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Abstract
How do people actively learn to learn? That is, how and when do people choose actions that facilitate long-term learning and
choosing future actions that are more informative? We explore these questions in the domain of active causal learning. We
propose a hierarchical Bayesian model that goes beyond past models by predicting that people pursue information not only
about the causal relationship at hand but also about causal overhypotheses—abstract beliefs about causal relationships that
spanmultiple situations and constrain howwe learn the specifics in each situation. In two active “blicket detector” experiments
with 14 between-subjects manipulations, our model was supported by both qualitative patterns in participant behavior and an
individual differences-based model comparison. Our results suggest when there are abstract similarities across active causal
learning problems, people readily learn and transfer overhypotheses reflecting these similarities. Moreover, people exploit
these overhypotheses to facilitate long-term active learning.

Keywords Causal learning · Active learning · Transfer learning · Overhypotheses · Generalization

Introduction

A key feature of human cognition is that when we learn, we
often acquire knowledge and skills we can use in the future,
improving our performance and future learning (e.g., Gick &
Holyoak, 1980; Schulz & Gopni, 2004). For instance, cook-
ing one dish can help us learn how to work with ingredients
in another dish, practicing one musical instrument can help
us learn a new instrument more quickly, and playing with
the user interface of one smartphone can also help us learn
to navigate another smartphone. In each case, we can learn
general patterns and principles that help us set up more spe-
cific hypotheses in a new context or problem. For example, in
the case of smartphones, we can learn that phones generally
make the camera easily accessible. For a new phone, we can
then hypothesize that a lock-screen button, quick swipe, or
another shortcut will lead to the camera app. Such abstract
knowledge that sets up more specific hypotheses in a new
context or problem can be called overhypotheses (Goodman,
1955; Kemp et al., 2007). Overhypotheses enable us to focus
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on learning just the novel aspects of future problems and
produce a “learning to learn” effect, where we learn more
efficiently in the future.

However, it is not well understood how and when we seek
out the evidence needed to learn overhypotheses. Do peo-
ple tend to focus narrowly on learning the task at hand, so
that learning overhypotheses happens incidentally? Or do we
preferentially choose actions to update our overhypotheses
about the abstract nature of families of systems and prob-
lems? When we update our overhypotheses in light of new
evidence, does that in turn facilitatemore informative actions
in a new situation?These are questions about howwe actively
learn to learn. To begin answering these questions, we focus
on a simple problem domain within active causal learning.
We study how people choose actions to probe a sequence of
causal systems, where it is critical to learn both the specifics
of each system and overhypotheses capturing their similari-
ties.

Prior Models of Active Causal Learning

While the term active learning can have many meanings, we
use it to refer to situations in which learners pick actions to
gather their own information (Gureckis & Markant, 2012),
as opposed to observing a fixed and given set of information.
In particular, we focus on how people seek information that
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is most helpful given their beliefs and uncertainty, allowing
them to discriminate between hypotheses they have in mind.
In causal learning, actions or interventions can further pro-
vide information that is unavailable under observation alone,
and this information is critical for discriminating between
causal relationships (Pearl, 2009). How adults and children
choose interventions, i.e., how they perform active causal
learning, has been neatly formalized in computational mod-
els (e.g., Steyvers et al., 2003; Cook et al., 2011; Bramley
et al., 2015;Coenen et al., 2015;Bramley et al., 2017;Coenen
et al., 2019).

These pastmodels have focused onhowpeople learn about
causal structure, which defines what variables are causes
and effects of other variables (Fig. 1). Consider an example
where a child conducts a small science experiment to test
which batteries in their drawer are good or bad. The child
devises an intervention strategy based on inserting batteries
into a simple circuit with an LED light. The LED is known
to illuminate when at least one good battery is in the circuit.
Here the child has set up a causal system where the variables
are the batteries’ presence in the circuit and the LED’s illu-
mination. Common sense about electrical systems dictates
that the LED illumination is the only candidate for being an
effect. Therefore, the child is trying to choose interventions
to solve the remaining causal structure learning problem of
identifying whether batteries are good (causes of the LED’s
illumination) or bad (non-causes).

In order to disambiguate between causal structures in a
way that is informative from an information-theoretic per-
spective, interventions should be chosen with the goal of
reducing uncertainty about causal structures. This uncer-
tainty reduction is also called information gain (Oaksford &
Chater, 1994). Maximizing information gain corresponds to

Fig. 1 Causal graph. The causal structure defines what variables are
causes and effects of other variables. The functional form is a function
of its causes and it defines the conditional probability of the effect given
its causes

choosing interventions that can quickly narrow down which
beliefs are most likely correct. In our LED example, if the
child only has two batteries to test, then they are trying to
learn which causal structure is correct among four possibil-
ities: neither battery is good, only the first is good, only the
second is good, or both are good. Intervening on a single bat-
tery would be highly informative because this intervention
eliminates half of the possibilities at once: If the LED illu-
minates, the child can rule out half of the structures where
the intervened battery is not good, and if the LED does not
illuminate, then the child can rule out the other half.

The alternative of intervening on both batteries can be
highly informative, depending on the child’s prior beliefs. If
the child strongly expects a causal structure where neither
battery is good, then intervening on both of them would be
highly informative because this intervention is expected to
result in an unlit LED—an outcome that eliminates all three
other causal structures at once. However, if the child instead
expects at least one battery is good, then intervening on both
would no longer be informative: The LED is expected to
illuminate, eliminating only the single possibility of neither
battery being good.

Past models (e.g., Steyvers et al., 2003; Bramley et al.,
2015; Coenen et al., 2015) found that maximizing informa-
tion gain about causal structures produced good predictions
of people’s interventions. However, they made an impor-
tant simplifying assumption: they only represented people’s
beliefs about causal structure within a single, isolated causal
learning problem. These models do not predict that peo-
ple actively “learn to learn”, improving their interventions
for learning new causal relationships in the future. In order
to formalize such behavior, it is critical to represent causal
overhypotheses—abstract beliefs about causal relationships
that span multiple situations and constrain how we learn the
specifics in each situation (Goodman, 1955; Kemp et al.,
2007; Lucas et al., 2014; Sim & Xu, 2017). If people’s inter-
ventions help them update causal overhypotheses in past
learning problems, then in a new problem, they would not
need to start from scratch but can choose interventions that
are guided by these overhypotheses. In this way, interven-
tions from one situation are able to influence interventions in
another, allowing them to adapt and improve not just within
the current situation but also across to future ones.

Overhypotheses About the Functional Form

To accommodate causal overhypotheses, we propose a hier-
archical Bayesian model that represents beliefs at multiple
levels of abstraction, including both lower-level hypotheses
about the current causal relationship and higher-level overhy-
potheses about the general properties of causal relationships.
Like previous rational (Anderson, 1990) models of active
learning (e.g., Oaksford & Chater, 1994; Nelson & Movel-
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lan, 2000; Steyvers et al., 2009; Bramley et al., 2015; Coenen
et al., 2015), we frame causal learning in Bayesian terms
and take the active learner’s goal to be finding interventions
that maximize information gain, with one key difference:We
posit that learners have overhypotheses that they update in
light of new evidence, and seek information not just about
the causal relationship at hand, but also about these overhy-
potheses.

We focus on a problem setting involving very simple
causal structures and overhypotheses, where it is plausible
that people approach our model’s Bayes-optimal behavior
and that our model’s predictions will align with approxi-
mate models of active causal learning (e.g., Steyvers et al.,
2003; Bramley et al., 2017). Here we can provide a first
account of overhypothesis transfer in active causal learning
that focuses on people’s high-level goals: Do they pick inter-
ventions for the purpose of learning about overhypotheses,
which can facilitate long-term learning? How do they trade
this off with their short-term learning goals? We, however,
do not argue that people choose Bayes-optimal interven-
tions in general and for arbitrarily complex problems: Past
work suggests that people, faced with complex problems,
perform resource-constrained and approximate reasoning by
sampling (Denison et al., 2013; Bonawitz et al., 2014; Zhu
et al., 2020; Sanborn et al., 2021) or considering only a few
hypotheses at a time (Steyvers et al., 2003; Bramley et al.,
2017). Modeling these resource-constrained and approxi-
mate processes would improve our understanding of how
people realize their overhypothesis learning goals in more
challenging domains, and we believe our work sets the stage
for building such process-level models in the future.

While our general approach can be applied to arbitrary
overhypotheses, we focus here on overhypotheses about the
functional form of causal relationships. The functional form
governs how causes combine or interact to produce an effect
(Fig. 1), e.g., are multiple causes necessary to bring about an
effect? Do relationships tend to be deterministic or stochas-
tic? Going back to our LED example, if we assume that good
batteries (causes) are interchangeable, then we can express
the functional form in terms of the voltage threshold for
illuminating the LED (effect), or—in terms of our original
variables—the number of good batteries that are required to
make it illuminate. The functional form can also capture how
reliable we expect the illumination to be, and how that varies
with the number of causes; the illumination might be deter-
ministic if our voltage threshold is exceeded by any amount,
or it might be noisy if our threshold is barely exceeded.

We focus on beliefs about the functional form as a type
of overhypotheses because we can build on simple hierar-
chical models that include functional forms and give good
accounts of human learning in the absence of an active learn-
ing element (Lucas & Griffiths, 2010). Although there are
other types of overhypotheses for causal learning, the func-

tional form is, to our knowledge, the most commonly studied
kind and is representative of the causal overhypothesis litera-
ture (Griffiths & Tenenbaum, 2009; Lucas & Griffiths, 2010;
Lucas et al., 2014; Kosoy et al., 2022; Lu et al., 2016). Addi-
tionally, varying overhypotheses in this setting leads to clear
and systematic differences in what interventions are more
informative. In contrast, we would expect subtler effects in
an experiment based on other salient studies of overhypothe-
ses (e.g., Kemp et al., 2007; Austerweil et al., 2019), owing
to fewer degrees of freedom in possible interventions and the
possibility of greater individual variability in prior beliefs.

Tounderstandhowoverhypotheses about functional forms
differ from normal hypotheses, we refer to Kemp et al.’s
(2007) definition of overhypotheses: “any form of abstract
knowledge that sets up a hypothesis space at a less abstract
level”. Now consider beliefs that favor functional forms
where two or more causes are needed to produce an effect.
In our LED example, this would mean two or more good
batteries are needed to light an LED.1 We can “[set] up a
hypothesis space at a less abstract level” by considering how
these beliefs set up more specific form-structure combina-
tions that are likely to govern a particular set of batteries and
LED. For example, likely hypotheses could be there is a set of
batteries that can light up the LED in pairs, or there is a single
good battery that is not detectable with the LED. While both
causal structure and functional form knowledge are needed
to set up these situation-specific hypotheses, we focus on a
setting where they are not on equal footing: The structure is
only about the situation-specific set of causal variables (e.g.,
a particular set of batteries and LED), but beliefs about the
form are also “abstract knowledge” that can be abstracted, or
lifted, out of one situation and reused for learning in future
situations with novel causal variables (e.g., use the two or
more belief as a starting point to understand novel batteries
and LEDs). Thus, whereas the causal structure is a hypothe-
sis, beliefs about plausible functional forms across different
circuits are overhypotheses.

To illustrate how overhypotheses about the functional
form can affect future intervention choices, now suppose that
we are in a new situationwith new causal variables andwe do
not know the functional form. Here we can transfer and rely
on overhypotheses that we have previously learned in simi-
lar situations. As we have seen throughout the LED example,
we might have acquired overhypotheses that favor disjunc-
tive functional forms, where only a single cause is necessary
to produce an effect, or overhypotheses that favor conjunctive
functional forms, where we need two or more causes. Under
disjunctive-favoring overhypotheses, intervening on a single

1 This is typical of real-world LEDs, which, unlike incandescent bulbs
tend to illuminate only when a threshold voltage is exceeded, which can
require a circuit with 2–3 standard AA batteries in series. For simplicity,
we restrict our examples to series circuits.
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variable at a timewould be informative aboutwhich variables
are causes of an effect, e.g., testing singleton batteries would
reveal a good battery whenever there is an LED illumination.
However, under conjunctive-favoring overhypotheses, this
strategy would not be informative at all. Conjunctive overhy-
potheses expect that no single variable, cause or non-cause, is
sufficient to produce an effect. For example, intervening on a
single battery would always result in an unlit LED. This out-
come provides no information about whether that battery is
good (but just not sufficient by itself) or bad. Instead, having
conjunctive overhypotheses leads us to a different strategy
of testing two or more batteries at a time. Now it is possi-
ble to cause LED illuminations that tell us our intervention
contains at least two good batteries.

Since past models of active causal learning have largely
focused on learning causal structure (e.g., Bramley et al.,
2015; Coenen et al., 2015; Steyvers et al., 2003), they have
tended to assume the functional form was known in advance
to experimental participants, or that the functional form was
consistent with the simple expectation that a single causewas
sufficient to produce or prevent an effect. This assumption
of causal sufficiency holds for a wide variety of phenomena
in causal inference and appears to be a default expectation
people have in unfamiliar contexts (Cheng, 1997; Gopnik
& Sobel, 2000; Tenenbaum & Griffiths, 2001; Griffiths &
Tenenbaum, 2005; Griffiths et al., 2011; Lu et al., 2008), but
it is not always appropriate. Both children and adults can
adjust their overhypotheses to learn other functional forms,
where multiple causes may be needed to produce the effect
(e.g., the conjunctive form), and they are able to transfer these
overhypotheses to guide their causal inferences in new tasks
(Lucas & Griffiths, 2010; Lucas et al., 2014; Kosoy et al.,
2022; Griffiths & Tenenbaum, 2009; Lu et al., 2016). In our
hierarchical Bayesian model, we accommodate uncertainty
in peoples’ overhypotheses about the functional form. In sit-
uations where people might be expected to have very strong
prior expectations about the functional form, our model is
essentially equivalent to Steyvers et al.’s (2003) Rational
Identification model and Bramley et al.’s (2015) Scholar

model. In other situations where the form is not known in
advance andwhenmany forms are possible, ourmodelmakes
substantially different predictions.

Our Hypotheses

Through our hierarchical Bayesian model, we formalize
three scientific hypotheses (Fig. 2): (1) People represent rich
overhypotheses; (2) people transfer and adapt their over-
hypotheses across tasks; and (3) they sacrifice short-term
learning for information gain about overhypotheses. Below,
we discuss themodeling contribution and behavioral insights
of each hypothesis. We also provide an overview of how we
test each hypothesis by comparing our model with ablations
of our model, which remove one hypothesis at a time (see
“AModel ofActively Learning to Learn” for implementation
details).

Hypothesis 1: People Represent Rich Overhypotheses

First, our model posits that people represent rich overhy-
potheses that can accommodate a large variety of functional
forms. Our model uses an extended version of Lucas and
Griffiths’s (2010) sigmoid space of functional forms. The sig-
moid space is computationally simple but is able to express
variations in (1) the number of causes required to generate
an effect and (2) the reliability of the effect. The common
disjunctive (1 cause; deterministic effect) and conjunctive (2
causes; deterministic effect) forms are neatly contained as
special cases.

Modeling Contribution Our model’s space contains 400 vari-
ations of sigmoid forms and is richer than spaces used in
previous works: Compared with past models of active causal
learning (e.g., Bramley et al., 2015; Coenen et al., 2015;
Steyvers et al., 2003), our model removes the assumption
of having only a single functional form and predicts that
interventions discriminate between many possible forms.
Compared with past models and studies of causal overhy-

Fig. 2 Hierarchical Bayesian
model. Each circled number
represents one of the three
scientific hypotheses of our
model: (1) people represent rich
overhypotheses; (2) people
transfer and adapt their
overhypotheses from one task
(left box) to the next (right box);
and (3) they sacrifice short-term
learning for information gain
about overhypotheses
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potheses (Griffiths & Tenenbaum, 2009; Lucas & Griffiths,
2010; Lucas et al., 2014; Lu et al., 2016; Kosoy et al.,
2022), our work goes beyond studying 0–2 causes as the
threshold for generating an effect. Our model and Exper-
iment 2 introduce new forms where the effect requires at
least 3 causes (under varying degrees of noise)—we call this
“3-conjunctive”. This addition enables us to study a wider
coverage of generative and noisy overhypotheses. Moreover,
in Experiment 2, not only can we study transfer to tasks
requiring qualitatively different intervention strategies (test-
ing singletons for disjunctive tasks vs. multiple objects for
conjunctive tasks), but also transfer to tasks requiring simi-
lar strategies (testing multiple objects for both 3-conjunctive
and conjunctive tasks).

Behavioral Insight It is not obvious that people track or repre-
sent multiple possibilities in our model’s space of functional
forms at once, much less choose interventions that efficiently
discriminate between plausible possibilities. Rather, a com-
mon alternative from the active learning literature is the
positive testing strategy (Klayman & Ha, 1987; Nickerson,
1998; Wason, 1960). Here interventions would only try to
produce positive evidence (i.e., the “on”, but not “off”, effect)
as a way to confirm a single functional form. The rest of
our proposed space of various generative and noisy forms
would be ignored. Similarly, Steyvers et al.’s (2003) work
suggests people choose interventions that focusmore on test-
ing individual causal hypotheses (they were well-explained
by “Rational Test” models) than on discriminating between
hypotheses within a large space of possibilities.

In our setting, positive testing can manifest as people
trying to confirm their prior preferences for a particular dis-
junctive and deterministic form (Lucas and Griffiths, 2010;
Lu et al., 2008; Mayrhofer and Waldmann, 2016; Schulz
and Sommerville, 2006): Their interventions may test one
object at a time, anticipating that a single object would be
sufficient and reliable for producing the effect. Such inter-
ventions would not consider alternative overhypotheses like
conjunctive-favoring ones, where at least two causes are
needed to produce the effect and so are only revealed by
testing combinations of objects. Moreover, we expect posi-
tive testing to be more likely among participants who wish
to expend less cognitive effort, as is supported by Coenen
et al.’s (2015) work in a similar causal learning setting (with-
out overhypotheses). There may be several such participants
who are less motivated to perform well in our experiments,
but instead want to complete the experiments quickly and
receive their performance-independent compensation.

To test our model’s sigmoid space, we compare our full
model against a “Fixed-Form” ablation model. This ablation
model is essentially equivalent to past active causal learning
models, such as Steyvers et al.’s (2003) Rational Identifica-
tion Model and Bramley et al.’s (2015) Scholar Model; it

reduces the space of functional forms to a single determin-
istic and disjunctive form to represent the past assumption
that a single cause is reliable and sufficient for producing an
effect.

Hypothesis 2: People Transfer and Adapt Their
Overhypotheses

The second scientific hypothesis represented by our model is
that people transfer and adapt their overhypotheses. By this,
we do not mean that people simply continue to hold onto the
same overhypotheses across tasks, but that they adapt their
overhypotheses and interventions across all tasks. Overhy-
potheses acquired from past tasks would serve as a starting
point for further change and learning in a new task.We expect
this “learning to learn” behavior to appear in our setting,
where tasks are different in a systematic way so that trans-
ferring overhypotheses gives opportunities for more efficient
learning in new tasks.

Modeling Contribution Past models have either accommo-
dated overhypothesis transfer (e.g., Griffiths & Tenenbaum,
2009; Lucas & Griffiths, 2010; Lucas et al.,2014; Lu et al.,
2016) or active learning (e.g., Bramley et al., 2015; Coenen
et al., 2015; Steyvers et al., 2003), but typically not both. By
implementing both, ourmodel can generate newkinds of pre-
dictions that are not anticipated by earliermodels: People can
continually adapt their interventions across related tasks by
(1) transferring their overhypotheses and (2) seeking infor-
mation about overhypotheses. Our model is also grounded in
information theory and contributes a principled way of test-
ing these predictions. For ease of understanding, we split the
intertwined concepts in the predictions, focusing on (1) trans-
fer here and (2) information gain in “Hypothesis 3: People
Sacrifice Short-term Learning for Information Gain About
Overhypotheses”.

Importantly, information-theoreticmodels of active causal
learning represent people’s belief adaptation in a partic-
ular task by tracking a probability distribution and using
Bayesian inference to update this distribution (e.g., Steyvers
et al., 2003; Bramley et al., 2015; Coenen et al., 2015). Fol-
lowing from this Bayesian framework, our model carries
over a distribution across tasks to represent the transfer of
overhypotheses: This distribution is updated using Bayesian
inference on evidence from past tasks, is used as a prior in
a new task, and continues to be updated in the new task. We
use our model to test for transfer behavior in a participant
by updating a distribution, which represents their overhy-
potheses, using the same interventions and observations that
were produced by that participant. Transfer is marked by
their interventions being informative under a distribution that
incorporates evidence frompast tasks, as opposed to evidence
from only the current task. This test is sensitive to each indi-
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vidual’s unique history of interventions and observations and
thus can be used to detect transfer no matter what their past
experiences and intervention strategies are. We are not aware
of alternative approaches to detecting transfer in this general-
purpose way.

To illustrate the value of our model-based analysis, con-
sider the alternative of using a simple statistical metric that
counts the number of objects in an intervention. This metric
can indicatewhether people transferred disjunctive (1 object)
or conjunctive (multiple objects) overhypotheses and is used
for this purpose in our Experiment 1. However, this metric
is limited when we investigate differences in overhypotheses
resulting from subtle differences in training tasks or individ-
uals having different intervention strategies. For example,
in Experiment 2, transferring overhypotheses from either a
conjunctive or 3-conjunctive training task is likely to lead to
multiple-object interventions and it is not clear what number
of objects would be more indicative of one or the other. And
even if people had the same training tasks, their propensity
for transfer cannot always be captured with similar values
on a simple metric: Consider the situation where one per-
son employed a lazy intervention strategy that did not reveal
much about the training task and another person employed a
very efficient strategy. We would expect their overhypothe-
ses to be very different (especially if their overhypotheses
can have the rich variations proposed by our first scientific
hypothesis) and their transfer behavior to look very different
even though they had the same training opportunity. Thus,
as described above, we use our Bayesian model’s capability
to track a distribution per individual to capture transfer in a
way that accounts for fine-grained variations in individuals’
experiences and strategies.

Behavioral Insight While there is evidence that people can
transfer beliefs about functional forms (Lucas & Griffiths,
2010; Lucas et al., 2014; Griffiths & Tenenbaum, 2009;
Lu et al., 2016; Kosoy et al., 2022), this effect could be
weak in our setting. We draw frommultiple perspectives that
show mixed evidence for transfer even when the training
and transfer tasks are similar. First, we study adult partici-
pants, and past studies have shown that adults, in contrast to
children, have a weak transfer effect for conjunctive over-
hypotheses (Lucas & Griffiths, 2010; Lucas et al., 2014).
Second, in contrast to most studies of functional form trans-
fer, we ask participants to produce their own evidence instead
of receiving it from the experimenter. While people make
strong inferences from examples produced by a teacher or
expert—such as the experimenter—they likely make weaker
inferences based on their own actions, which are chosen
under uncertainty (Shafto & Goodman, 2008). Thus, they
may have less confidence in their learning and be less willing
to transfer their beliefs to future tasks. Third, we study over-
hypotheses that are beliefs about functions, and past function

learning works have shown that people tend to neglect to
transfer (i.e., extrapolate) complex functions; they often fall
back to a linear relationship that is consistent with their priors
(Kalish et al., 2004; Kalish, 2013). Overall, it is not apparent
whether we will find a notable transfer effect in our setting.

One way that our participants may not exhibit trans-
fer behavior is by reverting back to their priors, similar
to the function learning setting above. They may have
strong priors, specifically ones that favor deterministic and
disjunctive overhypotheses (Lucas & Griffiths, 2010; Lu
et al., 2008; Mayrhofer & Waldmann, 2016; Schulz & Som-
merville, 2006), and treat any learning about alternative
overhypotheses as rare. They may then think these alterna-
tive overhypotheses are unlikely to be useful again, so instead
of transferring these overhypotheses, they rely on the same
deterministic- and disjunctive-favoring prior in a new situ-
ation. Such behavior is consistent with Zhao et al.’s (2022)
model (LoCaLa) of how people transfer beliefs about causal
functions, which are much like our work’s functional forms.

Given the above discussion, it is possible that most peo-
ple do not transfer their overhypotheses. We implement this
possibility as the “No-Transfer” ablation model: Following
the above idea that people may revert to their priors, “No-
Transfer” predicts people start anew in each task using the
same prior, regardless of any learning in previous tasks. We
nevertheless hypothesize that our full model, with its transfer
idea, will be the dominant predictor of participant behavior.
We test our full model by comparing it to “No-Transfer”.

Hypothesis 3: People Sacrifice Short-term Learning for
Information Gain About Overhypotheses

The final hypothesis our model can be used to test is that peo-
ple sacrifice short-term learning for information gain about
overhypotheses. This hypothesis focuses on the learning
opportunities that people create for themselves when they are
in control of their learning process: To what extent do people
prioritize interventions that are informative for learning over-
hypotheses, i.e., discriminating between possibilities within
a rich space of functional forms (Hypothesis 1)? Would they
pursue such overhypothesis learning, which can help them in
the future (Hypothesis 2), even when that means sacrificing
information gain about their immediate situation, i.e., about
causal structures?

Modeling Contribution To quantify the extent that peo-
ple’s intervention choices are informative for overhypothesis
versus causal structure learning, our model first takes an
established information-theoretic approach to formalizing
the notion of “informativeness”.Given an intervention and its
potential outcomes, our Bayesian model can compute their
implications for posterior distributions over functional forms
and causal structures. The informativeness of an interven-
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tion can be formalized in terms of how much it is expected
to reduce uncertainty in the posterior distribution. This is
commonly referred to as expected information gain and is
a principled metric from information theory and the broader
active learning literature (e.g.,Oaksford&Chater, 1994;Nel-
son & Movellan, 2000).

Like past models of active causal learning (e.g., Bramley
et al., 2015; Coenen et al., 2015; Steyvers et al., 2003), our
model maximizes expected information gain about causal
structures to predict that people seek information about the
causal structure at hand. A key difference of our model is that
it also maximizes expected information gain about the space
of functional forms. Our model can thus predict that people
also seek information about overhypotheses, which can then
shape their future interventions and inferences.

Moreover, to our knowledge, our model is the first to
capture the idea that people can strike a balance between
overhypothesis and causal structure learning. Our model per-
forms a novel decomposition of expected information gain
about overhypotheses versus causal structures, and balances
them with a weight parameter. Although our full model can
accommodate any weight values between 0 and 1, it commits
to nonzero weights; this implies that a learner attaches some
implicit value to overhypothesis learning, even when entails
sacrificing opportunities to learn about the causal structure
at hand.

Behavioral Insights Previous work has discussed how peo-
ple gather information that can be useful for the long term:
Children’s playful actions seem inefficient at first, but may
help themdevelop cognitive abilities for their adulthood (e.g.,
Buchsbaum et al., 2012; Chu & Schulz, 2023). And adult
scientists can design an experiment with multiple blocks or
even an ensemble of multiple experiments, which not only
addresses a specific research question but also develops a
broader theory that can be applied to future settings (e.g.,
Ivanova et al., 2021; Almaatouq et al., 2022; Valentin et al.,
2023). However, we are not aware of any empirical stud-
ies that have contrasted this long-term information-seeking
behavior with short-term learning.

We begin to provide insights into people’s preferences
for long- versus short-term information gain through our
behavioral experiments: Within each individual task, partic-
ipants are asked to discover the particular causal structure
of the task, i.e., identify which variables are causes of an
effect. Although their success also depends on understand-
ing the functional form, participants may succeed faster by
prioritizing information gain about causal structures and
learning about functional forms as a side effect. However,
across multiple tasks, participants can benefit from seeking
information about functional forms, picking interventions
that not only confirm appropriate overhypotheses but also
reveal contradictory evidence for adapting and improving

their overhypotheses. In the short run, this behavior may
delay them from identifying the true causal variables. In the
long run, however, they may be able to exploit their overhy-
potheses in several tasks that share similar functional forms
and speed up their learning. Our experiments thus create
a setting where we can study how people balance over-
hypothesis learning with short-term learning about causal
structures.

Our model makes the prediction that people sacrifice
causal structure learning for information gain about over-
hypotheses. To test this prediction, we evaluate how well our
model predicts participant interventions in our experiments.
We compare it against a “Structure-Only-EIG (Expected
Information Gain)” ablation model, which is short-sighted
and only seeks information about the causal structure at hand,
analogous to previous models of active causal learning. Any
learning about overhypotheses and future benefits would be
incidental, rather than following deliberate choices to pick
interventions with an eye toward overhypotheses and future
learning. We anticipate our full model will produce better
predictions than this ablation model. We also analyze the
weight parameter of our model to investigate the degree to
which people prioritize overhypothesis learning.

We test the ideas in our full hierarchical Bayesian model
in two preregistered experiments. Our experiments are active
learning extensions of Lucas andGriffiths’s (2010) version of
the “blicket detector” experiments (Gopnik & Sobel, 2000)
and examine human behavior in a series of active causal
learning tasks. Here participants have the opportunity to
learn more efficiently in later tasks by learning and trans-
ferring causal overhypotheses from earlier tasks. We first
checked the feasibility of our model’s ideas against quali-
tative patterns in participants’ interventions and judgments
(Experiment 1). We then performed a more rigorous test of
our model through a formal model comparison against abla-
tionmodels and a randombaseline (Experiment 2).We found
our full hierarchical Bayesian model was the best at predict-
ing interventions for the majority of individuals.

Overall Experiment Design

Building on the general “blicket detector” paradigm (e.g.,
Gopnik & Sobel, 2000; Griffiths et al., 2011; Lucas et al.,
2014; Sim & Xu, 2017; Kosoy et al., 2022) and especially
Lucas and Griffiths’s (2010) experimental setup, we pre-
sented participants with a task containing blocks (colored
squares labeled with letters) and a “blicket machine”. We
asked them to solve the causal learning problem of iden-
tifying “blickets” (causes) among the blocks (prospective
causes) by observing the blicket machine’s binary response
(effect). Whereas Lucas and Griffiths’s study involved fixed
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sequences of events, ours used a computer-based web inter-
face that allowed participants to actively produce their own
sequences of events by choosing interventions (Fig. 3; see
Appendix B for the instructions that we gave participants).
An intervention involved putting any combination of blocks
on the machine. The machine would then respond by acti-
vating or doing nothing. In order to choose informative
interventions in this active blicket task, participants needed to
consider their beliefs about both the causal structure (blicket
identities) and the functional form (how the blicket machine
activates in response to blickets). Participants encountered
several active blicket tasks, where each one increased the
level of difficulty and required increasingly selective inter-
ventions.

We chose our active blicket experiment design because it
(1) was simple enough for online experimental participants
to quickly understand, (2) was tractable to analyze with our
hierarchical Bayesianmodel, (3) nonetheless required appro-
priate overhypotheses about the functional form to facilitate
learning in future tasks, and (4) could be decomposed into a
causal structure learning aspect and a functional form learn-
ing aspect. Within this design, we can formulate and test
the ideas in our model: Participants’ interventions should
not only yield information about the causal structure within
each task, but also information about overhypotheses that can
enable more efficient learning in future tasks.

Each active blicket task can be formalized as learning a
causal graph (see Figs. 3 and 1). The causal structure of the
graph defines what variables are causes and effects of other
variables. The variables in the task are the blocks’ presence
on the machine and the blicket machine’s activation. From
the cover story, participants can easily identify the machine
activation as the only plausible effect, but they do not know
whether the other variables (blocks) are causes (blickets) or
non-causes (non-blickets). Their goal is to solve the causal
structure learning problem of identifying causes from non-
causes, or blickets from non-blickets.

To identify blickets, participantsmust, however, also solve
the functional form learning problem. The functional form
defines the conditional probability of the effect (machine
activation) given the causes that are present (blickets, not
non-blickets, that are on the machine), and it is a function
of these causes (blickets). For example, a disjunctive form
says the conditional probability is 1 whenever at least one
blicket is on the machine and 0 otherwise. A conjunctive
form changes the blicket “threshold”, saying the conditional
probability of a machine activation is 1 when at least two
blickets are on themachine and0otherwise; seeTable 1 for all
the functional forms we consider. Under a disjunctive form,
participants can intervene on one block at a time to identify
whether that block is a blicket that activates the machine.
However, under a conjunctive form, singleton interventions

would not reveal anything about blickets. Participants would
instead need to intervene on multiple blocks at a time to
reveal anymachine activations, and from there on, theymight
still need to narrow down which blocks in their intervention
are actually blickets. Thus, in order to achieve the goal of
identifying blickets, participants must learn both the causal
structure and functional form of the task.

We presented participants with several active blicket tasks
to investigate whether and how they would learn and transfer
overhypotheses across these tasks. The earlier training tasks
were designed so that participants could easily learn over-
hypotheses. For example, the first training task had only 3
blocks, allowing participants to intervene on all 23 = 8 pos-
sible combinations within the constraints of the task (the 45s
time limit in Experiment 1, or the 12 intervention limit in
Experiment 2). The final transfer task was then designed to
measure the transfer of overhypotheses learned from training.
The transfer task had more blocks (6 or 9) and thus was more
combinatorially complex (26 = 64 or 29 = 512 possible
combinations), and it was no longer possible to intervene on
all combinations of blocks within the task constraints. This
complexity increased the importance of relying on previously
learned overhypotheses to select just a few informative inter-
ventions.

Throughout our two experiments, we performed between-
subjects manipulations of the blicket machine’s functional
form in the training and transfer tasks,where all six functional
forms we considered are listed in Table 1. We also manipu-
lated the training length (one or two tasks). Our dependent
measures were participants’ interventions and causal judg-
ments in the transfer task. These measures would not only
indicate whether participants’ interventions and judgments
were informative of the transfer task’s causal structure and
functional form, but also whether these were informative
under overhypotheses about the functional form transferred
from past training tasks.

AModel of Actively Learning to Learn

Our hierarchical Bayesian model (preregistered at https://
osf.io/vk9yd) represents causal beliefs at multiple levels
of abstraction, including both lower-level beliefs about the
causal structure and higher-level overhypotheses about the
functional form. It infers the most likely causal structures
and functional forms given the effects of different ensembles
of blocks being placed on a blicket machine in the active
blicket task. Each event is a pair (q, o) of the intervention
q and the outcome o: the intervention is the set of blocks
placed on the blicket machine, and the outcome is the binary
response of the blicket machine (1 for activation or 0 for
no activation). Given an event (q, o), the full joint Bayesian
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Fig. 3 Example training and transfer tasks. a, Web interface for an
example training task with 3 blocks (squares with colors and letters)
and a blicketmachine (embellishedwith cogs). An intervention involves
clicking on blocks to set any combination on themachine and then press-
ing a button to test the machine’s response (activation with a green color
or nothing). Interventions must always contain A and C to activate the
machine (shown to the right). b Causal graph of the example training

task: The causal structure definesA andC as blickets (causes). The func-
tional form is conjunctive and defines the conditional probability of the
machine’s activation (effect). c Web interface for an example transfer
task with 6 blocks. Interventions must contain at least two of the blocks
F, G and H to activate the machine (shown to the right; interventions
are not comprehensive). d Causal graph of the example transfer task

update for a particular structure s ∈ S and particular form
f ∈ F is:

P(s, f |q, o) ∝ P(q, o|s, f )P(s, f ) (1)

Each causal structure s is represented by enumerating the
set of blickets under this structure (e.g., {A, B} represents
the causal structure where blocks A and B are blickets and
any other blocks are non-blickets). The space of all causal
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Table 1 Functional forms Functional form Interpretation Sigmoid param.
Blicket threshold Activation probability Bias Gain

Disjunctive 1 1 0.5 � 1

Noisy Disjunctive 1 .75 0.9 11

Conjunctive 2 1 1.5 � 1

Noisy Conjunctive 2 .75 1.9 11

3-Conjunctive 3 1 2.5 � 1

Noisy 3-Conjunctive 3 .75 2.9 11

The functional form defines the conditional probability of the machine’s activation given the blickets (not
non-blickets) that are on the machine, and it is a function of these blickets. In our experiment, the functional
form can be interpreted as a rule that needs at least a threshold number of blickets to activate the blicket
machine. At this threshold number, the activation occurs with some probability, but above the threshold, the
activation always occurs. For example, with the noisy conjunctive form, the blicket machine activates with
a.75 probability given a threshold of 2 blickets, but it always activates given 3 or more blickets. Each form
has a corresponding sigmoid parameterization of bias and gain values

structures S in an active blicket task is the power set of all
blocks in that task, and we used a uniform prior over S for
the start of each task. The space of functional forms F is
described in the next section.

Hypothesis 1: People Represent Rich
Overhypotheses

Our model’s space of functional forms follows from our
experiment’s cover story, which considers blickets as a gen-
eral class of exchangeable objects that can have a generative
effect (i.e., blicket machine activation). This means the func-
tional form of the blicket machine’s activation should only
consider individual blickets important to the extent that they
contribute to the overall number of blickets that are on the
machine: the functional form reduces to a function of the
number of blickets. Furthermore, because blickets are gener-
ative causes, the form should output a conditional probability
value that monotonically increases with the number of blick-
ets. These properties can be satisfied by any monotonically
increasing family of functions that maps the domain of zero
and positive integers to the range [0, 1].

Therefore, following Lucas and Griffiths (2010), our
model considers the sigmoid family of functional forms, eval-
uated at zero and positive integer inputs. This family is not
only consistentwith the exchangeability and generative prop-
erties of blickets, but it is also simple and able to express a
rich space of forms with only two parameters, bias and gain.
Variations of the bias and gain parameters roughly corre-
spond to variations in blicket thresholds needed to produce
an effect and noise levels of the effect, respectively. Expand-
ing upon Lucas and Griffiths’s (2010) space, we increase
the range of bias and gain values to enable expressing 3-
conjunctive forms. Our space now includes all the forms used
in our experiment (see Table 1 for the bias and gain values of
our experiment’s forms) as well as gradations between these
forms (through finer variations of bias and gain values).

Formally, a particular form in the sigmoid family is fully
described by a pair of bias b and gain g values. It outputs the
conditional probability of the machine’s activation given the
number of blickets n on the machine:

sigmoid(n) = 1

1 + e−(g(n−b))
(2)

Our model’s space of functional forms covers combina-
tions of b ∈ [0, 2.85] and g ∈ [0, 38] using a discrete grid of
size 400 (the Cartesian product of 20 biases and 20 gains):

b ∈ {0.15i |i ∈ Z ∧ 0 ≤ i ≤ 19} (3)

g ∈ {2 j | j ∈ Z ∧ 0 ≤ j ≤ 19} (4)

We chose joint priors over biases and gains that favor
the kinds of functional forms people typically consider: dis-
junctive and reliable/nearly-deterministic forms (Lucas &
Griffiths, 2010; Lu et al., 2008; Mayrhofer & Waldmann,
2016; Schulz & Sommerville, 2006). Rather than choosing
a single prior, we chose a set of 24 priors that have these
properties.

Our priors over biases and gains are gamma distributions
parameterized by the shape and scale parameters. Rather than
choosing a shape and scale directly, we found it more mean-
ingful to choose amode (scale(shape − 1) for shape > 1) and
scale, which respectively describe the most likely bias/gain
value and the variability around that value.

For our bias priors, we considered 3 modes {0.3, 0.5, 0.8}
and 2 scales {0.1, 0.25}, creating 6 gamma distributions. For
our gain priors, we considered 2 modes {10, 20} and 2 scales
{0.1, 1}, creating 4 gamma distributions. In combination, we
created 24 joint priors over biases and gains.

We initialized and ran ourmodel for each joint prior to pro-
duce predictions of people’s interventions under each prior.
We then marginalized over these priors in our model com-
parisons (see “Cross-validation and Prior Marginalization”).
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To test the scientific hypothesis that people represent
rich overhypotheses, we compare to a Fixed-Form ablation
model that removes this hypothesis. The Fixed-Form model
is the same as our hierarchical Bayesian model except that it
replaces our grid of sigmoid formswith a single deterministic
(g � 1) and disjunctive (b = 0.5) form.

Hypothesis 2: People Transfer and Adapt Their
Overhypotheses

After our model’s joint distribution over forms and structures
is conditioned on events in one task, the posterior marginal
distribution of functional forms is extracted and reused as the
prior over functional forms for a new task. Our model then
multiplies this transferred prior with a uniform distribution
over the causal structures in the new task, creating a joint
distribution for learning in the new task. Thus, our model
predicts that people transfer and adapt their overhypotheses
about functional forms.

The posterior marginal probability for a form f is:

P( f |q, o) =
∑

s∈S
P(s, f |q, o) (5)

which is calculated from the joint posterior P(s, f |q, o) that
also includes causal structures S.

Transferring the marginal distribution of functional forms
is possible because the likelihood of the joint inference
(Eq. 1) is calculated hierarchically: The likelihood is propor-
tional to the conditional probability (of the effect) defined
by the functional form (higher-level overhypotheses), which
depends on the causal structure (lower-level beliefs) as an
input. We abuse the functional form notation f to show this
dependence in the likelihood:

P(q, o|s, f )= P(o|q, s, f )P(q|s, f ) ∝
{
f (|q ∩ s|) if o=1

(1− f (|q ∩ s|)) if o=0

(6)

where P(q|s, f ) is a constant and P(o|q, s, f ) can be rewrit-
ten in terms of the functional form f . The form f is a sigmoid
function that returns the probability of activating the blicket
machine (o = 1). Its input is the number of blickets (set car-
dinality) in an intervention q (a set of blocks on the blicket
machine) according to the causal structure s (a set of blocks
that are blickets under this structure).

Because the functional form can take in any causal struc-
ture, the same functional form can be used to compute
likelihoods across distinct tasks with different causal struc-
tures (i.e., different numbers and identities of non-blickets
and blickets). Thus, the same space of functional forms, along
with its marginal distribution, can be transferred for learning
across tasks.

To test the scientific hypothesis that people transfer and
adapt their overhypotheses about the functional form, we
compare to a No-Transfer ablation model that removes this
hypothesis. The No-Transfer model is the same as our hier-
archical Bayesian model, but it discards the part that reuses
the marginal posterior over functional forms from a previous
task as the prior in a new task. Instead, it reinitializes the prior
over functional forms so that it is the same at the start of every
task. We considered a set of 24 priors, which are described
in “Hypothesis 1: People Represent Rich Overhypotheses”.

Hypothesis 3: People Sacrifice Short-term Learning
for Information Gain About Overhypotheses

Like previous computational accounts of active causal learn-
ing (e.g., Steyvers et al., 2003; Bramley et al., 2015;
Coenen et al., 2015), our model considers an intervention’s
expected information gain with respect to causal structures.
Unlike previous accounts, our model additionally considers
expected information gain with respect to overhypotheses
about the functional form. Our model prefers interventions
that maximize expected information gain on both structures
and forms, predicting that people choose interventions that
are not only informative for learning the causal structure but
also for learning overhypotheses about the functional form.

Formally, the expected information gain (EIG) of an inter-
vention q for a random variable X (functional forms F or
causal structures S) is:

EIGX (q) = E[I(X; q, o)] = E[H(X) − H(X |q, o)] =
∑

o∈{0,1}

⎡

⎣−
∑

x∈X
P(x)logP(x) +

∑

x∈X
P(x |q, o)logP(x |q, o)

⎤

⎦ P(o|q)

(7)

where I denotes information gain andHdenotes entropy. The
outer expectation is calculated with the probability of each
outcome o for this intervention q. With this formulation, we
note that information gain I is equivalent to mutual infor-
mation and preferring higher expected information gain is
tantamount to preferring lower expected conditional entropy.

Rather than calculating expected information gain on the
joint distribution over causal structures and functional forms,
our model uses a linear combination of their respective
marginal expected information gains, weighted by param-
eter w ∈ [0, 1]. This combined expected information gain
(cEIG) of an intervention q is:

cEIG(q) = wEIGF (q) + (1 − w)EIGS(q) (8)

This equation is only equivalent to joint information gain
when form (F) and structure (S) are independent conditional
on interventions and outcomes, which, here, they are not.
However, we use this decomposition to approximate joint
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information gain because it serves the important purpose of
allowing us to capture the possibility that people’s interven-
tions preferentially maximize one kind of information over
another. When w = 0, our model collapses to the special
case of only trying to learn about structure in the immediate
task, as in previous models of active causal learning, while
w = 1 implies that only the functional form matters, as we
might expect if people are primarily interested in learning
overhypotheses for future use.

To reduce ourmodel’s sensitivity to EIG scale differences,
we first perform a min-max normalization for form EIGs
and structure EIGs (across possible interventions q) before
combining them in Eq.8. This normalization is computed
separately for each type of EIG as normalize(x) = (x −
xmin)/(xmax − xmin). It ensures EIGF (q) and EIGS(q) are
each within the range [0, 1].

To test the scientific hypothesis that people sacrifice short-
term learning for information gain about overhypotheses, we
compare our full model to a Structure-Only-EIG ablation
model that removes this scientific hypothesis. The Structure-
Only-EIG model sets w = 0 (Eq. 8) in our hierarchical
Bayesian model, predicting that interventions do not sacri-
fice short-term learning about causal structures. Instead, this
ablation model only maximizes expected information gain
about causal structures while learning overhypotheses inci-
dentally. We also fit weights w to participants and analyze
these fitted weights.

Overall, we compare all three ablation models described
above with our full hierarchical Bayesian model. We com-
pare them by howwell they predict participant interventions,
which we compute as the predictive likelihood of participant
interventions under each model; “Predictive Likelihood”
describes how we compute these by applying a softmax on
combined EIGs. Additionally, we compare to a random base-
line that samples interventions uniformly. For example, in a
task with 6 blocks, the random baseline model would sam-
ple an intervention from 26 = 64 possible combinations of
blocks, producing a predictive likelihood of 1

64 for each pos-
sible intervention.

Experiment 1

In our first preregistered experiment (https://osf.io/n9cx2),
we gauged the feasibility of our model’s ideas by testing a
weaker version of these ideas: People choose interventions to
learn overhypotheses about the functional form, which then
enable more efficient learning in future tasks if these overhy-
potheses are appropriate (and vice versa). Before committing
to testing our model through an extensivemodel comparison,
we performed simpler analyses of qualitative patterns in par-
ticipants’ interventions and causal judgments in active blicket
tasks. We hypothesized that in a new task (called the transfer

task), people would choose more efficient interventions and
make more accurate judgments after training with the same
functional form in past tasks. Conversely, they would choose
less efficient interventions and make less accurate judgments
after training with a different form. We also predicted that
these effects would be larger if the same or different form
was reinforced with more training tasks.

Methods

Data Filtering

To represent the data accurately while accounting for poten-
tial data quality issues, we report results for both the full
data set (N = 212) and a filtered subset (N f = 181), which
includes most (85.38%) of the original participants while
requiring more participant engagement. The filtered partici-
pants made at least 9 interventions in the transfer task, which
was the minimum number required to execute a straightfor-
ward strategy in the easier disjunctive variant of that task:
testing whether each of the 9 blocks was a blicket that can
individually activate the machine.

Participants

212 participants were recruited using Amazon Mechanical
Turk (HITApprovalRate≥ 99%,Number ofHITsApproved
≥ 1000, Age ≥ 18) for the 8 between-subjects conditions
in Fig. 4. From left to right in this figure, the number of
participants in each condition is 27, 29, 29, 26, 25, 25, 26, and
25. The corresponding numbers of filtered participants are:
23, 22, 22, 24, 23, 20, 25 and 22. Participants were paid $1.5
for completing the study (7.36 min on average, excluding
the instructions) and received a bonus of up to $1.05 for
their questionnaire performance, resulting in a mean total
compensation of $2.32.

Procedure

Experiment 1 manipulated the functional form of the trans-
fer task (disjunctive or conjunctive), whether this form was
matchedwith their past training tasks (same or different), and
training length (short or long, i.e., one or two training tasks
before the final transfer task), creating 8 between-subjects
conditions (Fig. 4).

Within each task, participants saw a web interface with
blocks (colored squares labeled with alphabetical letters)
and a blicket machine. Examples of this interface are shown
and described in Fig. 3. Participants were asked to identify
which of the blocks were blickets with the help of the blicket
machine, and they were told the blocks’ colors, letters and
positions did not reveal blickets. (Unknown to participants,
we performed counterbalancing by randomizing the block
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Fig. 4 Experiment 1 conditions. Each of the 8 arrows represents
a between-subjects condition and each box represents a training or
transfer task. “Disj.” is short for Disjunctive and “Conj.” is short for
Conjunctive. We manipulated the functional form of the transfer task

(disjunctive or conjunctive), the training length (long with 2 training
tasks, or short with 1 training task), and whether the training form was
matched with the transfer form (same or different)

color and whether a block was a blicket. Each block was
labeled with a unique letter that was assigned in alphabetical
order.) Participants could choose anynumber of interventions
within a time limit of 45 s, where each intervention involved
putting any combination of blocks on the machine. The
machine would then respond by activating or doing nothing
(according to a disjunctive or conjunctive functional form,
which was unknown to participants). Participants could view
their full history of interventions and machine responses.

Participants encountered a first training task with three
blocks. If they were in a long training condition, they would
encounter a second training task with six blocks followed by
a final transfer task with nine blocks. Otherwise, if they were
in a short training condition, they would directly move on to
the transfer task without seeing the second training task. The
number of blocks in each task is also listed in Table 2, along
with how many of these blocks were blickets (unknown to
participants). Even as the number of blocks (and alongwith it,
the number of possible interventions) increased across tasks,
the time limit remained at 45 s.

Each training and transfer task was followed by a ques-
tionnaire with two types of binary causal judgments, one
about identifying each block as a blicket or non-blicket
(“Which blocks do you think are blickets?”), and another
about predicting whether the blicket machine would activate
in the presence of different combinations of blocks (“Will

Table 2 Experiment 1: Number of blocks and blickets

Task Num. Total Blocks Num. Blicket Blocks

Training 1 3 1 (Disj.) or 2 (Conj.)

Training 2 6 3

Transfer 9 4

In each task, the number of blickets is contained within the total number
of blocks. In the first training task, the “Disj.” (Disjunctive) variant has
one blicket while the “Conj.” (Conjunctive) variant has two

the blicket machine activate (light up with a green color)?”).
Different combinations can have only blickets, only non-
blickets, or a mix of both, where the ground truth is a mix of
activation or no activation depending on the functional form
and the number of blickets present (see Appendix B for more
details).

Between tasks, participants only received feedback and
associated bonus compensation for the correctness of their
activation prediction judgments, not their blicket identifica-
tion judgments. We used this feedback/compensation struc-
ture to limit what was revealed about the ground truth causal
relationship, since only getting feedback about whether or
not a combination of blocks activated the machine would
not reveal much about which of those blocks were blick-
ets. Instead, participants would need to rely on their own
interventions to identify blickets. Furthermore, the compen-
sation would incentivize participants to make more accurate
judgments, which meant they also needed to make more
informative interventions.

Results

Causal Judgments

First, we performed a preregistered analysis (https://osf.
io/n9cx2) of participants’ causal judgments in the transfer
task, where they aimed to identify which of the 9 blocks
were blickets. Participants also judged whether the blicket
machine would activate in response to different combina-
tions of blocks. These judgments are described in Appendix
A, and were broadly consistent with blicket identification
judgments. Here we focus on the latter because the blicket
identification format follows more closely from past blicket
studies (Lucas & Griffiths, 2010).

We expected causal judgment accuracies to improve
in conditions where the transfer and training tasks had
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matching functional forms, as compared to conditions with
mismatched forms. We used Welch t-tests (two-tailed) to
investigate the effects of match between pairs of conditions.
(For a visual comparison of mismatched and matched condi-
tions, see Appendix A Fig. A1a.) In the disjunctive transfer
conditions, the comparisons were mostly consistent with
our expectations: in the full data, the mean blicket identi-
fication accuracy showed a trend toward improvement from
mismatched (conjunctive training) to matched (disjunctive
training) conditions with long, t(47.82) = −2.00, p = .051,
and short training, t(49.76) = −1.80, p = .078. These
trends were significant in the filtered data where participants
were more engaged (long: t f (42.10) = −2.18, p f = .035;
short: t f (43.99) = −2.47, p f = .017).

In the conjunctive transfer conditions, however, the differ-
ence betweenmatched (conjunctive training) andmismatched
(disjunctive training) accuracies was non-significant. We sus-
pected this weaker effect was due to the conjunctive transfer
task being too difficult to learn, regardless of training match
and length. This suspicionwas supported by the results in our
next experiment, where we lowered the difficulty of the con-
junctive transfer task and found a significant improvement
from mismatched to matched conditions (see Appendix A).
Finally, our Welch t-test results above are largely consistent
with additional analyses of the match effect together with
the effects of training length and the transfer task’s form; we
report these analyses in Appendix A.

First Intervention

Thenwe analyzed participants’ first intervention in the trans-
fer task. The first intervention had to be chosen before
participants learned anything about the functional form in
the transfer task, making it a simple marker of whether
participants’ interventions were informative under a func-
tional form from their past training. Under a disjunctive
form, intervening on a single block would be informative

for identifying blickets, requiring only nine interventions in
all. In contrast, this singleton intervention would be com-
pletely uninformative under a conjunctive form,whichwould
require intervening on more blocks at a time to identify
blickets. We expected that participants’ first intervention in
the transfer task would be informative under their training
form, and therefore, we also expected this intervention to
be more efficient if the training and transfer forms were the
same.

We performed t-tests to gauge whether the first interven-
tion in the transfer task was informative under the training
form: The mean number of blocks in the first interven-
tion was significantly higher after conjunctive training (short
and long) than after disjunctive training (short and long),
t(183.39) = 4.62, p < .001 (filtered: t f (144.96) =
4.75, p f < .001), suggesting participants’ interventions
were informative under their training form. These differences
are also visualized in Fig. 5, and are largely consistent with
our further analyses in Appendix A, where we analyze the
training form together with training length.

To understand when the first intervention would be effi-
cient for learning in the transfer task, we fitted a (binomial)
logistic regression model to predict blicket identification
accuracy in the transfer task (9 trials). Thepredictors included
the number of blocks in the first intervention, the func-
tional form of the transfer task, and their interaction. There
was a significant main effect of the transfer form (z =
4.26, p < .001; filtered: z f = 4.90, p f < .001), under-
scoring the relative difficulty of the conjunctive condition,
and no significant main effect for the number of blocks
(all p ≥ .382), suggesting that any effect of the number
of blocks was not due to choosing more (or fewer) blocks
being a better general-purpose policy. Rather, the effect of the
number of blocks was due to being informative of a particu-
lar transfer form: this interaction did not reach significance
in the full data (z = −1.73, p = .084), but was signifi-
cant for the more engaged participants in the filtered data
(z f = −2.02, p f = .043). Specifically, Fig. 6 shows the dis-

Fig. 5 Experiment 1: Number
of blocks in the first intervention
in the transfer task. This is
plotted against the functional
form of past training tasks and
the training length. The
box-and-whisker plots show the
quartiles of the full or filtered
data; each overlaid point
represents a participant
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Fig. 6 Experiment 1: Mean participant accuracies for blicket identifi-
cation questions in the transfer task. This is grouped by the number of
blocks in the first intervention and the transfer form. For a particular
number of blocks, the size of the dot represents how many participants
are involved in calculating the mean accuracy. The mean is calculated

separately for the full (solid lines) and filtered (dashed lines) data.
Chance (.5) accuracy is shown with a dotted gray line. Error bars in
either direction denote the magnitude of the standard error but are omit-
ted for points with a single participant, where the standard error is
undefined

junctive accuracy peaks at a singleton block and decreases as
the number of blocks increases, while the conjunctive accu-
racy peaks at two blocks.

Putting together the results on the first transfer inter-
vention, participants chose interventions that tended to be
informative under their training form: they chose fewer
blocks after disjunctive training than after conjunctive train-
ing,with a focus on singleton blocks after disjunctive training
(Fig. 5’s median lines). This first intervention was consis-
tent with more efficient learning in a matched transfer task:
a singleton block indicated better blicket identification in
the disjunctive transfer task and two blocks indicated better
blicket identification in the conjunctive transfer task. Com-
bined with the results on participants’ causal judgments,
Experiment 1 supports our hypothesis that, in the new trans-
fer task, people choosemore efficient interventions andmake
more accurate causal judgments after training with the same
functional form. These patterns suggest people learn and
transfer overhypotheses about the functional form, and they
are able to exploit these overhypotheses to improve their
active learning in similar future situations. Thus, Experiment
1 provides initial support for the ideas in our hierarchical
Bayesian model, focusing on a weaker version of these ideas
in exchange for being amenable to simpler statistical anal-
yses. These results motivate us to commit to an expensive
model comparison in Experiment 2, which enables us to test
our model’s ideas more rigorously.

Experiment 2

While Experiment 1’s results support the view that people
adapt their interventions in ways that are consistent with

having learned overhypotheses, we did not find significant
improvements in conjunctive transfer task performance from
mismatched to matched conditions. Under the logic that this
lack of improvement may have been due to the conjunctive
transfer task being too difficult, and to make a systematic
model comparison feasible,wepreregistered and conducted a
second experiment (https://osf.io/vk9yd; N = 250). Exper-
iment 2 lowered the conjunctive transfer task difficulty by
reducing the number of blocks from9 to 6. This lower number
of blocks also enabled a computationally tractable evaluation
of our main and ablation models.2

Experiment 2 also included a wider range of conditions
that improved our ability to evaluate our models and test our
scientific hypotheses (Fig. 2). Compared with Experiment 1,
Experiment 2 expanded themanipulationof the training func-
tional form to be representative of the rich space considered
by our model and to test whether participants were sensitive
to this space (Hypothesis 1). We varied both the minimum
number of blickets needed to activate the blicket machine—
1 (disjunctive), 2 (conjunctive), or 3 (3-conjunctive)—and
whether that activation was deterministic or noisy (probabil-
ity 0.75 of activation given theminimumnumber of blickets),
creating 6 between-subjects conditions (the training length
was fixed to a single task; see Fig. 7). The transfer task was
fixed to have the same deterministic conjunctive form for
all 6 between-subjects conditions, which tested how partici-

2 The computational complexity of computing expected information
gain growsmore than exponentially in the number of blocks, as the space
of causal structure hypotheses and possible interventions are both power
sets of the set of prospective causes (i.e., the blocks) and contribute
multiplicatively to the total computational cost. The reduction in the
hypothesis and action space allowed us to run all models on a compute
cluster in 1 week rather than an estimated 8 weeks.
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Fig. 7 Experiment 2 conditions. Each of the 6 arrows represents a
between-subjects condition and each box represents a training or trans-
fer task. “Disj.” is short forDisjunctive, “Conj.” is short forConjunctive,
and “3-Conj.” is short for 3-Conjunctive. We fixed the transfer task’s
form as conjunctive and manipulated the functional form of the train-

ing task. For the training form, we varied both the minimum number
of blickets needed to activate the blicket machine—1 (disjunctive), 2
(conjunctive), or 3 (3-conjunctive)—and whether that activation was
deterministic or noisy (probability 0.75 of activation given the mini-
mum number of blickets)

pants’ interventions in the same task would differ depending
on overhypotheses learned from past training tasks. No mat-
ter if the training form was a mismatched (noisy) disjunctive
form, amatched (noisy) conjunctive form, or a similar (noisy)
3-conjunctive form,wewanted ourmodel to capture howpar-
ticipants transferred overhypotheses about the training forms
(Hypothesis 2). Finally, the transfer task’s complexity and
intervention limit required more efficient learning of both
the causal structure and functional form, testing how partici-
pantswould pickmore informative interventions andwhether
these interventions would not only focus on the structure but
also on overhypotheses about the form (Hypothesis 3).

We evaluated the hypotheses formalized by our model in
a model comparison against ablation models, where models
were ranked by how well they predicted participant inter-
ventions. The ablation models each removed one hypothesis
at a time, so comparing against them allows us to test how
important each hypothesis is for predicting participant inter-
ventions.

Methods

Participants

250 participants were recruited using Amazon Mechanical
Turk (HITApprovalRate≥ 99%,Number ofHITsApproved
≥ 1000, Age ≥ 18) for the 6 between-subjects conditions
in Fig. 7. From left to right in this figure, the number of
participants in each condition is 42, 40, 46, 41, 40, and 41.
Participants were paid $1.28 for completing the study (12.38
min on average, excluding the instructions) and received a
bonus of up to $1.22 for their questionnaire performance,
resulting in a mean total compensation of $1.99.

Procedure

Experiment 2manipulated the functional form of the training
task using all 6 forms in Table 1, creating 6 between-subjects

conditions (Fig. 7). The transfer task’s functional form was
fixed to the conjunctive form.

The rest of the procedure was the same as Experiment 1
except for some adjustments to the training length, transfer
task complexity, task constraints, and questionnaires. These
differences are described below.

While Experiment 1 used either one or two training tasks,
Experiment 2 fixed the training length to a single training
task. The transfer task’s complexity was also reduced from
9 blocks to 6. This reduction addressed how a conjunc-
tive transfer task with 9 blocks was likely too difficult to
reveal whether participants’ judgments were improving with
matched overhypotheses (see Appendix A). See Table 3 for
the number of blocks in each task, as well as how many of
those are blickets.

The constraint in each task was changed from a time limit
(with a variable number of interventions that depended on
the participant) to a fixed number of interventions: 12 in the
training tasks, and 20 in the transfer task. Both numbers of
interventions have been verified as sufficient under our hier-
archical Bayesian model (see preregistration: https://osf.io/
vk9yd).

Following each task, the questionnaire had the same con-
tent as Experiment 1—blickets and the blicket machine—but
differed in its exact format: Participants were asked to rate
blocks as blickets on a 0–10 scale (rather than make a
binary blicket/non-blicket judgment like in Experiment 1)
and to create 5 examples for teaching others about the blicket
machine. The details are explained in our preregistration
(https://osf.io/vk9yd); we do not cover these details here
because our analysis of Experiment 2 focuses on model eval-
uation rather than the questionnaire. Participants received
bonus compensation for the correctness of their blicket rat-
ings and the informativeness of their teaching examples,
but did not receive any feedback (including their accumu-
lated amount of bonus compensation) about their answers
until after the experiment. As in Experiment 1, this feedback
structure required participants to learn from only their own
interventions and incentivized them to choose more informa-
tive interventions.
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Table 3 Experiment 2: Number
of blocks and blickets

Task Num. total blocks Num. blickets Functional form

Training 3 1 Disjunctive

1 Noisy Disjunctive

2 Conjunctive

2 Noisy Conjunctive

3 3-Conjunctive

3 Noisy 3-Conjunctive

Transfer 6 3 Conjunctive

In each task, the number of blickets is contained within the total number of blocks, and when these two
numbers are the same, then all blocks are blickets. The training task always has three total blocks, but the
number of blickets varies with the functional form

Model Comparison

We performed a preregistered comparison (https://osf.io/
vk9yd) of our hierarchicalBayesianmodel, the ablationmod-
els and the random baseline model, ranking them by how
well they predicted participant interventions in Experiment
2’s transfer task.

Predictive Likelihood

To evaluate how well each model predicted participant
interventions, we calculated the predictive likelihoods of
participant interventions under that model. This predictive
likelihood is the probability that the model would have
chosen that intervention. Thus, if a model assigns higher pre-
dictive likelihoods to participant interventions, it is better at
predicting the participant’s intervention choices.

Our hierarchical Bayesian model and the ablation models
assign a predictive likelihood to participant p’s intervention
qp through the following steps: (1)Themodel’s joint distribu-
tion over forms and structures is conditioned on participant
p’s history of interventions and outcomes (up to and not
including qp) in the current task. Note that, except for the
No-Transfer ablation model, a model’s joint distribution car-
ries over the posterior over functional forms learned from p’s
interventions and outcomes in previous tasks (see “Hypoth-
esis 2: People Transfer and Adapt Their Overhypotheses”).
(2) The history-conditioned joint distribution is then used to
compute qp’s combined expected information gain (for both
causal structures and functional forms; see Eq. 8), which
we abbreviate as cEIG. (3) Finally, following work show-
ing that people stochastically prefer choices close to optimal
(McFadden, 1973), we use a softmax function σ to assign
a probability/likelihood for selecting qp based on its cEIG.
The predictive likelihood of qp is thus:

σ(cEIG(qp)) = e
1
t cEIG(qp)

∑
i e

1
t cEIG(qi )

(9)

where t is the temperature parameter of the softmax function.
i enumerates all the possible choices for that intervention, as
opposed to (but does include) the actual choice qp made by
the participant. In Experiment 2’s transfer task, a participant
had 64 possible choices per intervention, corresponding to
all the possible combinations of blocks.

The softmax temperature t controls how sensitive the
model is to predicting (i.e., assigning higher predictive likeli-
hoods to) intervention choices that have higher cEIG: lower
temperatures increase the model’s preference for interven-
tion choices that maximize cEIG, while higher temperatures
decrease the model’s preference for any intervention choice,
making themodel tend toward assigning a uniform predictive
likelihood to all possible intervention choices.

The random baseline model samples interventions uni-
formly, so it assigns a fixed predictive likelihood of 1

64 to
every participant intervention in Experiment 2’s transfer task.
64 is the number of possible choices for any intervention,
corresponding to all the possible combinations of blocks.

Cross-validation and Prior Marginalization

In order to calculate the predictive likelihoodunder ourmodel
and the ablationmodels (and not the randombaselinemodel),
two parameters need to be fitted: the softmax temperature
t and the weight w in the combined expected information
gain (see Eq. 8). It is not clear what kinds of temperatures
and weights would be appropriate for predicting people’s
behavior, so we fit them to participant interventions using the
training folds in cross-validation, which is a standardmethod
for model fitting and evaluation (Gelman et al., 2013). We
considered all temperature-weight combinations from the
values below:

t ∈ {0.001, 0.01, 0.1, 1, 10, 100}
w ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}

The parameterization w = 0 (not listed above) means
that a model only maximizes expected information gain
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about causal structures while learning about functional forms
incidentally. This parameterization is the only weight con-
sidered for two of our ablation models: The Fixed-Form
model assumes a single functional form, meaning that learn-
ing and information gain only happen in the space of causal
structures. The Structure-Only-EIG, by definition, only cares
about causal structure learning and goes against the scientific
hypothesis that people sacrifice such learning for information
gain about overhypotheses. Since our remaining models do
not have such commitments, they do not consider the w = 0
parameterization but instead have a fitted weight from the
possible values above.

For each model, we performed two kinds of cross-
validation evaluations: an averaged evaluation over all par-
ticipants (N = 250) and interventions (20 per participant) in
Experiment 2’s transfer task, and an individual differences
evaluation that only considered one participant’s interven-
tions at a time.

In the averaged evaluation, participants were randomly
split into four balanced folds. Holding out one fold at a time,
we fitted a model’s parameters by maximizing the mean pre-
dictive likelihood in the remaining folds, where this mean is
first calculated for each functional form prior (see “Hypoth-
esis 1: People Represent Rich Overhypotheses”) and then
marginalized over all 24 priors using a uniform distribution.
(This marginalization is not applicable to the first ablation
model, which only has a single prior with a single disjunctive
form.) We then used these fitted parameters to evaluate the
model’s mean predictive likelihood in the hold-out fold with
the same process for marginalizing over priors. The mean of
all four hold-out evaluations was used for comparingmodels,
where higher values meant a model was a better predictor of
average participant intervention strategies.

In the individual differences evaluation, the cross-validation
process was the same as the averaged one except it was
performed within each individual participant. For each par-
ticipant, their 20 interventions were split into four balanced
folds and the mean predictive likelihood of all hold-out
evaluations was used for selecting the best model for that
participant. If a model was the best predictor for a higher
number of participants, then that model was a better predic-
tor of individual intervention strategies.

Results

Weconducted two analyses to test ourmodel’s three hypothe-
ses. The first analysis seeks to understandwhich singlemodel
explains the totality of participants’ decisions, assuming all
participants approach the task in the same way. Our sec-
ond analysis seeks to understand how many participants are
behaving in accordance with each model, under the assump-
tion that individuals might vary, e.g., in how much they

prioritize information about the functional form and their
propensity to transfer information from one task to the next.

In Experiment 2’s transfer task, we compared our model’s
predictive likelihoods to the randombaseline and the ablation
models. To perform well, our model needed to make specific
predictions about which combinations of blocks were good
interventions among 26 = 64 possible combinations of 6
blocks, and these predictions needed to align with each of
the 20 interventions chosen by each participant.

Best Single Model

Our averaged evaluation takes the mean over predictive
likelihoods computed for every participant intervention (in
hold-out folds of the cross-validation process explained
above), comparing models by how well they predicted the
entire set of participants. The No-Transfer ablation model
had the highest mean predictive likelihood (mean (M) ±
standard error (s.e.) = .059±.002) andwas closely followed
by our full model (M± s.e. = .055± .003). All other models
had lower predictive likelihoods (Fixed-Form: M ± s.e. =
.018 ± .000; Structure-Only-EIG: M ± s.e. = .018 ± .002;
Random (fixed value: .016)). It is likely that the No-Transfer
model performed better than our full model because it has a
more diffuse prior, a point that we expand on in the Discus-
sion (“Individual Differences vs. Average”).

Individual Differences

In the individual differences analysis, we compared all mod-
els on a per-participant basis (using cross-validation within
individuals, as explained above) and distributed participants
by their individually best model. Here we found that our
full model was the best predictor for the highest number of
participants (Fig. 8). The No-Transfer model captured the
second-highest number of participants, which may be due to
these participants having a strong prior for disjunctive and
deterministic relationships and treating contradictory train-
ing evidence (e.g., conjunctive or 3-conjunctive evidence) as
rare occurrences.We elaborate on this point in theDiscussion
(“Individual Differences vs. Average”).

To provide intuition for the different models and what
kinds of individuals they capture, we plot a representative
individual for each model in Fig. 9. This figure shows partic-
ipants from only the conjunctive training condition and their
20 interventions in the conjunctive transfer task (see Fig. 3
for examples of these conjunctive training and transfer tasks).
Looking at the same training condition makes it possible to
tease apart individual differences that are captured by differ-
ences in the models rather than differences in participants’
past training experience.

Our hierarchical Bayesian model (HBM) best-predicted
a participant who immediately began the transfer task by
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Fig. 8 Best model for individual participants (Experiment 2). Each
model’s bar counts the number of participants whose transfer task
interventions were best-predicted by that model, i.e., assigned the high-
est mean predictive likelihood by that model compared with all other
models. The comparison was performed on a per-participant basis and
using cross-validation andmarginalization over priors.OurHierarchical
Bayesian Model (HBM) was the best predictor for the highest num-
ber of participants compared with the ablation models (No-Transfer,
Structure-Only-EIG (Expected Information Gain), Fixed-Form) and a
random baseline

testing pairs of blocks (Fig. 9a), suggesting they transferred
conjunctive-favoring overhypotheses and initially focused on
causal structure learning. It appears that they were searching
for pairs of blickets that could activate a conjunctive blicket
machine, starting by testing all pairs involving the “Non-
Blicket 1” block (interventions 1–5; the non-blicket label is
unknown to the participant) to identify whether this block
was a blicket. Their interventions also appeared to be infor-
mative about the functional form: They had a good coverage
of various pairs of blocks, and, if any pair resulted in an acti-
vation, they would be able to identify conjunctive forms as
being more likely than 3-conjunctive ones. And after finding
that “Blickets 1, 2, 3” activated the machine together in pairs
(interventions 7, 9, 14), they further checked that disjunc-
tive forms were unlikely by testing these blickets in isolation
(interventions 16–18). Thus, all of our model’s assumptions
were crucial for predicting this participant’s intervention
strategy.

The ablation and random models captured other quali-
tatively distinct strategies. The No-Transfer ablation model

best-predicted a participant who began with singleton inter-
ventions before intervening on multiple blocks (Fig. 9b).
This strategy suggests they adapted their beliefs and inter-
ventions to consider forms beyond disjunctive ones, but
they were initially trying to identify the causal structure
under disjunctive forms. This behavior is consistent with the
disjunctive-favoring priors that people tend to bring to the
blicket experiment (Lucas & Griffiths, 2010), rather than
overhypotheses transferred from the previous conjunctive
training task (i.e., ablating our full model’s assumption that
people transfer their overhypotheses).

The Structure-Only-EIG ablation model best-predicted a
participant whose interventions were consistent with having
learned conjunctive-favoring overhypotheses from training,
transferring these overhypotheses to the transfer task, and
then prioritizing learning causal structure under these over-
hypotheses: They focused heavily on multiple-block inter-
ventions, suggesting they were searching for blickets under
conjunctive-favoring overhypotheses (Fig. 9c). However, all
but one of their interventions tested triplets of blocks and
none tested singletons. This strategy seems inefficient for
identifying whether all three blocks were needed for an acti-
vation (3-conjunctive), or only a subset of two (conjunctive)
or one (disjunctive) was needed. Thus, they appeared to
care little about disambiguating forms (i.e., ablating our full
model’s assumption that people seek information about over-
hypotheses).

The Fixed-Form ablation model was not the best predictor
for any participant in the conjunctive training condition. This
result suggests that, in the conjunctive training and transfer
tasks, participants considered alternative forms beyond a sin-
gle disjunctive functional form (i.e., keeping our full models’
assumption of representing a rich overhypothesis space).

Finally, the random baseline model best-predicted a par-
ticipant whose interventions were not compatible with other
models (Fig. 9d). This participant appeared to employ a
low-effort strategy where they were trying to complete the
transfer task quickly (perhaps to receive their performance-
independent compensation) rather than learn the task, a point
whichwe cover in theDiscussion.Apossible low-effort strat-
egy is the positive testing strategy (see the Introduction for
more discussion of this strategy). As opposed to our model’s
commitment to discriminating between many possibilities,
this strategy is marked by choosing interventions that favor
positive evidence (i.e., activating the blicket machine) for
confirming a single hypothesis. It is possible some Random
model participants were employing this strategy: They have
a mean of 12.76 positive outcomes (±.80 standard error) out
of 20 tests (63.80%), which is more than a purely random
policy with 10 expected positives (50%). Their mean num-
ber of positives is also more than all other participants’ mean
of 6.35 positives (±.24 standard error; 31.75%), with this
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Fig. 9 Representative
individual participants for each
model (Experiment 2). Their 20
interventions are shown for the
conjunctive transfer task and
they had previously completed a
matched conjunctive training
task (i.e., they all belonged to the
conjunctive training condition).
Each intervention contains some
combination of the transfer
task’s 6 blocks, whose identities
(blicket or non-blicket) are
labeled in the figure but were
not known to participants. The
blicket machine’s response
(activation or nothing) is marked
with the color and was also
known to participants. The
Fixed-Form ablation model is
not included because it was not
the best predictor for any
participant in the conjunctive
training condition

difference being statistically significant, t(56.89) = 7.64,
p < .001.

Weighting Overhypotheses vs. Causal Structures We now
take a closer look at the individuals best-predicted by HBM.
HBM commits to treating overhypothesis learning as being
useful and transferable in the long term, and to gaining
information about such overhypotheses at the expense of
short-term learning about causal structures. This prefer-
ence for overhypothesis learning is represented as a positive

weighting for overhypothesis EIG in HBM’s (soft-) maxi-
mization of a linear combination of overhypothesis EIG and
causal structure EIG (Eqs. 8 and 9). To better understand the
extent of this preference, we distributed the positive weight
values fitted to HBM participants in Fig. 10.3

3 This figure displays weights fitted on normalized values of form and
structure EIG. In Appendix A, we reproduce the central result of this
figure using unnormalized values.
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Fig. 10 Weighting of overhypothesis vs. causal structure EIG (Exper-
iment 2; HBM participants). The histogram is a distribution of weights
fitted to individual participants’ intervention choices and observations.
Higher weights in our model mean having more focus on maximiz-
ing overhypothesis EIG and less on maximizing causal structure EIG

(Eq. 8). 81.63% of fits have weight > 0.5 (i.e., structure weight < 0.5),
suggesting participants’ intervention choices sacrifice a substantial
amount of information gain about causal structures in favor of infor-
mation gain about overhypotheses

Here we found that 81.63% of fits have overhypothesis
weight > 0.5 (i.e., structure weight < 0.5), which corre-
sponds to the overhypothesis EIG term dominating over the
causal structure EIG term in HBM’smaximization objective.
Interestingly, 45.41% of fits have an overhypothesis weight
of 1, implying a causal structure weight of 0. However, it is
unlikely that participants do not care about learning causal
structures at all. Aweight of 1may instead result from partic-
ipants seeking information about structures when that does
not entail sacrificing much information about overhypothe-
ses.Andwhen there is a clear disagreement between structure
EIG and overhypothesis EIG, participants may favor the lat-
ter. In summary, Fig. 10 suggests participants sacrifice a
substantial amount of causal structure learning in favor of
seeking information about overhypotheses.

Overall, participants employed several qualitatively dif-
ferent strategies in the transfer task, even when their previous
trainingwas the same (Fig. 9). To accommodate this variabil-
ity, we performed an individual differences analysis to find
the best model per participant. The largest group of indi-
viduals employed a strategy that was best-predicted by our
hierarchical Bayesian model, suggesting our model captured
people’s dominant intervention strategy. This group of indi-
viduals also have fitted weights that suggest they sacrifice a
considerable amount of causal structure learning in favor of
overhypothesis learning (Fig. 10).

Discussion

How do people actively learn to learn causal relationships?
That is, how and when do people choose interventions that
facilitate long-term learning and promise more informative
future interventions? We proposed and tested a hierarchi-
cal Bayesian model that goes beyond past models of active

causal learning by representing people’s beliefs at multiple
levels of abstraction. The lower-level beliefs are about the
causal relationship in front of them, while the higher-level
beliefs, or overhypotheses (Goodman, 1955; Kemp et al.,
2007), are about general causal properties that generalize to
future situations and shape future inferences. We focused
on overhypotheses about the functional form, which governs
howmultiple causes combine or interact to produce an effect.
Ourmodel formalizes three key hypotheses: (1) people repre-
sent rich overhypotheses; (2) people transfer and adapt their
overhypotheses across tasks; and (3) they sacrifice short-term
learning for information gain about overhypotheses.

We tested how well our model explained human behavior
in our two active blicket experiments, where we used a total
of 14 between-subjects manipulations of training and trans-
fer tasks to probe how and when people choose interventions
that facilitate long-term learning across those tasks.We found
initial support for our model in qualitative patterns of partic-
ipant behavior (Experiment 1), where their interventions and
judgments showed long-term improvement when the train-
ing and transfer tasks had the same functional form. These
results motivated us to perform a more extensive test of our
model using an individual differences-based model compar-
ison (Experiment 2), which demonstrated our model was the
best predictor for the largest group of participants. Our results
suggest that when there are abstract similarities across active
causal learning problems, people readily learn and transfer
overhypotheses reflecting these similarities. Moreover, peo-
ple exploit these overhypotheses to facilitate long-term active
learning.

Individual Differences vs. Average

Our hierarchical Bayesian model was the best predictor
of individual participants’ behavior, followed by the No-

123



Computational Brain & Behavior (2024) 7:80–105 101

Transfer model, an ablation of the full model that assumes
that people treat each causal system as an independent
learning problem. The No-Transfer model also had the best
predictions in a group-level, averaged analysis that assumes
all participants have a common strategy. This result is likely
due to the No-Transfer model bringing a more diffuse prior
to the transfer task, which we discuss next.

Since the No-Transfer model removes the hypothesis that
people transfer what they learned from the previous training
tasks, it starts anewwith a prior that has not been tuned to any
previous learning. This prior is more diffuse and thus assigns
moderate probabilities to a large set of hypotheses, making it
fairly consistent with several strategies that are informative
about any of these hypotheses. For example, these strategies
could include our full model’s strategies, which are infor-
mative under transferred overhypotheses, or less cognitively
demanding strategies, where even random strategies can pro-
vide information about some set of hypotheses. Thus, the
No-Transfer model would be, on average, a good predic-
tor for all of these different strategies. However, the average
model does not explain how people can also deviate from
the average and behave differently from each other. More-
over, it is often the case that the average model may not
capture the behavior of any individual (e.g., Hayes, 1953;
Estes, 1956; Ashby et al., 1994; Heathcote et al., 2000), and
this phenomenon is also pertinent to averagemodels of causal
learning (Johnston et al., 2021).

An inspection of our data reveals several qualitatively dis-
tinct strategies (Fig. 9) that were unlikely to be captured
by an average model, which is consistent with our indi-
vidual differences analysis showing different participants
adopting strategies consistent with different models. This
diversity in strategies, including some that may result in
lower judgment accuracy or less informative interventions
while imposing lower demands on memory, time, or atten-
tion, is consistent with both variability in participants’ prior
beliefs and a “resource-rational” view of inductive learn-
ing (Griffiths et al., 2015; Lieder & Griffiths, 2017). For
example, if a participant is not motivated to perform well in
the task itself but is rather only concerned with completing
the task and receiving the base compensation (independent of
task performance), they might choose a cost-efficient strat-
egy that is more consistent with a random model, or an
attenuated hypothesis space. Under this view that individu-
als vary in their implicit cost/performance trade-offs, greater
performance incentives (e.g., bonuses to our crowdsourced
participants) may increase the proportion of participants
who are best-predicted by our full hierarchical Bayesian
model.

The No-Transfer ablation model also performed well in
our individual differences analysis and captured a sizable,
second-largest group of individuals. These individuals may
have had sufficiently strong prior beliefs favoring determin-

istic and disjunctive relationships (Lucas & Griffiths, 2010;
Lu et al., 2008; Mayrhofer & Waldmann, 2016; Schulz &
Sommerville, 2006) that they treated the conjunctive and 3-
conjunctive training conditions as outliers or special cases,
unlikely to generalize to new machines. Consequently, they
may have resorted to the same deterministic- and disjunctive-
favoring prior in the next task, as is consistent with the
No-Transfer model. Such behavior is also consistent with
how people generalize causal laws across several tasks (Zhao
et al., 2022). In other words, theymay not have taken the high
degree of superficial similarity between our experiment’s
training and transfer tasks to be a strong indicator that the
underlying causal relationships would have the same form,
contra our full model.

Although the No-Transfer participants were not captured
by our full model, we note that their behavior was still con-
sistent with the other two hypotheses that were retained in
the No-Transfer model. Like our full model, the No-Transfer
model ascribes to participants (1) rich overhypotheses about
the functional form of relationships and commits to the idea
that (2) participants seek to learn about these functional
forms. Both of these hypotheses go beyond past models of
active causal learning and were required to predict the major-
ity (73.6%) of participants’ interventions (combining both
HBM and No-Transfer participants in Fig. 8). Ultimately,
the largest group of participants was best-predicted by our
full model, suggesting that all three modeling hypotheses,
including the transfer hypothesis, were required to capture
the dominant strategy that people employ in actively learn-
ing to learn causal relationships.

Beyond the Sigmoid Space

Following Lucas and Griffiths (2010), we chose our space of
functional forms by assuming (1) causes are interchangeable,
without any distinct subtypes of causes; (2) as the number
of active causes grows, so does the probability of the target
effect; (3) causes may or may not be individually sufficient to
generate the effect, and (4) relationships can (but need not) be
deterministic. These assumptions are captured by letting the
probability of the effect (blicket machine activation) be a sig-
moid function of the number of causes (blickets). It captures
several qualitatively distinct relationship types, including all
of the forms in our experimental manipulations, while being
computationally efficient, interpretable, and having only two
parameters.

While it is appealing to consider a much wider space of
forms, this would present several challenges for our exper-
imental design and modeling. First, even just studying the
transfer effects of disjunctive and conjunctive forms involves
an expensive experimental design with several between-
subjects conditions, as has been shown in past experiments of
causal overhypotheses (e.g., Lucas & Griffiths, 2010; Lucas

123



102 Computational Brain & Behavior (2024) 7:80–105

et al., 2014; Kosoy et al., 2022) and in our Experiment 1.
Therefore, we limit our experiments to manipulate only a
few new forms (Experiment 2) while retaining the standard
disjunctive and conjunctive forms as points of comparison
(Experiments 1 and 2), creating 14 total between-subjects
conditions. Second, it is not clearwhich formsbeyond the sig-
moid space would be appropriate to represent in our model.
We chose the sigmoid space in light of its success in explain-
ing human behavior in similar settings (Lucas & Griffiths,
2010; Lucas et al., 2014) and its match to our experiment’s
demand characteristics.Our experiment’s cover story follows
the blicket detector paradigm, which is commonly used to
study causal overhypotheses (e.g., Lucas & Griffiths, 2010;
Griffiths et al., 2011; Lucas et al., 2014; Sim & Xu, 2017;
Kosoy et al., 2022). This cover story aims to set up expec-
tations that causal relationships are simple and discoverable,
and that these relationships have the property where blick-
ets are interchangeable and generative causes of the blicket
machine’s binary activation (see the instructions for partic-
ipants in Appendix B, and see https://osf.io/vk9yd, where
we ran model simulations to ensure relationships are discov-
erable in Experiment 2). These demand characteristics are
well-matched to the simplicity and assumptions of the sig-
moid space.

In more general settings, however, people may learn and
transfer a broader space of forms than can be encompassed
by the sigmoid space, such as forms that combine preven-
tative and continuous causes (Yuille & Lu, 2007; Lu et al.,
2016). Therefore, an exciting future direction is to go beyond
parametric functional forms, and consider arbitrarily expres-
sive belief spaces. For example, grammar-based and program
induction methods offer suggestions about how people can
dynamically and compositionally expand their belief space
with an infinite set of possible concepts (e.g., Goodman et al.,
2008; Lake et al., 2015; Goodman et al., 2015; Piantadosi
et al., 2016).

Reinforcement Learning

An alternative family of models for active learning origi-
nates in the reinforcement learning literature. Models based
on reinforcement learning have successfully explained cog-
nitive phenomena (e.g., Dayan & Niv, 2008) and provided
computational solutions to complex active learning prob-
lems (e.g., Vinyals et al., 2019; Wurman et al., 2022). These
models typically require thousands of actions and task repeti-
tions where a human only requires a few, but recent advances
have begun to leverage abstract knowledge that can be shared
between tasks and thus allow a reinforcement learningmodel
to learnmore efficiently in new tasks (Hospedales et al., 2022;
Tomov et al., 2021; Eckstein & Collins, 2020; Zhang et al.,

2021). However, it is still a challenge for these models to
incorporate certain kinds of abstract knowledge and induc-
tive biases that align with human behavior, especially human
causal learning. For example, modern reinforcement learn-
ing agents have difficulty learning abstract causal knowledge
in the Alchemy benchmark (Wang et al., 2021), which was
designed with inspiration from studies of human learning.
Furthermore, with regard to blicket tasks that are similar
to our experiments, it remains an open direction how cur-
rent reinforcement learning agents can explore like children
(Kosoy et al., 2022), who consider rich priors for causal over-
hypotheses that are much like the overhypotheses studied in
our current work. This is not to say the reinforcement learn-
ing approach would be ineffective for modeling how humans
actively learn to learn, but there are open questions about how
this approach can achieve the same learning efficiency and
inductive biases as humans. Thus, in our work, we have cho-
sen a hierarchical Bayesian model that can learn from the
same number of interventions as each participant, and can
straightforwardly represent and learn about overhypotheses
that are supported by studies of human behavior (Lucas &
Griffiths, 2010; Lucas et al., 2014).

Conclusion

Overall, we explored the question of how humans choose
actions to facilitate long-term learning and make their future
actionsmore efficient. In otherwords, howdo people actively
learn to learn? We focused on the domain of active causal
learning, where past models (e.g., Steyvers et al., 2003;
Bramley et al., 2015; Coenen et al., 2015) have made an
important simplifying assumption by predicting that inter-
ventions are only informative about the causal relationship
at hand, which would not explain how people can acquire
general knowledge that is useful outside of their current sit-
uation and exploit such knowledge to choose more efficient
future interventions. We proposed and found evidence for a
hierarchical Bayesian model, which differs from these ear-
lier models in one key way: It posits that people not only
seek information about the causal relationship at hand, but
also balance this with the goal of learning and transferring
overhypotheses (Goodman, 1955; Kemp et al., 2007) that are
useful for future causal learning problems.

Our approach can generalize beyond causal learning to
active learning in any setting where there is an opportunity
for learning about the abstract properties of the task, i.e.,
for updating and exploiting overhypotheses. Examples range
from graph structure learning (Mansinghka et al., 2006) to
the optimal stopping problem (Lee, 2006) to category learn-
ing (Kemp et al., 2007). Thus, accounting for overhypotheses
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may provide a foundation for working toward a better under-
standing of a wide range of domains where humans actively
learn to learn.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s42113-023-00195-
0.
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