, such as a preference judgment task, no 
externally delivered feedback indicates a correct answer. 
Even in such a case, an item’s value (preference) changes 
with the choice itself, not based on the feedback (Brehm, 
1956; Colosio et al., 2017; Miyagi et al., 2017). More spe-
cifically, in the preference judgment task of choosing a 
preferred item from two presented items, the value of the 
chosen item increases, while the value of the rejected item 
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decreases (choice-induced preference change, CIPC (Brehm, 
1956; Zhu et al., 2021)).

The decision-making processes of the EDM (Daw & 
Doya, 2006; Gläscher et al., 2010; Schönberg et al., 2007; 
Sugawara & Katahira, 2021) and IDM (Akaishi et al., 2014; 
Lee & Daunizeau, 2020; Nakao et al., 2016, 2019) are, 
therefore, similar in that the values are updated based on 
decisions and their consequences. Value learning processes 
in decision-making have been mathematically modeled 
using a reinforcement learning (RL) model for EDM and a 
choice-based learning (CBL) model based on the RL model 
for IDM.

In the standard RL model for EDM, the choice behavior 
is guided by the expected value (e.g., $0.80 is the expected 
value of $1.00 dollar being compensated with an 80% prob-
ability) associated with the option. The expected value is 
updated according to the prediction error (i.e., the differ-
ence between the provided reward and the expected value) 
(Daw & Doya, 2006; Dayan & Abbott, 2001; Dayan & Bal-
leine, 2002; Sutton & Barto, 1998). The suitability of the 
computational model has been tested by fitting the model 
to the trial-by-trial choice of behavioral data. The model-
based analysis can be used to estimate model parameters, 
such as learning rate (the degree of value update), and latent 
variables, such as the expected value and prediction error 
of each trial. Furthermore, these estimated parameters and 
latent variables have been used in neuroscience to explain 
the neural substrates of EDM (Brehm, 1956; Hampton et al., 
2008; Niv et al., 2012).

For IDM, although CIPC has been examined for many 
years using changes in subjective preference ratings as an 
index (Izuma et al., 2010; Koster et al., 2015; Miyagi et al., 
2017; Nakamura & Kawabata, 2013), in recent years, CBL 
models have been proposed as the computational model for 
the value learning process behind the CIPC phenomenon in 
IDM (Akaishi et al., 2014; Lee & Daunizeau, 2020; Nakao 
et al., 2016, 2019). CBL models are based on the RL model, 
but unlike RL, they use choice behavior itself instead of 
feedback from the external environment. In addition, unlike 
the typical RL, a CBL model updates the value of both cho-
sen and rejected items (Zhu et al., 2021). Thus, in the CBL 
model, chosen items are treated as correct answers, while 
rejected items are treated as incorrect answers to update their 
value. Although the EDM and IDM differ in the kinds of 
choice results they have, they update values based on feed-
back from the external environment or their own choice. 
Therefore, they are similar in that they update values based 
on the difference between expected values and the results 
of choice.

Not only do EDM and IDM have similar computational 
models of value learning, but it has been reported that 
reward-related neural activities observed in EDM (Bechara 
et  al., 1997, 2005; Marco-Pallarés et  al., 2008, 2015; 

Yacubian et al., 2006) are also involved in the value learning 
processes in IDM (Aridan et al., 2019; Camille et al., 2011; 
Fellows & Farah, 2007; Izuma et al., 2010; Miyagi et al., 
2017; Nakao et al., 2016). This suggests that similar reward-
related neural activity contributes to value learning in the 
EDM and IDM. This means that the EDM and IDM are not 
completely independent decisions, and the values learned in 
these two types of decisions may not be distinguishable. Fur-
thermore, it is possible that the values learned in the EDM 
are used in the IDM and vice versa. However, these previous 
studies examined the EDM and IDM independently, and the 
similarity of the neural basis did not provide sufficient evi-
dence for the mutual influencing of values between the EDM 
and IDM. Human decision-making processes are complex. 
In everyday life, decisions are likely to be made with refer-
ence to both external and internal criteria. Understanding the 
relationship between values in external and internal criteria 
is the first step in understanding integrated decision-making 
processes.

This study investigated whether, how, and to what extent 
the value learned in EDM affects the value in IDM. We used 
simple EDM and IDM tasks with novel contour shapes; the 
IDM task followed the EDM task. In the IDM task, the same 
stimuli used with the EDM task were used for the four (two 
high and two low reward probability) stimuli in addition to 
eleven novel stimuli.

We first tested whether the values learned in EDM affect 
IDM from classical model-free behavioral data analysis 
using the chosen frequency of items in IDM (Nakao et al., 
2013, 2019). If the value learned in the EDM affects the 
IDM, it is predicted that stimuli with higher values learned 
in the EDM will be chosen more frequently than novel stim-
uli in the IDM. It is also expected that stimuli with lower 
values learned in the EDM will be chosen less frequently 
than novel stimuli in the IDM.

To examine how the values in EDM reflected IDM, 
we applied four computational models (see Table 1 in the 
“Methods” section) to the IDM data, compared the models, 
and investigated the estimated initial values of each stimulus 

Table 1   The settings of initial 
values of each stimulus type in 
different CBL models

η denotes the free parameter 
for the initial value in IDM. HP 
and LP denote high-probability 
reward stimuli (90%, 80%) and 
low probability reward stimuli 
(20%, 10%) in the EDM task, 
respectively

Model Novel HP LP

Model 1 η
Model 2 0.5 ηHP 0.5
Model 3 0.5 0.5 ηLP

Model 4 0.5 ηHP ηLP
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in the IDM. These four models are based on differences in 
the initial values of the three types of stimuli in the IDM, 
which can confirm whether the value learned in the EDM is 
reflected in the initial values of any type of stimulus. Model 
1, in which the initial values of all stimuli were the same, 
indicated that the values learned in the EDM did not affect 
the IDM. Model 2, in which only the initial value of the 
high-reward probability stimulus differed from the other 
stimuli, indicated that the high value learned in the EDM 
affected the IDM. Model 3, in which only the initial value 
of the low-reward probability stimuli differed from the other 
stimuli, shows that the low value learned in the EDM affects 
the IDM. Model 4, in which the initial values of all types of 
stimuli were different, illustrates that high and low values 
learned in the EDM affect the IDM. If the value in the EDM 
is reflected in the initial value in the IDM, we predict that 
other models will fit behavioral data better than Model 1. 
In addition, if both high and low values in the EDM were 
reflected in the IDM, then Model 4 would be the best fit 
for this behavior. For the computational model, simulations 
were conducted to confirm that the model parameters could 
be adequately estimated (parameter recovery) and that an 
appropriate model could be selected (model recovery) before 
the behavioral data analyses. In addition, the best-fit model 
was tested to ensure its accuracy in describing the behavioral 
data as a posterior predictive check (Gelman et al., 1996).

To further investigate how the value learned in EDM 
affects IDM, we explored whether the values learned in 
EDM affect the degree of value change in IDM. To examine 
the value changes from initial to final, we used values esti-
mated by models that best fitted the behavioral data. Stimuli 
that reflect high or low values in the EDM are expected to be 
chosen or rejected more frequently in the IDM, respectively, 
thereby further changing their values. As all four models 
described above with different initial value settings assumed 
value changes in the IDM based on a previous study (Zhu 
et al., 2021), an additional computational model analysis 
was performed to rule out the possibility that the value did 
not change in the IDM.

Finally, by synthesizing the effects of the EDM on the 
initial value and the value change in the IDM, the effect of 
the EDM on the IDM was examined. To this end, we com-
pared the final values of the IDM between the EDM stimuli 
and all the novel stimuli. If the influence of the value in 
the EDM is dominant, then it is expected that stimuli with 
high values in the EDM will ultimately be the highest-value 
stimuli in the IDM. Similarly, a stimulus with a low value 
in the EDM is expected to have the lowest final value in the 
IDM. To confirm the validity of the final values estimated 
by the computational model, we examined the consistency 
between the final values estimated by the model and the cho-
sen frequency of each stimulus in the IDM or the subjective 
ratings of each stimulus after the IDM task.

We confirmed whether the participants successfully 
learned the value of each stimulus in the EDM from the 
correct response rate. Therefore, in this study, a compu-
tational model analysis of the EDM behavioral data is not 
necessary. For reference, we report the results of the RL 
model analysis for EDM in the supplementary materials.

Results

Correct Response Rate in EDM Task

We confirmed that participants learned the value of stimuli 
through EDM by investigating the results of the correct 
response rate (Fig. 1a). The correct response rate of the 
80% vs. 20% stimulus pair was 0.698 (SD [Standard Devi-
ation] = 0.093), and the 90% vs. 10% stimulus pair was 
0.830 (SD = 0.092), both of which were higher than chance 
level (0.5) (ts(37) > 13.124, ps < 0.001, 95% CI = 0.667, 
0.728 in 80% vs. 20% stimulus pair, 95% CI = 0.800, 
0.861 in 90% vs. 10% stimulus pair). In addition, there 
was also a significant difference between these two condi-
tions (t(37) = 8.189, p < 0.001, d = 1.434, 95% CI = 0.100, 
0.165).

Chosen Frequency in IDM Task

To examine whether the values learned in EDM affect IDM, 
we examined the chosen frequency of each stimulus type 
in IDM (Fig. 1b). In the IDM task, there was no differ-
ence in the frequency of choice between the 90% (chosen 
frequency = 0.675) and 80% (chosen frequency = 0.645) 
stimuli presented in EDM (t(37) = 0.552, Holm-adjusted 
p = 1.000, d = 0.110, 95% CI =  − 0.080, 0.140), or between 
the 10% (chosen frequency = 0.445) and 20% (chosen fre-
quency = 0.485) stimuli presented in EDM (t(37) =  − 0.601, 
Holm-adjusted p = 1.000, d =  − 0.130, 95% CI =  − 0.173, 
0.094). Therefore, the 90% and 80% stimuli were grouped 
together as high-probability (HP) stimuli, and the 10% and 
20% stimuli as low-probability (LP) stimuli.

The mean chosen frequency and standard deviation 
(SD) of the three types of stimuli were 0.660 (0.213), 0.465 
(0.222), and 0.477 (0.064) for HP, LP, and novel stimuli, 
respectively. Participants preferred to choose HP stimuli 
as the preferred item than novel stimuli and LP stimuli 
(ts(37) > 4.211, Holm-adjusted ps < 0.001, ds > 0.886). 
However, there was no significant difference between their 
preference for the LP and novel stimuli (t(37) =  − 0.268, 
Holm-adjusted p = 0.790, d =  − 0.073, 95% CI =  − 0.518, 
0.372). These results showed that only the high value of 
stimuli learned in the EDM task influenced the IDM task.



	 Computational Brain & Behavior

Simulation 1 (Parameter Recovery)

Figure 2 shows the results of parameter recovery for each 
of the four CBL models (Table 1). We confirmed strong 
consistency between the set parameter values (simulated) to 
generate artificial behavioral data and the estimated values 
(fitted) by fitting the model generating the data in all CBL 
models (rs > 0.664).

As shown in Fig. 2, the range of model parameters used 
to generate the artificial data and the range of parameters 
estimated by fitting the model to the generated artificial data 
were generally consistent. Specifically, the ranges of model 
parameters generated to generate the artificial data were 
0.010 to 0.577 for � , 0.010 to 20 for � , and 0.010 to 1 for � , 
except for Model 4. The ranges of α of Model 4 were 0.010 
to 0.704; the ranges of β and two ηs were the same as the 
other models. The range of parameters estimated by fitting 
the models to the generated artificial data is as follows: in 
Model 1, � was 0.012 to 0.497, � was 0.516 to 15.169, and 
� was 0.075 to 0.884; in Model 2, � was 0.008 to 0.514, � 
was 0.363 to 17.908, and � was 0.200 to 0.812; in Model 3, 
� was 0.005 to 0.501, � was 0.285 to 15.385, and � was 0.230 
to 0.836; in Model 4, � was 0.003 to 0.633, � was 0.157 to 
19.442, and two � s were 0.251 to 0.707 and 0.067 to 0.921.

Simulation 2 (Model Recovery)

Table 2 presents the widely applicable Bayesian informa-
tion criterion (WBIC) (Watanabe, 2013) as an index of 

the relative goodness of fit estimated when data gener-
ated by the individual models were fitted to all models. 
In the comparison of the WBICs, the smaller the value of 
the WBIC, the higher the fit of the generated data to the 
model. As shown in Table 2, all models could complete 
model recovery well. Whichever model generated the data 
had the highest match to the same model.

We calculated the Bayes factor (BF) to compare 
which model had the higher probability of generat-
ing data. When Model X was the true model (i.e., the 
model used to generate artificial data), the result of the 
BF between Models X and Y was shown by BFXY. The 
marginal likelihood of Model X and Y was the numera-
tor and denominator, respectively. When Model 1 was 
the true model, the evidence was not as strong for Model 
1 when compared to Model 3 (BF13 = 2.740), indicat-
ing that the probability of data generated by Model 1 
was 2.740 times that of Model 3. However, there was 
very strong evidence for Model 1 when compared to 
Models 2 and 4 (BF12 = 9000.181, BF14 = 4.386 × 106). 
When Models 2 and 3 were the true models, there were 
very strong supports for each model compared to the 
other models (BF21 = 4.254 × 107, BF23 = 6.045 × 1010, 
B F 2 4  =  5 . 5 0 5  ×  1 0 4 ,  B F 3 1  =  2 . 4 0 9  ×  1 0 1 0 , 
BF32 = 4.664 × 1012, BF34 = 2.114 × 104). When Model 
4 was the true model, strong evidence was found for 
comparison with Model 2 (BF42 = 51.213), and very 
strong evidence for comparison with Models 1 and 3 
(BF41 = 2.244 × 1013, BF43 = 4.706 × 107).

Fig. 1   Results of model-free behavioral data indicators. a Mean cor-
rect response rate in the EDM task. The easier condition was stimulus 
pairs with a 90% vs. 10% probability of obtaining a reward, and the 
harder condition was stimulus pairs with an 80% vs. 20% probabil-

ity of obtaining a reward. b Mean chosen frequency of each stimulus 
type in the IDM task. The error bars and colored dots of all figures 
indicated SD and each participant’s data, respectively. ** p < .001
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Model Fit to Behavioral Data

To examine how the EDM values reflect the IDM, we fit 
the four models to actual IDM behavioral data. The results 

shown in Table 3 indicated that Model 2 had a better fit 
than other models. Model 2 was a model in which only the 
value of the HP stimuli in EDM was reflected in the initial 
value in IDM. This result was consistent with the result of 

Fig. 2   Results of parameter recovery simulation. This simulation was conducted to confirm whether each model could be well estimated as the 
set value of each parameter. The correlation coefficient between simulated and fitted was shown as parameter recovery indices

Table 2   Results of WBIC for model recovery for Models 1–4 shown 
in Table 1

Bold numbers in the table represent the WBIC values of the models 
that best fit the artificial data. Asterisk (*) is the BF value used for 
model comparison (20 < *BF < 150, 150 < **BF). The larger the BF 
value, the greater the difference between the models

Simulated Fitted

Model 1 Model 2 Model 3 Model 4

Model 1 2135.055 2144.160** 2136.063 2150.349**

Model 2 2100.200** 2082.634 2107.459** 2093.550**

Model 3 2113.086** 2118.352** 2089.181 2099.140**

Model 4 2103.990** 2077.184* 2090.915** 2073.248

Table 3   WBIC results of IDM 
behavioral data fit with Models 
1–4 shown in Table 1

Bold numbers in the table rep-
resent the WBIC values of the 
model that best fit the behavio-
ral data. Asterisk (*) is the BF 
value used for model comparison 
(150 < **BF). The larger the BF 
value, the greater the difference 
between the models

Model WBIC

Model 1 2189.52**

Model 2 2174.51
Model 3 2194.00**

Model 4 2185.79**
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the chosen frequency in Fig. 1b. We calculated BF for inter-
model comparison between Model 2 and other models. The 
BF was calculated using the marginal likelihood of Model 2 
as the numerator. The results showed strong evidence sup-
porting Model 2 (BF21 = 3.302 × 106, BF23 = 2.913 × 108, 
and BF24 = 7.922 × 104). To evaluate the best-fit model’s 
descriptive ability regarding actual behavioral data, we com-
pared the posterior predictive distribution with the actual 
behavior data distribution as a posterior predictive check 
(Gelman et al., 1996). Figure 3 shows that, as the best-fit 
model, Model 2 can predict the patterns of observed actual 
behavioral data, i.e., the chosen frequency of the stimulus.

The range of parameters estimated when fitting Model 
2 to the actual behavioral data resulted in α ranging from 
0.064 to 0.078, β ranging from 1.544 to 14.400, and η rang-
ing from 0.448 to 0.704. These results showed that the esti-
mation range of β and η was similar to that of parameter 
recovery, but the estimation range of α was smaller than that 
of parameter recovery. When we conducted the simulation, 
although the generation range of α was determined by the 

results estimated from the behavioral data in the previous 
studies (Zhu et al., 2021), Model 2 included the η, which was 
not included in Zhu et al.’s (2021) study. Therefore, in the 
model of Zhu et al.’s (2021) study, the difference in stimu-
lus value was explained by adjusting α, the degree of value 
learning, while in Model 2, it is explained as a function of 
the initial value of η in addition to α. Thus, it is likely that 
the estimated range of the actual behavioral data was smaller 
than that of the simulation.

In addition, to estimate the extent to which Model 2 
explained behavior, we compared it to a model with random 
choice that did not predict behavior at all (see the supple-
mentary materials for more details). The BF results showed 
that Model 2 was 4.130 × 10256 times more likely to explain 
behavior than the random model.

Confirmation of Estimated Initial Values in IDM

The mean initial value of the HP stimuli in the IDM esti-
mated using the CBL model (Model 2) was 0.575 (Fig. 4a). 

Fig. 3   Comparison of the chosen frequencies’ distributions for vari-
ous stimuli as a posterior predictive check. We examined whether 
Model 2 can accurately describe the actual behavioral data by com-
paring the posterior predictive distribution with the actual data dis-

tribution. The range of the blue line represents 500 posterior predic-
tive distributions, while the range of the red line represents the actual 
behavioral data distribution
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To confirm the values learned in EDM were reflected in 
the initial values in IDM, we compared the estimated initial 
value for HP, fixed initial values (0.5) for LP, and novel stim-
uli. We found that HP stimuli had a higher initial value than 
LP stimuli and novel stimuli (t(37) = 7.057, p < 0.001, 95% 
CI = 0.554, 0.597). These results showed that the high value 
learned in EDM was reflected in the initial value in IDM.

Estimated Value Change from Initial to Final Values 
of HP and LP Stimuli in IDM

To examine whether the value learned in EDM affected the 
degree of value change in IDM, we compared the changes in 
value between HP and LP stimuli (Fig. 4b). We performed a 
two-factor repeated measures ANOVA for the stimuli type 
(HP stimuli and LP stimuli) and the value type (initial value 
and final value), which found no significant main effect in the 
value type (F(1, 37) = 1.307, p = 0.260, partial η2 = 0.034) 
but a significant main effect for the stimuli type (F(1, 
37) = 37.072, p < 0.001, partial η2 = 0.500), and the interac-
tion (F(1, 37) = 10.500, p = 0.003, partial η2 = 0.221). We 
compared the initial value and the final value in each stimu-
lus type and found that the final values were higher than the 
initial values for HP stimuli (t(37) =  − 2.408, Holm-adjusted 
p = 0.021, d =  − 0.582, 95% CI =  − 0.101, − 0.009), whereas 
no difference was found for LP stimuli (t(37) = 0.791, Holm-
adjusted p = 0.434, d = 0.142, 95% CI =  − 0.040, 0.070).

Thus, results showed that the HP stimuli had a higher 
initial value in IDM due to the influence of EDM and there-
fore was chosen frequently in IDM, making it increase in 
value in IDM.

Additional Model Comparison Between the Model 2 
and the Models Without Value Updates in IDM

Although we observed that HP stimuli were further valued in 
IDM based on computational model analysis, Model 2 used 
in the analysis assumes that the values change. The validity 
of this assumption was not examined in the comparisons 
among the four models with different initial value settings 
(Table 1). Therefore, an additional computational model 
analysis was performed to investigate whether the value did 
not change in the IDM. Additional models without value 
changes were constructed based on Model 2. Specifically, we 
created four additional models (Table 4): Model A, in which 
only the value of the HP stimuli was not updated; Model B, 
in which both the HP and LP stimuli were not updated, and 

Fig. 4   Values for stimuli estimated by the computational models. a 
Mean initial value of each stimulus type estimated by Model 2 in the 
IDM task. b Mean initial and final values for HP and LP stimuli in 
the IDM task. Dotted lines represent the value change trend from the 

initial to the final of each stimulus type. The red and green represent 
the change trend of HP and LP stimuli, respectively. The error bars 
and colored dots of all figures indicate SD and each participant’s data, 
respectively. *p < .05, **p < .001

Table 4   The settings of value 
updating of each stimulus type 
in the added models (A–D) 
without value updates in IDM

All added models were con-
structed based on Model 2. “T” 
indicates that the value of the 
stimuli in the CBL model was 
updated after decision-making 
(i.e., the value increases when 
chosen and decreases when 
rejected), while “F” indicates that 
the value of the stimuli in the 
CBL model was not updated

Model Novel HP LP

Model A T F T
Model B T F F
Model C F T T
Model D F F F
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only the value of the novel stimuli was updated; Model C, in 
which only the value of the novel stimuli was not updated; 
and Model D, in which the values of all the stimuli were not 
updated. All new models were analyzed through simulations 
and the fitting of behavioral data.

The results of the parameter recovery for all added mod-
els are shown in Fig. 5. Excluding Model D, there was con-
sistency between the set parameter values (simulated) and 

the estimated values (fitted) for the remaining three added 
models (rs > 0.522).

Model recovery was confirmed for all models except 
Model D (see Table 5). When the same true model (used 
to generate artificial data) was used for the analysis, 
the fit of the analytical model to the artificial data was 
the best. When Model 2 and Models A–C were the true 
models, strong evidence was found for comparison with 

Fig. 5   Results of parameter recovery simulation for additional com-
parison between the Model 2 and the added models (A–D) without 
value updates in IDM. This simulation was conducted to confirm 

whether each newly added model (A–D) could be well estimated as 
the set value of each parameter. The correlation coefficient between 
simulated and fitted was shown as parameter recovery indices

Table 5   Results of WBIC for 
model recovery of additional 
comparison between Model 2 
and the added models (A–D) 
shown in Table 4

Bold numbers in the table represent the WBIC values of the models that best fit the artificial data. Asterisk 
(*) is the BF value used for model comparison (3 < +BF < 20, 150 < **BF). The larger the BF value, the 
greater the difference between the models

Simulated Fitted

Model 2 Model A Model B Model C Model D

Model 2 2342.541 2430.301** 2525.013** 2654.265** 2767.034**

Model A 2427.446** 2406.561 2487.599** 2739.019** 2771.429**

Model B 2486.038** 2472.889** 2445.276 2771.629** 2771.826**

Model C 2691.428** 2749.732** 2774.443** 2580.376 2763.266**

Model D 2772.947+ 2772.818+ 2771.583+ 2768.434 2770.404
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other models (BF2A = 1.299 × 1038, BF2B = 1.764 × 1079, 
B F 2 C  =  2 . 3 9 9  ×  1 0 1 3 5 ,  B F 2 D  =  2 . 2 6 4  ×  1 0 1 8 4 , 
B F A 2  =  1 . 1 7 6  ×  1 0 9 ,  B F A B  =  1 . 5 6 4  ×  1 0 3 5 , 
B F AC =  2 . 4 2 5  ×  1 0 1 4 4 ,  B F A D =  2 . 8 8 5  ×  1 0 1 5 8 , 
B F B 2  =  5 . 0 4 3  ×  1 0 1 7 ,  B F B A  =  9 . 8 2 1  ×  1 0 1 1 , 
B F B C =  5 . 4 1 1  ×  1 0 1 4 1 ,  B F B D =  6 . 5 9 0  ×  1 0 1 4 1 , 
B F C 2  =  1 . 6 9 5  ×  1 0 4 8 ,  B F C A  =  3 . 5 5 1  ×  1 0 7 3 , 
BFCB = 1.915 × 1084, BFCD = 2.680 × 1079). When Model D 
was the true model, although positive evidence was found 
for comparison with Models 2, A, and B (BFD2 = 12.718, 
BFDA = 11.179, and BFDB = 3.251), no evidence was found 
for comparison with Model C (BFDC = 0.139).

Although Model D did not adequately complete the simu-
lations, we compared all the models by fitting them to the 
behavioral data. The results indicate that Model 2 had a bet-
ter fit than the other models. (Table 6; BF2A = 2.424 × 1047, 
B F 2 B  =  1 . 1 0 6  ×  1 0 1 0 7 ,  B F 2 C  =  2 . 4 3 3  ×  1 0 1 4 7 , 
BF2D = 1.345 × 10232).

These results confirmed that the values of all stimuli 
including HP in the IDM were updated after the choice.

Estimated Final Values in IDM

To examine the effect of the value learned in the EDM on 
the IDM, we compared the final value of the HP and LP 
with each novel stimulus in IDM. We used the best-fit model 
(Model 2) to estimate the values. We ranked all novel stimuli 
in the order of their final value from high to low within each 
participant (those labeled as N1 to N11) and then compared 
them with HP or LP stimuli (Fig. 6a). The results showed 
that HP stimuli were lower than N1 (t(37) =  − 2.883, Holm-
adjusted p = 0.026, d =  − 0.744, 95% CI =  − 0.157, − 0.027) 
and higher than N5 to N11 (ts(37) > 3.133, Holm-adjusted 
ps < 0.05, ds > 0.854). LP stimuli were lower than N1 to N4 
(ts(37) <  − 2.768, Holm-adjusted ps < 0.05, ds <  − 0.742) 
and higher than N8 to N11 (ts(37) > 2.650, Holm-adjusted 
ps < 0.05, ds > 0.749).

Moreover, we compared the HP and LP with the mean 
value of all novel stimuli. Results showed that the final 
value of HP stimuli was higher than that of novel stimuli 
(t(37) = 4.708, Holm-adjusted p < 0.001, d = 1.254, 95% 
CI = 0.083, 0.207). In contrast, LP stimuli did not differ from 
novel stimuli (t(37) =  − 0.091, Holm-adjusted p = 0.928, 
d =  − 0.025, 95% CI =  − 0.060, 0.055).

These results showed that HP stimuli maintained their 
high value through the end of IDM, while their value 
was lower than the most preferred novel stimuli. That is, 
although the IDM is affected by the EDM value, the superi-
ority of intrinsically learned values (SIV) was concurrently 
observed in the IDM. Regarding LP stimuli, there was no 
significant effect on the IDM final value as in the results for 
initial values, and LP stimuli were the average position of 
the novel stimuli.

Consistency Between the Final Value Estimated 
by Model 2 and the Chosen Frequency or Subjective 
Preference Ratings

To confirm the validity of the model-estimated final values, 
we examined the consistency between the model-estimated 
final values and the chosen frequency of each stimulus in 
the IDM or the subjective ratings of each stimulus after the 
IDM task. Comparisons were made between novel stimuli 
ranked by the final value (N1–N11), HP and LP stimuli for 
each chosen frequency, and subjective preference ratings. 
Figure 6b shows the consistency between the final value 
and the chosen frequency. The results demonstrated that 
the chosen frequency of the HP stimuli was lower than 
that of the N1 stimulus (t(37) =  − 4.267, Holm-adjusted 
p < 0.001, d =  − 1.083, 95% CI =  − 1.561, − 0.605) but 
higher than that of the N6–N11 stimuli (ts(37) > 3.905, 
Holm-adjusted ps < 0.01, ds > 1.083). The LP stimuli 
were lower than the N1–N4 stimuli (ts(37) <  − 2.783, 
Holm-adjusted ps < 0.05, ds <  − 0.747) but higher than the 
N9–N11 stimuli (ts(37) > 3.772, Holm-adjusted ps < 0.01, 
ds > 1.025).

Figure 6c depicts the consistency between the final value 
and the subjective preference ratings. The results showed 
that the subjective preference for the N1 stimulus with the 
highest final value was higher than that for the N4–N11 
stimuli (ts(37) > 4.197, Holm-adjusted ps < 0.01, ds > 0.779). 
The subjective preference of the HP stimuli with the sec-
ond highest final value was higher than that of the N5–N11 
stimuli (ts(37) > 3.634, Holm-adjusted ps < 0.05, ds > 0.880), 
while the subjective preference of the LP stimulus was lower 
than that of the N1–N2 (ts(37) <  − 4.026, Holm-adjusted 

Table 6   WBIC results of IDM 
behavioral data fit with Model 2 
and added models (A–D) shown 
in Table 4

Bold numbers in the table rep-
resent the WBIC values of the 
model that best fit the behavio-
ral data. Asterisk (*) is the BF 
value used for model compari-
son (150 < **BF). The larger the 
BF value, the greater the differ-
ence between the models

Model WBIC

Model 2 2170.18
Model A 2279.29**

Model B 2416.66**

Model C 2509.55**

Model D 2704.68**
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ps < 0.01, ds <  − 1.263) but higher than that of the N11 
(t(37) = 4.295, Holm-adjusted p < 0.01, d = 0.971, 95% 
CI = 0.499, 1.443).

Overall, the results validated the final value estimated by 
Model 2, indicating that stimuli with high values in the IDM 
had a higher chosen frequency and were subjectively preferred.

Fig. 6   Comparison of the final 
value estimated by the Model 
2 among stimulus type (a) and 
the correspondence between the 
estimated final value and chosen 
frequency (b) or the subjec-
tive preference ratings (c). a 
Comparison of the mean final 
value of HP and LP stimuli in 
IDM task with all novel stimuli. 
N1–N11 denote the rank of the 
novel stimuli in the final value. 
N1 was the most favorite novel 
stimulus, and N11 was the least 
favorite novel stimulus for each 
participant. The red asterisk (*) 
represents the comparison result 
with HP, and the green asterisk 
(*) represents the comparison 
result with LP. There was no 
difference between N2–N4 and 
HP and between N5–N7 and 
LP. The error bars and colored 
dots indicate SD and each 
participant’s data, respec-
tively. *p < .05, **p < .001. b 
Comparison of the mean chosen 
frequency in IDM for all types 
of stimuli. N1–N11 denote 
the rank of the novel stimuli 
in the final value. The error 
bars and colored dots indicate 
SD and each participant’s 
data, respectively. *p < .05, 
**p < .001. c Comparison of 
the subjective preferences rat-
ings rated on a 5-point Likert 
scale (1 = Extremely Dislike, 
5 = Extremely Like). N1–N11 
denote the rank of the novel 
stimuli in the final value. The 
error bars and colored dots indi-
cate SD and each participant’s 
data, respectively. *p < .05, 
**p < .001
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Discussion

The goal of this study was to determine whether, how, and 
to what extent the EDM value affects the IDM.

Whether the Value Learned in EDM Affects IDM

To examine whether the EDM value affects the IDM, we 
compared the chosen frequency of the three types of stimuli 
(novel, HP, LP) in the IDM task. The chosen frequency for 
HP stimuli was higher than LP stimuli and novel stimuli 
(Fig. 1b). These results indicated that the high values learned 
in EDM affect the IDM.

It could be argued that our finding that stimuli that were 
highly valued in the EDM were also chosen in the IDM 
reflects previous results from the extinction procedure. In 
conditioning studies, subjects continued to choose the rein-
forced option even after the reward was removed (Bouton 
& Moody, 2004; Dickinson & Balleine, 1995; Rescorla & 
Wagner, 1972; Stevenson & Clayton, 1970; Thorndike, 
1898). However, in such cases, unlike the present study, 
the subjects were not explicitly told that the decision task 
or situation had changed. Therefore, they were placed in 
a position in which they expected that choosing the rein-
forced option would eventually reward them (Dickinson 
& Balleine, 1995; Thorndike, 1898). In contrast, partici-
pants in the present study were clearly instructed on the 
difference between the EDM and the IDM, and they were 
aware that they would not be rewarded in the IDM. That 
is, the present study operationally eliminated the partici-
pants’ choice of reinforced items based on the expectation 
of an externally derived reward and asked them to choose a 
preferred shape according to their own preference criteria 
in the IDM. Furthermore, in the extinction procedure, the 
value of the stimuli or behavior decreases when external 
rewards are not provided after choice, and the option is 
gradually not chosen (Bouton & Moody, 2004; Rescorla & 
Wagner, 1972; Stevenson & Clayton, 1970). In contrast, in 
the present study, HP stimuli were more frequently chosen 
in the IDM, even though no reward feedback was presented, 
and their value further increased (Fig. 4b). This difference 
suggests that, in the extinction procedure, the decision was 
based on the expectation of rewards from the external envi-
ronment, whereas in the IDM in the present study, CIPC 
occurred because the HP stimuli were chosen based on 
their own preference. Therefore, the results of the present 
study cannot be explained by the sustained choice of highly 
rewarding stimuli reported in conditioning studies (Bouton 
& Moody, 2004; Rescorla & Wagner, 1972; Stevenson & 
Clayton, 1970).

How the Value Learned in EDM Affects IDM

To examine how the EDM values reflect the IDM, we con-
ducted a computational model analysis. The model compari-
son revealed that Model 2, in which the initial values of the HP 
stimuli in the IDM were different from that of the other stimuli, 
best fit the data (Table 3). By comparing the initial values of 
each stimulus estimated by this model, we confirmed that the 
EDM values of the HP stimuli were reflected in the initial IDM 
values (Fig. 4a). This result was consistent with the results of the 
chosen frequency (Fig. 1b). Collectively, the high values learned 
in EDM (reward learning task) were reflected in the initial values 
of IDM (preference judgment). This suggests a close relation-
ship between the values obtained using the EDM and IDM.

To further examine how the value learned in EDM affects 
IDM, we examined whether the value learned in EDM 
affects the degree of value change in IDM. The high value 
of HP at the end of IDM was not simply a result of the 
maintenance of the high initial value reflected as the effect of 
EDM, but it was also shown that the value of HP was further 
increased by selection in IDM (Fig. 4b). Although we also 
examined the possibility that the value of HP stimuli was 
not updated in the IDM (Table 4), such a model did not fit 
well with the behavioral data (Table 6). Those results dem-
onstrate that what is learned to be of high value according 
to externally derived criteria will subsequently be further 
valued within that individual through their own choices and 
the following CIPC. This result may indicate part of the 
internalization process of the value of the external environ-
ment if the values in the external and internal criteria differ.

It remains unclear how EDM values were reflected as initial 
values in the IDM. The effect of the EDM on the IDM was 
inferred from the notion that activity in reward-related brain 
regions has been reported in both the EDM (Bechara et al., 
1997, 2005; Marco-Pallarés et al., 2008, 2015; Yacubian et al., 
2006) and IDM(Akaishi et al., 2014; Lee & Daunizeau, 2020; 
Nakao et al., 2016, 2019). It is possible that the shared neu-
ral basis of value representation between the EDM and IDM 
underlies the results of this study; however, further research 
with brain activity measurements is needed to verify this point.

Another possible explanation at the cognitive level is that 
the values learned in the EDM are more likely to be used 
as cues for preference judgments regarding novel contour 
shapes with less clear preferences. Because the IDM in this 
experiment was a preference decision, the observed CIPC 
as an increased HP value (Fig. 4) can be interpreted as the 
result of choosing the preferred HP in the IDM. However, 
CIPC does not necessarily have to be preference-based at 
the decision stage but can also occur when it is interpreted 
as a preference-based decision after the decision (Johansson 
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et al., 2014). Therefore, it is also possible that at least at the 
stage when the HP stimuli were first presented in the IDM, 
the choice was not solely based on preference, but the choice 
was made based on the value in the EDM. This is a possible 
process of influence of the EDM on the IDM that we aimed 
to examine in this study, but it means that the value in the 
EDM may not have been internalized as a value in the IDM 
from the beginning. However, even if participants did not 
choose HP stimuli based solely on preference in the early 
stages of IDM, it is likely that they interpreted their decision 
as preference-based after the choice because the value of HP 
subsequently increased (Fig. 4). Given that such preference 
judgments based on the values learned in the EDM are likely 
to occur when stimulus preferences are not formed at the 
onset of the IDM, it is possible that the effect of the EDM on 
the IDM was more easily observed in this study, which used 
novel contour shapes. In the future, it would be desirable to 
investigate whether stimuli with clearer preferences can be 
used to influence the EDM on IDM.

Is it possible to interpret the results of this study based 
on familiarity? It is thought that the stimuli presented in 
the EDM (i.e., HP and LP) are processed as more familiar 
stimuli in the IDM than as novel stimuli. Although familiar-
ity effects cannot be completely ruled out, they alone cannot 
explain the results of this study. If familiarity could explain 
the behavioral data in the IDM, we would expect to observe 
the same differences in the chosen frequency between the 
LP and novel stimuli as between the HP and novel stimuli. 
Additionally, if familiarity is an important factor, we would 
expect a model like Model 4 (where HP and LP are different 
from novel stimuli) to fit the behavioral data better. However, 
Model 2 was adopted, in which the initial value of only the 
HP stimuli was different from the other stimuli. This sug-
gests that it is more plausible to assume the influence of 
value rather than that of familiarity. Conversely, a caveat is 
that the influence of familiarity cannot be completely ruled 
out, and the value of the LP was possibly higher because of 
the influence of familiarity than it would have been without  
it. To examine the influence of familiarity, it would be necessary  
to compare the LP with a stimulus without feedback that was 
presented for the same duration as the LP before the IDM.

What Extent the EDM Value Affects the IDM

To determine the extent to which the values learned in the 
EDM affected the IDM, we compared the model-estimated 
final values for all stimuli in the IDM. Interestingly, we 
found the superiority of intrinsically learned value (SIV) 
in the IDM, in which the most preferred novel stimulus 
learned in IDM (N1 in Fig. 6a) was preferred over HP 
stimuli. If the values in the EDM and IDM were the same, 
then it would be expected that the stimuli with a higher 
value in the EDM would also have the highest value in 

HP in the final value in the IDM. This is because it was 
learned as highly valued in the EDM and subsequently 
chosen (Fig. 1b) and valued in the IDM (Fig. 4b). How-
ever, the SIV of novel stimuli is observed in the IDM 
(Fig.  6a), indicating that our preferences are strongly 
influenced not only by externally given rewards but also 
by increased preferences on our own choices. Although the 
EDM value affects the IDM value, it is unlikely that the 
EDM and IDM values are identical.

However, the mechanisms underlying SIV in the IDM 
remain unclear. The recently proposed fundamental self-
hypothesis (Humphreys & Sui, 2016; Northoff, 2016; North-
off et al., 2022; Qin et al., 2020; Sui & Gu, 2017; Sui & 
Humphreys, 2015; Zhang et al., 2022) is considered relevant. 
This postulates that the self is a fundamental brain function 
that precedes and controls cognitive functions, such as per-
ception, emotion, and reward, which has been proposed in 
studies of spontaneous brain activity (Northoff, 2016; North-
off et al., 2022; Qin et al., 2020) and the self-prioritization 
effect (SPE) (Humphreys & Sui, 2016; Sui & Gu, 2017; Sui 
& Humphreys, 2015; Zhang et al., 2022). In this hypoth-
esis, the self is embedded in spontaneous brain activity, and 
when a stimulus appears, the default mode network (DMN), 
which is responsible for processing self-associated stimuli, 
interacts with a task-related network to influence cognitive 
processing. A meta-analysis of the neural basis of IDM and 
EDM also confirmed that IDM differs from EDM in that the 
DMN is its primary neural substrate (Nakao et al., 2012). 
In addition to the conceptual and operational differences 
between the EDM and IDM, there is a difference in task 
demands (i.e., whether decisions are made based on value 
criteria given by the environment or based on one’s own 
value criteria), that is, an essential difference in self-involve-
ment. The continuous choice of stimuli as one’s own favorite 
shape, rather than because it has previously been rewarded, 
is likely to increase the self-relatedness of the item. As self-
related stimuli are known to induce reward-related brain 
activity (de Greck et al., 2008; Enzi et al., 2009), an increase 
in self-relevance may trigger an internal reward response 
(Aridan et al., 2019; Camille et al., 2011; Fellows & Farah, 
2007; Izuma et al., 2010; Miyagi et al., 2017; Nakao et al., 
2016), leading to an increase in value. As a result, the most 
preferred novel stimulus learned in the IDM might have a 
higher value than HP stimuli in the IDM.

Although the model-free measure of chosen frequency 
also confirmed this SIV (Fig. 6b), which was not reflected 
in the subjective preference ratings after IDM, subjective 
preference showed no significant difference between HP and 
N1 (Fig. 6c). In the IDM task, 15 stimuli were presented in 
different combinations in each of the 105 trials. It is possible 
that this complex task setting prevented the subjective recog-
nition of which stimuli were most favorable or chosen. It is 
necessary to reexamine whether this SIV can be observed in 
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subjective preference ratings by experimenting with simpler 
task settings.

The low values learned in EDM did not affect IDM. In the 
EDM task, when an incorrect answer was chosen, feedback 
was displayed as 0 (simply not presented with a reward) 
rather than presented with a punishment. There was a pos-
sibility that the non-reward of LP stimuli in EDM did not 
affect participants’ preference for those stimuli, and there-
fore the initial value of LP stimuli in IDM was the same as 
for novel stimuli. People tend to choose options that can earn 
rewards and avoid punishment (Guitart-Masip et al., 2014). 
Depending on whether the value is learned through reward 
acquisition or punishment avoidance in EDM, it is possible 
that IDM will reflect either high or low value in EDM. It 
is likely that a lower value learned based on punishment 
feedback in the EDM can be perceived as a stimulus with a 
lower value than a novel stimulus in the IDM. Additionally, 
different levels of reward and punishment in the EDM task 
may have different effects on the IDM. High-rewarding HP 
stimuli will learn higher values in the EDM task, reflect 
higher initial values in the IDM task, and be chosen more 
frequently, whereas LP stimuli with higher penalties will 
learn lower values in the EDM task, reflect lower initial val-
ues in the IDM task, and be rejected more frequently. Future 
studies should investigate these possibilities.

Limitations and Further Directions

This study showed for the first time the value of EDM affects 
IDM and the SIV in IDM. Nevertheless, the present studies 
have several main limitations. First, the study showed that 
high value in EDM was reflected in IDM and low value was 
not. However, we should note that the results did not lead 
to any general conclusions about the relationship between 
EDM and IDM values but were a conclusion that depended 
on the task settings of this study. In this study, EDM used 
relatively easy reward probability settings such as 90% vs. 
10% and 80% vs. 20%, where learning of value was eas-
ily established, to examine whether the value of EDM was 
reflected in IDM. Therefore, there were few opportunities 
to receive incorrect feedback after choosing LP stimuli 
and decreasing their values: the mean proportion of trials 
in which incorrect feedback was given after choosing the 
LP stimulus was 0.103, with SD of 0.113 (for comparison, 
the mean proportion of trials in which correct feedback 
was given after choosing HP stimuli was 0.734, with SD 
of 0.150). As a result, participants likely learned that LP 
stimuli were of relatively low value but did not come to the 
realization that they had to actively avoid LP stimuli. There-
fore, it is assumed that LP stimuli in IDM were treated as 
having the same initial value as novel stimuli. When using 
an EDM task where the participant actively decides not to 
choose an item to avoid losses, the low value in EDM may 

affect IDM. Therefore, there is room for further study on 
this point.

Second, this study did not use a fixed interval between 
the EDM and IDM tasks but instead allowed participants 
to choose when to begin the IDM task after the EDM task. 
We predicted that the degree to which the value learned in 
the EDM affects the IDM will decrease with increasing time 
intervals. Values can decrease with prolonged periods of 
unexposure (e.g., Ito & Doya, 2009; Katahira et al., 2017). 
A longer time interval will result in less value learned in 
EDM being reflected in the initial value of the IDM, whereas 
a shorter time interval will allow participants without clear 
preferences to receive more value learned in EDM. In this 
study, although participants had shorter task intervals, with 
the longest being 27.08 s, there was no significant correla-
tion between the time interval and the initial value of the 
HP stimuli (r = 0.009, p = 0.956). However, we cannot rule 
out the impact of time intervals on the value relationship 
between the EDM and IDM. These findings need to be vali-
dated in future studies.

Third, the possibility of explanations using other types of 
models has not yet been explored. For example, the cognitive 
dissonance theory has been used to explain the phenomenon 
of CIPC in IDM (Festinger, 1957). In this theory, CIPC is 
explained by which choosing one item from two items with 
the same subjective preference rating, causing dissonant 
feelings (i.e., cognitive dissonance). Subsequently, they 
adjust their preferences for the chosen and rejected items in 
order to reinforce that their choice is reasonable. A differ-
ence between the cognitive dissonance theory and the CBL 
model is that the former assumes that preferences change 
in situations where one of the pairs of equal liking is chosen. 
The latter assumes that preferences change for all stimulus 
pairs independently of the equality of the preferences of the 
two options. While a computational model that represents 
cognitive dissonance has also been constructed (Vinckier 
et al., 2019), the model was not used for the IDM task as in 
the present study. It remains possible that if we build a CBL 
model incorporating cognitive dissonance and the model 
fits the behavior well, we may get different results from the 
present results. Furthermore, it goes beyond the integration 
of cognitive dissonance and the CBL model. There may be 
room in the future to consider the integration of RL and CBL 
models, which have similar formulas. This makes it possible 
to model complex decisions in which the EDM and IDM 
processes interact.

Finally, there was a possibility that preferences were 
formed to some extent by the first impression in IDM. 
Although we used novel contour shapes by following the 
previous study (Zhu et al., 2021) to minimize the impact 
of initial preferential differences, we cannot rule out the 
possibility that value can be formed by first impression. 
For individuals whose preferences were formed by first 
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impressions, it is possible that the estimated learning rate 
was estimated to be larger than the true value.

Conclusion

In this study, we implemented the tasks of EDM and IDM 
using similar experimental procedures (Fig. 7) and applied 
the computational model analysis for the behavioral data 
of both decisions. In which EDM was followed by IDM 
and presented the same stimuli as EDM, we showed that 
the learned high values in the EDM reflect on the initial 
preference of the IDM. Stimuli that had been learned to 
have high value through EDM were also chosen in IDM, 
further increasing their value through IDM. Moreover, 
from the results of the final value in IDM, stimuli that 
were of high value in EDM were still of high value at 
the end of IDM, but not as high as the novel stimuli in 
the most preferred IDM. These results demonstrated that 
externally given criteria have a strong influence on our 
later preferences and, at the same time, demonstrated 
that values formed by choice based on one’s own criteria 
can be higher than externally derived values. We propose 
that the phenomenon of SIV in the IDM may be observed 
through the reward response to processing self-relevant 
stimuli in terms of the fundamental self-hypothesis. This 
study is the first to disentangle the relationship between 
EDM and IDM, revealing that EDM values influence IDM 
and determine SIV. This superiority suggests that the val-
ues learned through the EDM and IDM are likely to dif-
fer. Our findings serve as a window to the comprehensive 
understanding of the decision-making process.

Methods

Participants

Thirty-eight healthy Japanese university students (male = 17, 
female = 21, mean age = 20.789, age range = 18–29) partici-
pated in the experiment. All participants were native Japa-
nese speakers, right-handed, with regular or corrected-to-
normal vision. All experimental protocols were accepted by 
the Ethics Committee of the Graduate School of Education 
at the University of Hiroshima. According to the guidelines 
of the Research Ethics Committee of the University of Hiro-
shima, all participants provided informed written consent 
prior to participation. They were compensated for participat-
ing in the experiment.

Stimuli

In this study, novel contour shapes were used to avoid the 
influence of preferences acquired prior to the experiment. 
Fifteen novel contour shapes were selected from a previous 
study (Endo et al., 2003). These shapes have been used in 
EDM and IDM studies and applied to computational model 
analyses in which their initial values are assumed to be equal 
(Kunisato et al., 2012; Ohira et al., 2009, 2010; Zhu et al., 
2021). Furthermore, to minimize the differences in initial 
preferences caused by shape differences, these shape dif-
ferences were made as small as possible. Specifically, we 
selected shapes with mild complexity (mean = 5.1, SD = 1.4), 
width (mean = 5.5, SD = 1.8), smoothness (mean = 4.6, 
SD = 1.7), symmetry (mean = 3.7, SD = 1.7), and orientation 
(mean = 5.0, SD = 2.1). The ratings of these characteristics 
were collected using a 9-point rating scale (1–9) (Endo et al., 

Fig. 7   Experimental procedure. a In the EDM task, participants were 
asked to choose the one considered correct from the two stimuli. In 
the IDM task, participants were asked to choose the one preferred 
from the two stimuli. Feedback was not presented in the IDM task. 
b In the rating task, participants subjectively evaluated all stimuli 

in the IDM task on a 5-point Likert scale (1 = Extremely Dislike, 
5 = Extremely Like). The rating task was conducted after the IDM 
task. The subjective rating data was not used for computational model 
analyses



Computational Brain & Behavior	

2003). Additionally, these shapes had lower association val-
ues (mean = 65.71, SD = 6.84). The association value was 
the percentage (%) of respondents who gave the name of a 
specific object when asked to name the object recalled by 
the shape and those who could not write the name but said 
it resembled something (Endo et al., 2003). These shapes 
are numbered 29, 31, 35, 36, 37, 39, 42, 44, 45, 56, 63, 65, 
81, 87, and 92 in the original study (Endo et al., 2003). The 
image used in the experiment was 800 × 600 pixels in size. 
Within 30° of the angle of view, participants could see a 
picture on the screen.

In both tasks, PsychoPy (Peirce et al., 2019) was used to 
present each pair on a white background, with one member 
on the left and the other on the right side of the screen. 
The order of the trials, as well as the presentation slides of 
the shapes, were randomized through the participants. The 
experiment was carried out on a Windows 10 PC with a 
1920 × 1080 monitor.

Task

All participants conducted EDM tasks followed by IDM 
(Fig. 7a). Subjective preference ratings of each stimulus 
were conducted after the IDM.

EDM Task (Reward Learning Task)

Four shapes were randomly selected from 15 stimuli materi-
als, and pairwise combinations were presented. Participants 
carried out six blocks of 34 trials. Each trial started with a 
fixing cross shown. To avoid the influence of pre-stimulus 
brain activity at specific frequencies on decision-making 
performance (Bai et al., 2016; Fellinger et al., 2011), the 
duration of the fixation cross was randomly varied time of 
2000 ms, 2200 ms, 2400 ms, or 2600 ms. Subsequently, two 
shapes of the fixed combinations were presented for 2000 ms 
on the left and right sides of the fixation cross. Participants 
were asked to choose one of the two shapes considered to be 
correct as quickly and correctly as possible by pressing the 
“f” key (left) or the “j” key (right) on a standard computer 
keyboard. To limit the exposure period for each stimulus, 
the stimuli disappeared (i.e., turned to a white screen) after 
2000 ms. Participants could make their response even after 
the two shapes had disappeared, and the white screen dis-
appeared once participants made a response. If a key was 
pressed within 2000 ms, a white screen was not shown. After 
the response, they received correct (+ 1) or incorrect (0) 
feedback for 1000 ms. Participants were informed that + 1 
indicated an increase in the number of points earned, mean-
ing that the more points earned, the higher the reward paid 
to the participant after the experiment. The participants were 
instructed to earn as many points as possible. In each trial, 
each stimulus had a certain probability of receiving points 

after selection, and 90% vs. 10% stimuli pair or 80% vs. 
20% stimuli pair appeared randomly. In addition, the left and 
right positions of the stimuli in each stimuli pair were also 
random. The participants were informed that each stimulus 
had a certain probability of obtaining points, but they were 
not informed of the specific probability. Furthermore, it was 
worth noting that the reward for each stimulus was generated 
independently in each trial. After a participant chose one 
stimulus of a pair and received a reward, it was difficult to 
infer whether another rejected stimulus could receive one. 
Although participants may have speculated on the possibility 
of the outcome of the other stimuli, the behavioral data do 
not support this possibility (see the supplementary materials 
for more details).

IDM Task (Preference Judgment Task)

This task was the same as that in the previous study (Zhu 
et al., 2021). Including the four shapes in the EDM task, all 
15 shapes randomly created 105 pairs (i.e., 14 presentations 
per stimulus) in the IDM task, and each pair of stimuli was 
presented only once. There were three types of stimuli in the 
IDM task: novel stimuli and the stimuli presented in EDM 
consisted of high-probability reward stimuli (90%, 80%; HP) 
and low probability reward stimuli (20%, 10%; LP). Partici-
pants carried out five blocks of 21 preference decision trials 
and were asked to choose the preferred shape among two 
shape stimuli presented according to their own preferential 
criteria in each trial. We also informed participants that there 
was no objectively correct answer in this task. Stimuli were 
presented in the same manner as the EDM task, except there 
was no feedback after the choice.

Rating Task

We conducted a subjective rating task for each shape stim-
uli (Fig. 7b) to examine the relationship between subjective 
preferences and final stimulus values estimated by compu-
tational model analysis for IDM behavioral data. Following 
the IDM task, participants carried out a subjective prefer-
ence rating task. In the rating task, participants were asked 
to determine their subjective preference, graded on a 5-point 
Likert scale (1 = Extremely Dislike, 5 = Extremely Like) for 
each shape. It is worth noting that for the IDM task, we did 
not use the experimental paradigm with subjective ratings, 
such as the free choice paradigm (Brehm, 1956) or rate-
rate-choice (Chen & Risen, 2010), to avoid the influence 
of noise-contaminated subjective ratings on CIPC measure-
ment (Izuma & Murayama, 2013). As a result, preference 
rating data in the Likert scale was not included in the com-
putational model analyses.
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Classical Analysis of the Behavioral Data

We first confirmed the correct response rate for each stim-
ulus pair in the EDM task to gauge whether participants 
learned through the EDM task.

To investigate whether the value learned in EDM had an 
effect on IDM, prior to computational model analyses, we 
compared the chosen frequency of the three types of stimuli 
(HP, LP, and novel) in the IDM task using the paired t-test 
with the Holm multiple-comparison correction. The chosen 
frequency of each type of stimuli was calculated by dividing 
the number of times it was chosen across all trials by the 
number of times it was presented.

Computational Models

To investigate how the values learned in EDM reflected 
IDM, we prepared four CBL models with different initial 
stimulus values (Table 1), which were established by the 
previous study (Zhu et al., 2021). The CBL model’s learning 
process involves increasing the value of chosen items while 
decreasing the value of rejected items. The CBL model is 
written as follows:

The values ( VIDM ) in CBL models were updated based 
on whether a participant chose or rejected it. The updated 
VIDM was kept constant until the trial in which the stimu-
lus was presented. The degree of value change followed by 
choice was determined by the learning rate ( �c or �r ). When 
item i was chosen, the learning rate ( �c ) was multiplied by 
1 − VIDM

i
(t) and added to the value at trial t, as if it were the 

prediction error for a correct response (feedback is + 1) in 
the RL model (see the supplementary materials Eq. s1). In 
case item i was rejected, the learning rate ( �r ) was multi-
plied by 0 − VIDM

i
(t) and added to the value at trial t as if it 

were the prediction error in the RL model for an incorrect 
response (feedback is 0) in the RL model.

The typical RL model in Equation s1 (see the supplemen-
tary materials) does not update the values of the rejected 
items. In contrast, in CBL, participants updated the value of 
items based on their own choices; hence, rejected items were 
considered incorrect answers, and their values were updated 
to decrease. Notably, although the EDM and IDM are similar 
in updating values through differences in existing values and 
feedback, there are differences in updating the values of both 
or chosen options. These differences arise from task design. 
In a typical EDM task, including our EDM task, the feed-
back for the two items is independently determined by prob-
ability and participants are only informed of the feedback of 
the chosen option. Therefore, knowing whether the rejected 

(1)

VIDM
i

(t + 1) =

{
VIDM
i

(t) + �c
(
1 − VIDM

i
(t)
)
if i was chosen

VIDM
i

(t) + �r
(
0 − VIDM

i
(t)
)
if i was rejected

item was the correct answer was difficult, and only the value 
of the chosen option would increase or decrease based on 
feedback from external circumstances (Palminteri et al., 
2017). In contrast, in the IDM task, it is clear that what they 
choose is preferred, and what they do not choose is not pre-
ferred. Thus, the value of the chosen option increases, and 
the value of the rejected option decreases (Brehm, 1956). 
Zhu et al. (2021) compared CBL models that update the 
value of both chosen and rejected models that update only 
one of them and reported that models that update both values 
have a better fit to the behavior. We used the same IDM task 
as Zhu et al. (2021). Although not directly related to the aim 
of this study, we confirmed that the behavioral data from this 
study are better suited for an RL model that only updates 
chosen options rather than one that updates both chosen and 
rejected options (see the supplementary materials).

The initial values of the stimulus types (novel, HP, or 
LP), wherein the models differed, were estimated as free 
parameters. Model 1 represented no influence of the values 
learned in EDM, and the initial value � (0 ≦ � ≦ 1) was a free 
parameter, which was the same for all stimulus types in the 
IDM task. Model 2 represented that only the initial value of 
the HP stimuli can reflect the EDM value and differed from 
the other stimuli in the IDM task. The initial value of HP 
stimuli ( �HP ) was a free parameter, whereas the initial value 
of the LP stimuli was fixed at 0.5, the same as with novel 
stimuli. In contrast to Model 2, in Model 3, only LP was a 
free parameter, and the others were fixed at 0.5. In Model 4, 
both HP and LP were free parameters, and the novel stimuli 
were fixed at 0.5. Since the previous study (Zhu et al., 2021) 
reported that the model that used different learning rates for 
chosen and rejected items was unsuitable for model com-
parison, the above four models were created based on the 
model that used the same learning rates (i.e., �c = �r ) as the 
main model-based analysis. Model 1 is a null model that 
assumes no effect of the EDM on the IDM. If the fit of the 
other models is superior to that of Model 1, this indicates an 
effect of the EDM on the IDM. Because behavioral data are 
more likely to fit a model with a higher number of param-
eters (Watanabe, 2013) and to avoid the issue of parameter 
setting for the initial values of other models affecting the 
fit of Model 1, we set the initial values of Model 1 as free 
parameters under the constraint of no influence from the 
EDM. Thus, if other models provided a better fit, we could 
clearly determine the effect of the EDM on the IDM.

To calculate the probability of choice in the CBL mod-
els, the softmax function was applied to the value difference 
between the two options.

(2)Pchosen =
1

1 + exp(−�(VIDM
chosen

(t) − VIDM
rejected

(t))
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In trial t, VIDM
chosen

− VIDM
rejected

 with parameter � was used to 
determine the value of Pchosen , which was used to represent 
the probability that the model chooses the option the partici-
pant chose. � determined the softmax function’s slope. The 
higher the value, the more the decision was based on the 
values, while the lower the value, the more random the deci-
sion was and the less reliant on the value.

Simulations and Model‑Based Behavioral Data 
Analyses

All CBL models (Table 1) underwent both simulations of 
parameter and model recoveries. CBL models that passed 
the parameter recovery performed model recovery, testing 
whether the model that generated the artificial data best fit 
the same model. Finally, we fitted the actual behavioral data 
to the CBL models to determine which model best explained 
the behavioral data.

All subsequent simulations and actual data analyses 
were performed on R (R Core Team, 2020). The hierarchi-
cal Bayesian method was used to derive model parameters, 
and the calculation process was completed by rstan package 
(Stan Development Team, 2020). This method assumes that 
a common distribution within the group generates each par-
ticipant’s parameters (e.g., �n , �n ). As shown in the following 
Eqs. 3 and 4, the parameters � and � of participant n were 
assumed to be generated from the normal distributions of � 
and �2 . As with the prior distributions of � and �2 , we used 
the uniform distribution. At the same time, we truncated the 
normal distribution to ensure that the generated parameters 
were within a certain range.

The parameters at the population level ( �� , �2
�
 , �� , �2

�
 ) 

were used as free parameters to infer from data. At the popu-
lation level, the distribution parameters took a prior distribu-
tion into account, and the distribution calculated a posterior 
distribution using the Bayes estimator. The posterior distri-
bution of parameters was obtained by the Markov Chain 
Monte Carlo method (MCMC).

Simulation 1 (Parameter Recovery)

We conducted parameter recovery simulations for the 
CBL models to evaluate whether the experimental set-
tings and models met the goal of estimating model param-
eters from behavioral data (Wilson & Collins, 2019). We 
tested whether model parameters used to produce artificial 
behavioral data could be estimated by model fitting to the 

(3)�n ∼ N
(
�� , �

2
�

)

(4)�n ∼ N
(
�� , �

2
�

)

artificial data. As parameter recovery indices, Pearson’s 
correlation coefficient was calculated between the simu-
lated and fitted parameters.

We used the same settings as the actual experimental 
design when generating the artificial behavioral dataset. 
In each model, we generated artificial data with 15 stimuli 
and 105 trials for 38 people. Initial values for stimuli were 
set as in Table 1. The � , � , and � were generated from the 
normal distribution of � and �2 . In the stage of generating 
artificial data, to make the simulation more consistent with 
actual behavioral data, �� , �2

�
 , �� , and �2

�
 were set based on 

the analysis results of Zhu et  al.’s (2021) research on 
actual behavioral data. Specifically, the α and β of all mod-
els were generated from the normal distribution of �� = 
0.160, �2

�
 = 0.180, and the normal distribution of �� = 

9.870, �2
�
 = 6.480, respectively. Unlike � and � , � , the 

parameter for estimating the initial value of the HP and/or 
LP stimuli (Table 1), was not included in Zhu et  al.’s 
(2021) research and was a new parameter added in this 
study. Therefore, the � was generated to fall within the 
range of the stimulus values of 0–1. That is,� of all models 
were generated from the normal distribution of �� = 0.500, 
�2
�
 = 0.300.
At the stage of model fitting to the data, �� , �2

�
 , �� , and �2

�
 

were generated from the uniform distribution ranging from 
0 to 1, while �� and �2

�
 were generated from the uniform 

distribution ranging from 0 to 20 and 0 to 10, respectively.

Simulation 2 (Model Recovery)

Model recovery was conducted to test whether the true 
model showed the best fit for the data generated by that 
model under the experimental design. The widely applicable 
Bayesian information criterion (WBIC) (Watanabe, 2013) 
was used to assess the relative goodness of fit of the models. 
As shown in Eq. 5, the − WBIC is equal to the approximate 
value of log marginal likelihood.

p(X|Mi) is the marginal likelihood, which is the probability 
of generating data X given by the model Mi.

More specifically, we first used the MCMC method after 
performing the transformation in Eq. 6 to estimate the log 
posterior density logp(X|�)

1

logN p(�).

� was the vector of parameters such as � , � . N represented 
the sum of all trials across participants.

The WBIC was then calculated from the S samples of 
MCMC as Eq. 7.

(5)WBIC ≈ −logp(X|Mi)

(6)logp(X|�)
1

logN p(�) =
1

logN
logp(X|�) + logp(�)
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S for model recovery was 5000 samples, while those 
for parameter recovery and behavioral data analysis were 
10,000.

A smaller WBIC indicated a better fit of the model to the 
data. The four individual models shown in Table 1 generated 
artificial behavioral data in the same way with Simulation 
1. Subsequently, each data set was fitted to all models and 
judged which model best fit the data using WBIC.

To compare which model had the higher probability of 
generating data, we calculated the Bayes factor (BF). The 
BF was calculated by the ratio of the marginal likelihood of 
the two models and was calculated using the marginal likeli-
hood of the model used to generate the data as the numera-
tor. A previous study (Kass & Raftery, 1995) referred to 
evaluated the Bayes factor of 1–3 as not worth mentioning, 
3–20 as positive, 20–150 as strong, and more than 150 as 
very strong.

Models Fit to the Behavioral Data

To conduct computational model analysis of the actual 
behavioral data in the IDM task, we first applied partici-
pants’ behavioral data to all CBL models passing parameter 
recovery. As in Simulation 2 (model recovery), WBIC was 
calculated as an index of model fit, and BF was used for 
inter-model comparison. The estimated model parameters 
and values of each stimulus from the best-fit model were 
used for further analyses.

Furthermore, to ensure that the model adequately 
describes actual behavioral data, we conducted a posterior 
predictive check (Gelman et al., 1996), which allowed the 
observation of discrepancies between the observed behav-
ioral data and the data predicted by the model. Specifically, 
utilizing all samples from the posterior distribution, we gen-
erated 12,000 independent datasets, each containing data on 
the choice behavior of 38 individuals. Subsequently, we cal-
culated the chosen frequencies of different stimuli for each 
individual in each dataset. Finally, we randomly selected 
500 distributions and compared them with the distribution 
of actual behavioral data to determine whether the model can 
predict the patterns of observed behavioral data.

Additional Model Comparison Between the CBL 
and the Models Without Value Updates in IDM

The CBL models used in this study were based on those 
developed by the previous study (Zhu et al., 2021). Although 
in their study, the CBL models were validated to show a 
change in the value of chosen and rejected options after 

(7)WBIC = −
1

S

S∑

s=1

logp(X|�s)
preference-based choices, we cannot rule out the possi-
bility that the value of the stimuli in this study remained 
unchanged after choices. Therefore, an additional computa-
tional model analysis was performed to investigate whether 
the value did not change in the IDM. Additional models 
without value changes were constructed based on the best-fit 
CBL model for the behavioral data in Models 1–4. Specifi-
cally, we created four additional models (Table 4): Model A, 
in which only the value of the HP stimuli was not updated; 
Model B, in which both the HP and LP stimuli were not 
updated, and only the value of the novel stimuli was updated; 
Model C, in which only the value of the novel stimuli was 
not updated; and Model D, in which the values of all the 
stimuli were not updated. All new models were analyzed 
through simulations and the fitting of behavioral data.
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