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Abstract
Reinforcement learning models have the potential to clarify meaningful individual differences in the decision-making process. 
This study focused on two aspects regarding the nature of a reinforcement learning model and its parameters: the problems 
of model misspecification and reliability. Online participants, N = 453, completed self-report measures and a probabilistic 
learning task twice 1.5 months apart, and data from the task were fitted using several reinforcement learning models. To 
address the problem of model misspecification, we compared the models with and without the influence of choice history, 
or perseveration. Results showed that the lack of a perseveration term in the model led to a decrease in learning rates for win 
and loss outcomes, with slightly different influences depending on outcome volatility, and increases in inverse temperature. 
We also conducted simulations to examine the mechanism of the observed biases and revealed that failure to incorporate 
perseveration directly affected the estimation bias in the learning rate and indirectly affected that in inverse temperature. 
Furthermore, in both model fittings and model simulations, the lack of perseveration caused win-stay probability underes-
timation and loss-shift probability overestimation. We also assessed the parameter reliability. Test–retest reliabilities were 
poor (learning rates) to moderate (inverse temperature and perseveration magnitude). A learning effect was noted in the 
inverse temperature and perseveration magnitude parameters, showing an increment of the estimates in the second session. 
We discuss possible misinterpretations of results and limitations considering the estimation biases and parameter reliability.

Keywords Reinforcement learning model · Model misspecification · Choice history · Perseveration · Parameter estimation 
bias · Parameter reliability

Introduction

Reinforcement learning (RL) models are simple but suc-
cessfully applied frameworks of value-based learning in 
humans, animals, and artificial intelligence (Sutton & Barto, 

1998). Researchers have leveraged RL to decompose the 
elements that influence decision-making. The basic traits 
of the processes are extracted as free model parameters 
such as the learning rate (which governs the updating of 
option values) and inverse temperature (which controls the 
exploration–exploitation trade-off). The estimates of the 
parameters revealed individual differences, group differ-
ences, developmental changes, and links to specific neural 
substrates (Decker et al., 2016; Gillan et al., 2016; Glascher 
& O'Doherty, 2010; Lee et al., 2012; Nussenbaum & Hart-
ley, 2019). Importantly, these study findings are meaning-
ful only when the assumptions related to the nature of the 
model parameters are satisfied. However, recent studies have 
revealed that our implicit assumptions regarding the valid-
ity, reliability, generalizability, and interpretability of model 
parameters are not always correct and may be overly opti-
mistic (Eckstein et al., 2022; Moutoussis et al., 2018). Thus, 
demands to address these potential problems in the use of 
computational models and their parameters and to develop 
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infrastructure regarding proper estimation, evaluation, and 
use are increasing (Browning et al., 2020; Eckstein et al., 
2021, 2022; Katahira & Toyama, 2021; Palminteri et al., 
2017b; Wilson & Collins, 2019).

Inappropriate use of model parameters sometimes results 
from the problem of modelling that the model does not suf-
ficiently capture meaningful features of the data (hereafter, 
referred to as model misspecification). Under model mis-
specification, the feature not included in a model is absorbed 
by other existing parameters, which can cause undesirable 
estimation biases in parameters, resulting in misleading 
interpretations and conclusions (Toyama et al., 2019). How-
ever, even if modelling is proper or improved, the model 
parameters still do not work as reliable trait indicators if 
they are unstable, vary from one measurement to the next, 
or have low identifiability. At a minimum, we should know 
the reliability of parameters as a limitation in the use of 
models in studies. Thus, in this study we addressed the prob-
lem of model misspecification and also examined parameter 
reliability. In the following, we introduced these two topics 
sequentially.

The basic assumption of RL models is that behavior is 
controlled by experience gained from prior positive and 
negative events. This form of learning is referred to as the 
value-dependent learning system. On the other hand, behav-
ior is also influenced by perseveration, the tendency to repeat 
recent actions (Akaishi et al., 2014; Sugawara & Katahira, 
2022); this form of learning may be referred to as the value-
independent learning system. Together, these systems con-
stitute the basic elements that govern learning. However, 
the latter learning system (i.e., preservation) is not always 
included in RL models. Previous studies have reported that 
RL models without perseveration induce estimation bias 
regarding the difference in learning rates for positive and 
negative prediction errors (i.e., learning asymmetry) (Kata-
hira, 2018; Sugawara & Katahira, 2021). Palminteri (2021) 
reported that including perseveration at least weakens the 
effect of learning asymmetry observed in a model without 
perseveration. However, it is not yet examined how the lack 
of perseveration in a model relates to learning asymmetry 
in a situation in which a person must simultaneously pro-
cess positive and negative outcomes. Given that real-life 
experiences have both positive and negative aspects, it is 
also important to consider such situations. In addition, more 
importantly in the wider use of RL models, the influence 
of the lack of perseveration has not been examined in basic 
parameters, i.e., learning rates themselves (rather than their 
asymmetry) and inverse temperature. Furthermore, the 
behavioral aspects that the perseveration-including model 
can capture and the mechanism by which model misspeci-
fication introduces biases should be clarified. Thus, we sys-
tematically examine the influence of neglecting to include a 
perseveration component in RL models through experiments 

and simulations; additionally, with simulations, we examine 
the influence of task settings such as action-outcome con-
tingencies and reversal frequency on the estimation biases.

Another topic we addressed in this study was parameter 
reliability. Understanding the nature of the estimated param-
eters is essential for interpreting the results. At a minimum, 
parameter reliability puts an upper bound on the ability to 
detect individual differences in cognitive function, abnor-
mality, and developmental changes. Some studies have 
examined test–retest reliability and suggested that indices of 
behavioral tasks are not optimal for detecting individual dif-
ferences compared with questionnaires (Enkavi et al., 2019; 
Hedge et al., 2018; Moutoussis et al., 2018). Although there 
is growing interest in the parameter reliability of compu-
tational models (Ballard & McClure, 2019; Brown et al., 
2020; Browning et al., 2020; Scheibehenne & Pachur, 2015; 
Waltmann et al., 2022), information on the reliability of RL 
model parameters is still very limited. Previously reported 
results on reliability have varied from poor (Moutoussis 
et al., 2018; Pike et al., 2022; Schaaf et al., 2023) to good 
or excellent (Brown et al., 2020; Mkrtchian et al., 2023; 
Waltmann et al., 2022). Further reports are needed to obtain 
the whole picture of the reliability of RL model parameters. 
Additionally, parameter recoverability is important as it is a 
prerequisite of good test–retest reliability.

Therefore, we assessed the reliability of model parameters 
by administering the same task at two time points, separated 
by 1.5 months, to the same participants; these participants 
were recruited and conducted tasks online. As indicators of 
parameter stability, we examined the correlation between 
the same parameters over time as well as the mean change in 
the values of the parameters over time. Considering that the 
task used for RL model is a learning task, there is a possi-
bility that the parameter values change systematically at the 
time of the second data acquisition reflecting some learning 
effects. In addition, the current study provides information 
on whether the parameter changes between different blocks 
of the same task.

The behavioral task used in the current study is a version 
of the information bias learning task developed by Pulcu 
and Browning (2017). This behavioral task has the follow-
ing advantages for future research. First, it is an expansion 
of a reversal learning task, which is often used with the RL 
model, so our study will provide some insights into other 
RL paradigms. Second, this task has ecological validity in 
that it involves a volatile environment in which the associa-
tions of action and outcomes change during the task, thus 
mimicking a natural, dynamic environment that changes over 
time. Third, this task, in which win and loss feedback were 
both provided after actions in each trial, can detect affective 
bias in an environment where both types of information are 
available. In the real world, although we need to pay atten-
tion to useful information and ignore useless information, 
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affective bias modulates this process. In addition, some psy-
chiatric disorders have problems in flexibility of responses 
to volatile environments and/or emotional processing biases 
(Browning et al., 2015; Cella et al., 2010; Crews & Boetti-
ger, 2009; Mathews & MacLeod, 2005; Pulcu & Browning, 
2017; Pulcu et al., 2019), so assessing the modelling and 
model parameters for this task can provide basic information 
that can be used in the field of computational psychiatry, in 
which the issue of parameter stability has gained increasing 
attention (Browning et al., 2020).

Studies that employ information bias learning tasks have 
reported that the learning rate is adjusted depending on the 
context. In a volatile situation where option values change 
frequently, people tend to learn more from immediate feed-
back, exhibiting a higher learning rate. In contrast, if option 
values are stable, people place a higher weight on past feed-
back, leading to a lower learning rate (Behrens et al., 2007; 
Browning et al., 2015). In addition, volatility is separately 
evaluated for the win and loss domains and utilized to adjust 
the learning rates of win and loss outcomes, respectively 
(Pulcu & Browning, 2017). Therefore, as part of our exam-
ination specific to this task, we investigated the effect of 
model misspecification on the volatility-dependent adjust-
ment of learning rates.

In summary, the current study focused on two topics 
that should be considered for proper use of RL models: one 
regarding the influence of model misspecification on model 
parameters (especially on learning rates and inverse tem-
perature) and interpretations of behavioral trends and the 
other regarding the reliability of model parameters, includ-
ing test–retest reliability, learning effect, and recovery.

Methods

Participants

Participants were recruited through a crowdsourcing ser-
vice of CrowdWorks, Inc., Japan. These participants took the 

experiment twice, separated by approximately 1.5 months; 
however, some dropped out before the second time point. 
A total of 516 participants completed all tasks and ques-
tionnaires at both time points, and data from 453 (245 
females, 208 males; mean age = 38.09 years, range = 19–73, 
SD = 9.50) retained after application of the exclusion criteria 
were analyzed. All participants provided informed consent 
online. The protocol was approved by the Ethics Committee 
of Nagoya University.

Exclusion Criteria

In the analyses, we first excluded participant data from 
uncompleted trials (i.e., those in which the participant did 
not make a choice within 3 s) and data from trials in which 
the response time was < 100 ms, as these responses were 
considered to be anticipatory responses that did not reflect 
the stimulus types. Second, we excluded 44 participants with 
omitted data on more than 10% of trials based on the above 
criteria. Third, we excluded 33 participants who chose the 
same stimulus in either block on more than 90% of the trials 
as well as 6 participants who chose the stimulus on the same 
side of the screen on more than 90% of trials in either block. 
Some participants failed to meet multiple criteria; thus, in 
total, 63 participants were excluded. Data from the remain-
ing 453 participants was included in the final analyses.

Decision‑making Task

The task used in this study was based on the information bias 
learning task developed by Pulcu and Browning (2017). The 
version used in the current study consisted of win-volatile 
(WV) and loss-volatile (LV) blocks of 100 trials each. In 
each trial, participants were required to choose one of two 
stimuli (two monster images) within 3 s (Fig. 1, left). Each 
stimulus was presented randomly on the left or right side 
of the screen, and participants indicated their choice by 
pressing “F” or “J,” respectively, on a keyboard. Following 
a 500-ms yellow highlight, the loss outcome was displayed 

Fig. 1  Structure of the information bias learning task. Left, example 
task sequence. Right, feedback regarding outcome, win (circle) or 
loss (cross), for each stimulus (Stimulus A and Stimulus B) in win- 

and loss-volatile blocks. The volatile outcomes are color-coded (red, 
win-volatile block; blue, loss-volatile block)
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above either of the two stimuli. If the loss outcome was the 
chosen stimulus, the participant’s total points decreased 
by 15 points, accompanied by a “boo” sound; if the loss 
outcome was the unchosen stimulus, the participant’s total 
points remained the same. After 1 s, the win outcome was 
indicated by appearing under either of the stimuli. If the 
win outcome was the chosen stimulus, the participant’s total 
points increased by 15 points, accompanied by a “chink” 
sound; if the win outcome was the unchosen stimulus, the 
participant’s total points remained the same. The screen 
displayed both win and loss outcomes for 3 s. The order 
of loss and win outcomes was randomized over trials. One 
pair of stimuli was used in each block, and different pairs 
were used in different blocks (stimuli were downloaded from 
shutterstock.com).

In the WV block, win outcomes were associated with 
one stimulus at a probability of 85% and the other stimu-
lus at a probability of 15%, and loss outcomes were associ-
ated with both stimuli at a probability of 50%; in the LV 
block, this contingency was reversed for win and loss out-
comes. Half of the participants first experienced the WV 
block, and the other half first experienced the LV block. 
The patterns of outcomes in each trial were the same in both 
blocks, only differing in win vs. loss (Fig. 1, right), and the 
same sequence was used for all participants. The reason we 
used the same trial sequences is that if the model parameter 
was intended to be used to detect individual differences (a 
potential purpose that is not examined in the current study), 
the sequence is needed to prevent the influence of different 
experiences in the task from overshadowing the individual 
differences. Using the same trial sequence has an advantage 
for this purpose. In addition, the reason that the WV and 
LV blocks were arranged to have symmetric feedback was 
to assure a fair comparison of the parameter values between 
the blocks.

Participants were instructed to maximize their total score 
by gaining as many as wins and avoiding as many losses as 
possible. They were also told that one stimulus was better 
than the other stimulus in a pair and that the better stimulus 
might switch over time, but they were not informed how a 
given stimulus was better.

In the series of computational simulations, the task set-
tings were slightly varied in line with the various aims. Each 
aim and change are explained in the “Simulation Results” 
section.

Experimental Procedure

Participants accessed experiments through a web link and 
completed tasks via their web browser. Instructions and 
stimuli were presented using Inquisit 5 software (Millisec-
ond Software, Seattle, Washington). After the behavioral 
task, participants were presented with several web-based 

questionnaires about mental illnesses at both time points; 
however, these data are not the focus of this paper and will 
be reported elsewhere.

Model‑Neutral Regression Analysis

The candidate RL models in this study assumed that choice 
history and outcome history both influenced decision-mak-
ing. To examine whether the data exhibited repeated selec-
tion of the same choice independent of outcome feedback 
(i.e., perseverance), we constructed a multi-trial regression 
model to quantify the effect of past outcomes and choices on 
future decisions (Katahira, 2015; Miller et al., 2016) sepa-
rately for the WV and LV blocks. We defined vectors for the 
win-outcome history ( outWt ), loss-outcome history ( outLt ), 
and choice history ( ct) for trial t ; these vectors were given 
the value of 1 if associated with option (stimulus) A and a 
value of − 1 if associated with option B. The mixed-effects 
logistic regression model, which includes a random effect of 
participant on the intercept, for the probability of choosing 
option A, p(a(t) = A) , was constructed as:

where b(m)
W

 , b(m)
L

 , and b(m)
c

 are the regression coefficients m 
trials ago (up to 10 trials ago). This model was fit using 
the R function “glmer” from the lme4 package (Bates et al., 
2015). For this analysis, all data from each participant were 
used to obtain a sufficient number of trials for the analyses.

Computational Models

We used several RL models to analyze the choice data 
obtained in this task. Below, we introduce two models with-
out a perseveration term (M0 and M0b) and two models with 
a perseveration term (M1s and M1m).

M0: Standard RL Model

For the standard model, we used a model with two learn-
ing rates and an inverse temperature (M0). This model was 
based on that used by Pulcu and Browning (2017). In each 
trial t , after the stimulus i was chosen, the probabilities that 
this stimulus i is connected to win and loss outcomes ( pwini 
and plossi , respectively) were updated as follows:

logit(p(a(t) = A)) = bbias +

10∑

m=1

b(m)
w

outWt−m + b
(m)

L
outLt−m

+ b(m)
c

ct−m + (1|Participant)

(1)pwini,t+1 = pwini,t + �W
(
winouti,t − pwini,t

)

(2)plossi,t+1 = plossi,t + �L
(
lossouti,t − plossi,t

)
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In these equations, �W ∈ [0, 1] and �L ∈ [0, 1] express 
learning rates for pwin and ploss , respectively; their ini-
tial values are 0.5, and they are updated based on the 
occurrence of win outcomes ( winouti,t ; 1 or 0) and loss 
outcomes ( lossouti,t ; 1 or 0) associated with this stimulus 
i in trial t. The probabilities that the unchosen stimulus 
j is connected to win and loss outcomes were defined as 
pwinj,t+1 = 1 − pwini,t+1 and plossj,t+1 = 1 − plossi,t+1.

The probability of choosing stimulus A was calculated 
as follows:

where the inverse temperature,� ∈ (0, 20] , adjusts the sharp-
ness of the value difference between the options in the choice 
probability.

M0b: Standard RL Model with a Preference Bias for One 
Option

Next, we considered a model with a preference for one 
option over the other (M0b). This model was used in Pulcu 
et al. (2019). This model is identical to the standard RL 
model, with the addition of an action bias parameter � , 
which expresses the increased likelihood of choosing one 
option over the other. In this model, Eq. (3) is replaced as 
follows:

where � represents the preference for stimulus A . When ana-
lysing this model parameter, it is better to use its absolute 
value.

M1s and M1m: Standard RL Models with a Perseveration 
Term

Finally, we introduce two kinds of models that include an 
action-perseveration component. These models have a new 
parameter � that represents the perseveration magnitude 
and biases actions toward repeated selection of a previously 
chosen stimulus, independent of outcome history. We con-
structed two models including this perseveration term. One 
model assumed only a preference for the most recent option 
(that is, the choice on the single previous trial); hereafter, 
we refer to it as M1s. The other model assumed a preference 
for recently chosen options, with a stronger influence from 
recent trials (that is, it considers the choice history over mul-
tiple past trials); hereafter, we refer to it as M1m. In these 
models, Eq. (3) is replaced as follows:

(3)choicePA,t =
1

1 + exp
(
−
(
�pwinA,t − �plossA,t

))

(4)choicePA,t =
1

1 + exp
(
−
(
�pwinA,t − �plossA,t + �

))

where C represents the choice trace, or choice kernel, and 
the C of the chosen stimulus ( i ) and unchosen stimulus ( j ) 
(i.e., Ci and Cj ) are defined as follows:

where initial value of C for each of the two choices is set to 
zero, and � is a choice-trace decay parameter, which deter-
mines the extent to which the effect of a new choice over-
rides that of older choices. In the M1s model, this param-
eter is set to 1. In the M1m model, it is a free parameter, 
� ∈ [0, 1] . Thus, M1s is a special case of M1m. A number of 
studies have introduced this or a similar perseveration term 
(Gershman, 2016; Katahira, 2018; Wilson & Collins, 2019).

Parameter Estimation and Model Comparison

We used the R function “solnp” from the Rsolnp package 
(Ghalanos & Theuss, 2015) to estimate the free parameters 
by optimizing the maximum a posteriori (MAP) objective 
function (R version 4.2.0, R Core Team, Vienna, Austria). 
Prior distributions and bounds were set as Beta (shape 
1 = 1.1, shape 2 = 1.1), with bound [0,1] for parameters �W , 
�L , and � ; Gamma (shape = 1.2, scale = 5), with bound [0,20] 
for � ; Normal (mean = 0, SD = 3), with bound [− 5,5] for � ; 
and Normal (mean = 0, SD = 10), with bound [− 20,20] for 
� . To compare the candidate models, MAP estimates were 
used to approximate the marginal likelihood of each model 
by Laplace approximation (Bishop, 2006); these marginal 
likelihoods were then used to compute the protected exceed-
ance probability of the models for model comparison (Ste-
phan et al., 2009). This model comparison was performed 
with the Variational Bayesian Analysis (VBA) toolbox 
(Daunizeau et al., 2014), run in MATLAB R2020b.

Comparison of Models on Behavior Prediction 
and Generation 

It has been pointed out that the ability to predict and the abil-
ity to generate behavioral traits are not necessarily related 
(Palminteri et al., 2017b). Thus, we compared models in pre-
dictive and generative performance on behavior. As behav-
ioral measures, the choice accuracy and stay probability 12 
trials before and 12 trials after reversal were analyzed. We 
also focused on the stay probabilities after each type of feed-
back and win-stay/loss-shift probabilities because these stay-
probability-based measures may be sensitive to the presence 
or absence of a perseveration term in a model. Here, the stay 
probability was defined as whether the participants repeated 

(5)

choicePA,t =
1

1 + exp
(
−
(
�pwinA,t − �plossA,t + �CA,t − �CB,t

))

(6)
{

Ci,t+1 = (1 − �)Ci,t + �

Cj,t+1 = (1 − �)Cj,t
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the previous action or not regardless of the outcomes, and 
win-stay/loss-shift probabilities were defined as the stay-/
shift- probability that if participants were rewarded/lost they 
would choose/avoid the same option for the next trial.

Predictive performance is the model’s ability to fit the 
observed choice patterns given the history of previous 
choices and outcomes. The prediction was calculated using 
the choice probability by the models. On the other hand, 
generative performance examines the model’s ability to 
generate the observed choice patterns using the simulation 
method. That is, choices were generated from the simulated 
value updates based on the simulated outcomes under the 
same win/loss probabilities as the experiment. In both exam-
inations, the best-fit parameters estimated in the experiment 
at Time 1 were used.

Calculations of Parameter Reliability

Stability Assessments

In our study, participants performed the same task twice, 
separated by approximately 1.5 months. Thus, we could 
assess parameter stability over time. First, we examined 
test–retest reliability with Pearson correlation analyses. 
When we directly compared the stabilities, we used R’s 
package cocor (Diedenhofen & Musch, 2015), especially 
based on the method reported in Silver et al. (2004).

We also conducted a t test between blocks and between 
time points because there were possibly systematic changes 
in each parameter value over time caused by learning effects.

Recovery Assessments

To confirm whether the model parameters were identifiable, 
we carried out parameter recovery for the best-fit model. 
All parameters were independently sampled from uniform 
distributions which ranged from the minimum to maximum 
of estimates in the experiment ([0,1] for �W , �L , � and [0, 
17.7] for � , and [− 10.7,12.3] for � ). Simulated data were 
generated by sampled 100 parameter sets, and they were re-
fit to compare the true and estimated values and to compare 
the estimated values of different parameters. This simula-
tion was repeated 100 times for each block and the average 
correlation results were reported. The true parameter value 
sets were the same between the blocks, and the WV and LV 
blocks were arranged to have symmetric feedback.

Statistical Analysis

The analyses were carried out using R. In the analysis of 
variance (ANOVA), the package “anovakun” version 4.8.7 
(http:// riseki. php. xdoma in. jp/ index. php) was used.

Simulation Settings

We conducted several simulations based on the results of the 
experiment. The detailed aim and settings of each simulation 
are presented in the “Simulation Results” section. In brief, 
we confirmed the estimation biases seen in the experimental 
results and examined the effects on the size of the estimation 
bias by varying the magnitude of intrinsic preservation in the 
generative model as well as several task settings. In addition, 
we clarified the direct and indirect estimation bias due to the 
lack of a perseveration term in the models.

Experimental Results

Evidence Supporting Perseveration

Model‑Neutral Analysis

To roughly confirm the effect of outcome history (past wins 
and losses) and choice history (action perseveration) on par-
ticipant decision-making in a model-neutral manner, we first 
conducted linear regression analysis to observe the influence 
of these histories (spanning up to 10 previous trials) on the 
current choice (see Supplementary Text 1 for the values of 
the variance inflation factor). Figure 2 presents the results 
of the multi-trial regression model. The impacts of outcome 
and choice histories on the current choice both gradually 
decayed over time in both blocks, roughly supporting the 
assumptions of the RL model regarding gradual value-learn-
ing and gradual perseveration processes.

Model Comparison

We calculated the negative log marginal likelihood and com-
pared this value among the four models (M0, M0b, M1s, 
and M1m) for each combination of time point and block. 
In all combinations, the negative log marginal likelihood of 
the model with gradual perseveration (M1m) was the most 
favored (i.e., had the lowest value, Table S1). Figure 3 pre-
sents the Bayesian model comparison, showing the exceed-
ance probability (the posterior probability that a particular 
model is more frequent than all other models in the com-
parison set) for each model. Across any combination of time 
point and block, the M1m model was most favored.

Model Fits and Simulations of Behavior

First, we checked the trial-by-trial choice accuracies of 
participants in the task. Figure 4A shows the observed and 
model-predicted choice probabilities for better options over 
trials. They are almost overlapped, showing good prediction 
by both the M0 and M1m models (orange and blue lines 

http://riseki.php.xdomain.jp/index.php
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respectively) as an average. In the observation (black lines), 
after the reversals, the participants were temporarily unable 
to choose the better option, but they chose better ones at a 
rate of about 70% on average through the task (Time 1 WV: 
0.72; Time 1 LV: 0.66; Time 2 WV: 0.76; Time 2 LV: 0.70).

Next, we examined whether the behavioral traits in the 
task, which include elements that do not directly correspond 

to the likelihood-based model selection, can be predicted 
and/or generated by the M0 and M1m models. Here, we 
used the data from Time 1 as there were no noted differences 
between blocks and between time points, and focused on 
the four aspects of behaviors: choice accuracy before and 
after reversal, stay probability before and after reversal, stay 
probability per feedback condition, and win-stay/loss-shift 
probabilities. Figure 4B shows the predictive performance 
of the models. Regarding the choice accuracy (left-most 
panel), which is a summary of Fig. 4A around the rever-
sal points, both models well predicted the observation. On 
the other hand, stay probability-based measures were better 
captured by the M1m model than the M0 model. The M0 
model underestimated the stay probability overall (mid-
dle two panels). Especially, its prediction was worse after 
reversal (middle-left panel). Furthermore, underestimation 
of stay probability led to the overestimation of loss-shift and 
underestimation of win-stay probabilities (right-most panel). 
These tendencies were retained in the results of generative 
performance which were produced by simulations using 
different outcome sequences from those of the experiment 
(Fig. 4C). The model-generated behavior looks smoothed 
because the probabilistically generated outcomes were used 
in the simulations. Thus, both predictive and generative per-
formance of the M1m model were better than the M0 model 
especially for the stay-probability based measures.

Parameter Estimates

The parameter estimates for M0 and M1m are listed in 
Table 1. Figure 5 also shows the estimated mean learning 
rates. The estimated learning rates were clearly lower in M0 
(left panels) than M1 (right panels). We conducted a three-
way analysis of variance (ANOVA) for each model that 
included the within-subject factors of time point (Time 1 or 
Time 2), block (WV block or LV block), and domain of the 

Fig. 2  Results of the logistic regression analyses. Each point repre-
sents the median value of estimated regression coefficients for the 
choice history (red), loss-outcome history (green), and win-outcome 

history (blue). The panels show the results of the win-volatile (WV, 
left panel) and loss-volatile (LV, right panel) blocks

Fig. 3  Bayesian exceedance probabilities of the M0, M0b, M1s, and 
M1m models in each combination of time point and block. M0 is 
the standard RL model without perseveration, and M0b is the same 
as M0 but includes a preference bias term. M1s and M1m incorpo-
rate a perseveration term, representing impulsive (only reliant on the 
immediately prior action) and gradual perseveration (reliant on mul-
tiple past actions), respectively. In all combinations of time point and 
block, the M1m model was most favored (with an exceedance prob-
ability of over 99%)
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learning parameters ( �Wand�L ) to examine whether we could 
replicate a previous finding that learning rates were higher 
for volatile conditions than for stable conditions (Pulcu & 
Browning, 2017).

The interaction of block and domain of the learning 
parameters was significant in both models, with a higher 
effect size in M0 than in M1m [M0: F(1, 452) = 26.53, 
p < 0.001, �2 = .055 ; M1m: F(1, 452) = 4.66, p = 0.031, 
�2 = .010 ]. In the M0 model, post hoc analysis revealed 
that, regarding the effects of volatility on the learning 
parameters, the estimates were significantly higher in con-
ditions with higher outcome volatility; specifically, �W 
was higher in WV blocks than LV blocks (p = 0.004), and 
�L was higher in LV blocks than WV blocks (p < 0.001). 

However, this pattern was not seen when the M1m model 
was used. Post hoc analysis revealed higher �W  in WV 
blocks than LV blocks (p = 0.026) but no significant dif-
ference in �L between block types (p = 0.439). In other 
words, the previously reported influence of volatility on 
the learning rate was almost entirely erased by including a 
perseveration term. Furthermore, the estimates were higher 
for �W than �L in both blocks regardless of the models [M0: 
p < 0.001 in the WV block, p = 0.095 in the LV block; 
M1m: p < 0.001 in both the WV and LV blocks]. These 
results failed to show the effect of volatility on the learning 
parameter, and instead seemed to show positivity-bias-like 
phenomena (Lefebvre et al., 2017; Palminteri & Lebreton, 
2022; Palminteri et al., 2017a).

Fig. 4  Observed behavior and model performance. A Trial-by-trial 
observed choice probabilities (black) and model-predicted choice 
probabilities (orange: M0, blue: M1m) of better options. Better 
options were defined at each trial as the option that had a higher prob-
ability of getting a win in the win-volatile (WV) block or of prevent-
ing losses in the loss-volatile (LV) block. The dashed lines represent 
the reversal points of the better option. The average among the par-
ticipants for each block (LV or WV) at each time point (Time 1 or 
Time 2) are shown. B Predictive performance by the models. The 
left-most panel shows the mean choice probabilities of the better 
option around the reversal points, and the middle-left panel shows the 

mean stay probability around the reversal points. The middle-right 
panel shows stay probabilities per feedback condition, and the right-
most panel shows win-stay/loss-shift probabilities. The observed data 
are shown as black lines or gray bars, and the model predictions are 
shown as colored lines or dots (orange: M0, blue: M1m). C Genera-
tive performance by the models. The observed data are the same with 
those shown in B. Behavior generated by the models appear smoother 
compared with the observed data because of the probability-based 
outcome schedule in the simulation. Error bars represent the standard 
errors
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Figure 6 shows the results regarding the inverse tem-
perature ( � ). The estimated values were larger in the M0 
model than in the M1m model. The model results were 
investigated with a two-way ANOVA that included the 
factors of time point (Time 1 and Time 2) and block (WV 
block and LV block). We found a main effect of block 
[M0: F(1, 452) = 40.02, p < 0.001, �2 = 0.081; M1m: 

F(1, 452) = 37.14, p < 0.001, �2 = 0.076] and time point 
[M0: F(1, 452) = 61.33, p < 0.001, �2 = 0.120; M1m: F(1, 
452) = 79.98, p < 0.001, �2 = 0.150] in both models but no 
interaction effect.

Thus, the experimental results can be summarized by 
the following three points. First, the model comparison 

Table 1  Estimated parameter 
values. The estimated parameter 
values for M0 and M1m in win-
volatile (WV) and loss-volatile 
(LV) blocks, respectively, are 
shown as the median and 25th 
and 75th percentiles across 
participants. The negative log 
likelihood (nLL) and negative 
log marginal likelihood (nLML) 
are also shown. Median values 
are presented in bold

Model Block Percentile (%) nLL nLML �
W

�
L

� � �

25 22.3 24.8 0.13 0.07 2.49 - -
Time 1 WV 50 44.4 47.2 0.22 0.15 6.84 - -

75 64.1 66 0.44 0.28 13.08 - -
25 28.3 31 0.09 0.07 1.14 - -

Time 1 LV 50 60.4 63 0.17 0.18 4.30 - -
M0 75 68.3 70 0.40 0.36 12.21 - -

25 16.6 18.9 0.15 0.06 4.21 - -
Time 2 WV 50 29.4 31.7 0.22 0.13 9.83 - -

75 57.6 59.7 0.38 0.23 15.87 - -
25 20.7 23.3 0.10 0.10 2.05 - -

Time 2 LV 50 41.6 44 0.17 0.18 7.46 - -
75 66.2 67.3 0.35 0.30 14.03 - -
25 21.2 22.2 0.29 0.12 2.04 0.83 0.30

Time 1 WV 50 35.8 37.7 0.51 0.32 4.10 1.79 0.57
75 62.6 65 0.80 0.61 7.46 3.23 0.79
25 22.6 24.1 0.17 0.11 1.32 0.19 0.30

Time 1 LV 50 52.7 54.6 0.45 0.35 3.07 1.42 0.57
M1m 75 68.9 71.1 0.74 0.58 6.63 3.1 0.82

25 15.6 15.8 0.31 0.12 2.60 1.1 0.40
Time 2 WV 50 25.8 26.8 0.45 0.30 6.00 2.2 0.62

75 52.1 54.5 0.69 0.58 9.57 3.9 0.85
25 17.9 18.9 0.24 0.18 1.84 0.53 0.38

Time 2 LV 50 35.7 37.4 0.47 0.38 4.48 2.02 0.63
75 65.4 68 0.76 0.58 8.24 3.76 0.84

Fig. 5  Estimated learning rate. The parameters were estimated with 
the M0 model (left panels) or M1m model (right panels). The pan-
els show the estimates according to block (LV: loss-volatile block, 

WV: win-volatile block) and time point (Time 1 or Time 2). Gray and 
white represent the estimated values of �L and �W , respectively. Error 
bars display the standard errors
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favored the model with gradual perseveration (M1m) over 
the other models. Second, the exclusion of the persevera-
tion term led to smaller learning rates (both �W and �L ) and 
a larger inverse temperature ( � ). Third, previous findings 
of increased learning rates under volatile conditions com-
pared to stable conditions were replicated only when the 
model did not include a perseveration term.

Magnitude of the Estimation Bias

In the previous section, we confirmed that the model with-
out a perseveration term (M0) had lower learning rates and 
a higher inverse temperature than the best-fit M1m model, 
which included a perseveration term. The magnitude of 
the observed bias is expected to correlate with the intrin-
sic perseveration of the data ( � in the M1m model). The 
data shown in Fig. 7 support this prediction. The larger the 
value of � in the M1m model was, the smaller the values 

of the parameters �W and �L in the M0 model compared 
with those in the M1m model [r =  − 0.56 (p < 0.001) and 
r =  − 0.54 (p < 0.001), respectively, including all data]. On 
the other hand, the larger the value of � in the M1m model 
was, the larger the value of the parameter � in the M0 model 
compared with that in the M1m model [r = 0.59 (p < 0.001) 
including all data].

Value Calculation Vs. Choice Perseveration

Do our choices rely more on the value-calculation process or 
the simple choice-perseveration process? This question has 
not been examined in detail, but Palminteri (2021) inves-
tigated past studies and summarized it as a comparison of 
� and � ; on the whole, people rely more on the value-cal-
culation process than the simple choice-perseveration pro-
cess. Our finding was consistent with this finding and was 
stable regardless of block condition or time point. Table 2 

Fig. 6  Estimated inverse temperature. The parameters were estimated 
with the M0 model (left panels) or the M1m model (right panels). 
The panels show the estimates for each block (LV: loss-volatile block, 

WV: win-volatile block) at each time point (Time 1 or Time 2). Error 
bars represent the standard errors

Fig. 7  Correlation between the magnitude of the estimation bias in 
the M0 model and the value of � in the M1m model. “∆ Estimates” 
represents the magnitude of the estimation bias, which was calculated 
by subtracting the parameter estimates ( �

L
 , �

W
 , and � ) of the M1m 

model from those of the M0 model. The larger the value of � in the 
M1m model was, the smaller the values of �

W
 and �

L
 estimated in 

the M0 model. The larger the value of � in the M1m model was, the 
larger the value of � estimated in the M0 model



661Computational Brain & Behavior (2023) 6:651–670 

1 3

summarizes the mean values, the results of the t test, and 
Pearson’s r between the parameters � and � . In the t test, the 
absolute values of � were also used to compare the absolute 
strength of the two processes. � exerted a stronger influence 
on choices than � over all blocks and time points. In addi-
tion, these two parameters were positively correlated.

Parameter Reliability

Stability of Parameter Values

First, we examined test–retest reliability. Table 3 shows the 
coefficients r for the parameter estimates between the blocks 
at each time point (“WV vs. LV at Time 1” and “WV vs. LV 

at Time 2” in the table) and between the two time points for 
each block type (“Time 1 vs. Time 2 for WV” and “Time 1 
vs. Time 2 for LV” in the table). Among the parameters, � and 
� showed relatively high stability both between blocks and 
between times, while �W , �L , and � did not. Regarding the two 
learning-rate parameters, we compared their stabilities over 
time (“Time 1 vs. Time 2” in Table 3) and found significantly 
better stability of �W compared with that of �L especially in the 
WV block (Supplementary text2 and Fig. S1).

Table 3 also shows the results of the t test between blocks 
and between time points to determine the absolute change 
of each parameter. Regarding � and � , the values increased 
at Time 2 compared with Time 1 (ps < 0.01). That is, the 

Table 2  Comparison between 
the parameters � and � . Mean 
estimates of the parameters � 
and � , the results of the t test 
and Pearson’s r between the 
parameters for each time point 
and block

*** p<.001

Mean β Mean � t value
[β vs. abs(�)]

t value
[β vs. �]

Correlation 
coefficient 
(r)
[β and �]

Time 1 WV 4.95 1.84 17.34 *** 20.18 *** 0.48 ***
Time 1 LV 4.27 1.60 13.02 *** 19.62 *** 0.63 ***
Time 2 WV 6.34 2.49 21.99 *** 24.52 *** 0.60 ***
Time 2 LV 5.38 2.06 17.46 *** 23.62 *** 0.69 ***

Table 3  Stability of parameter 
values estimated by the best-fit 
model, M1m. Rows “Time 1 vs. 
Time 2” show the comparisons 
in the same block type between 
two time points; rows “WV 
vs. LV” show the comparisons 
between the two block types at 
the same time point

*** p<.001; **p<.01; *p<.05

Pearson’s r t test

r Difference 
(WV-LV)
(Time 1-Time 2)

95% CI t Hedges’ g

αW WV vs. LV at Time 1 0.21 *** 0.06 [0.02 to 0.09] 3.13 ** 0.19
WV vs. LV at Time 2 0.19 *** 0.00 [− 0.03 to 0.04] 0.20 0.01
Time 1 vs. Time 2 for WV 0.33 *** 0.03 [0 to 0.06] 2.13 * 0.12
Time 1 vs. Time 2 for LV 0.26 ***  − 0.02 [− 0.06 to 0.01]  − 1.16  − 0.07

αL WV vs. LV at Time 1 0.21 *** 0.00 [− 0.03 to 0.04] 0.16 0.01
WV vs. LV at Time 2 0.18 ***  − 0.02 [− 0.06 to 0.01]  − 1.28  − 0.08
Time 1 vs. Time 2 for WV 0.13 ** 0.01 [− 0.03 to 0.05] 0.48 0.03
Time 1 vs. Time 2 for LV 0.17 ***  − 0.02 [− 0.05 to 0.02]  − 0.94  − 0.06

β WV vs. LV at Time 1 0.53 *** 0.68 [0.35 to 1.01] 4.02 *** 0.18
WV vs. LV at Time 2 0.58 *** 0.96 [0.61 to 1.31] 5.36 *** 0.23
Time 1 vs. Time 2 for WV 0.56 ***  − 1.39 [− 1.73 to − 1.05]  − 8.01 ***  − 0.36
Time 1 vs. Time 2 for LV 0.51 ***  − 1.11 [− 1.47 to − 0.75]  − 6.10 ***  − 0.28

�  WV vs. LV at Time 1 0.42 *** 0.24 [− 0.02 to 0.5] 1.84 0.09
WV vs. LV at Time 2 0.52 *** 0.43 [0.19 to 0.66] 3.56 *** 0.16
Time 1 vs. Time 2 for WV 0.40 ***  − 0.65 [− 0.89 to − 0.4]  − 5.16 ***  − 0.26
Time 1 vs. Time 2 for LV 0.41 ***  − 0.46 [− 0.74 to − 0.19]  − 3.32 **  − 0.17

τ WV vs. LV at Time 1 0.15 ***  − 0.01 [− 0.04 to 0.03]  − 0.39  − 0.02
WV vs. LV at Time 2 0.27 *** 0.01 [− 0.02 to 0.04] 0.73 0.04
Time 1 vs. Time 2 for WV 0.20 ***  − 0.05 [− 0.09 to − 0.02]  − 3.18 **  − 0.19
Time 1 vs. Time 2 for LV 0.12 **  − 0.04 [− 0.07 to 0]  − 1.92  − 0.12
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participants were more value-dependent and more likely to 
repeat recent actions at Time 2.

For comparison with these findings regarding model 
parameter reliability, we calculated the test–retest reliabil-
ity of the questionnaires (Table S3). The Pearson’s correla-
tion coefficients for the questionnaires between the two time 
points were most often more than 0.8; thus, they showed 
better stability than model parameters.

Parameter Recovery

Figure 8 shows the results of Pearson’s correlation analyses 
between the true parameter values of the synthetic data and the 
recovered parameter values (diagonals), and between recov-
ered parameter values (off diagonals). The results of both 
blocks were similar as we used the same true parameter val-
ues set and symmetric feedback between WV and LV blocks.

Regarding the recovery correlations shown in the diago-
nals, the parameters � and � showed the best recoveries with 
r = 0.93 and r = 0.76, respectively. The two learning rates 
( �W and �L ), which are the main focus of researchers that use 
this task, showed parameter recoveries of r = 0.70.

Regarding the cross correlations shown in the off diago-
nals, most of them were small although there were weak 
negative correlations between � and � (WV: r =  − 0.17; LV: 
r =  − 0.19). Intriguingly, the correlation pattern between 
� and � was opposite in the estimates from experimental 
data showing moderate positive correlations (see Table 2, 
0.48 < r < 0.69). This result tells us that humans may have 
meaningful positive correlations for behavior relating to 
value-dependency and perseveration in the current task, 
which cannot be attributed to artifacts in the estimation 
process.

The accuracy of parameter recovery is an upper limit 
of the test–retest reliability reported in the above section. 
However, parameter recovery alone does not determine the 
test–retest reliability, of course. For example, the difference 
in test–retest reliability between learning rates and inverse 
temperature (Table 3) appears to be larger than expected 
from their difference in the parameter recovery results (the 
diagonals of Fig. 8), suggesting that there are true differ-
ences in temporal stability between the parameters.

Simulation Results

Next, we conducted computational simulations to explore 
the following questions: How is the magnitude of the esti-
mation bias in the parameters affected by the strength of 
preservation in the generative model? Is the magnitude of 
estimation bias influenced by the task settings? What is the 
underlying mechanism of the estimation bias? To address 
these questions, in the following simulations, we first gener-
ated synthetic data and then compared the estimated param-
eter values with the true parameter values. The first of these 
questions was examined using the same task settings as the 
experiment; the second and third were examined using a 
simplified task to clearly elucidate the phenomena.

Perseveration Strength and Estimation Biases

We simulated the effect of perseveration strength on 
parameter estimation bias (of �W , �L, and� ) when the per-
severation term was not included in the fitting model. 
Here, the generative models included a perseveration 
term of various strengths. The true parameter values were 
fixed based on the estimates from the experimental data 

Fig. 8  Parameter recovery analysis of the best-fit M1m model for the 
win-volatile block and loss-volatile block. The confusion matrices 
represent the mean of the Pearson’s correlations between parameters 
over 100 simulations. Each simulation includes 100 subjects whose 
true parameter values were randomly and independently sampled 

from uniform distributions and common among the win-volatile 
(WV) and loss-volatile (LV) blocks. The values on the diagonal rep-
resent correlations between simulated and estimated parameters. 
Off-diagonal values represent cross-correlations between estimated 
parameters
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(�W = 0.45, �L = 0.35, � = 4.0, and� = 0.6) , while the per-
severation strength ( � ) increased from 0 to 4 in steps of 
0.5. We generated 1000 synthetic datasets using the M1m 
model for each parameter set. Figure 9A and B show the 
estimates from the M0 and M1m models for these gener-
ated data. Regarding the learning rate, the stronger the true 
perseveration was, the lower the estimated learning rate (left 
and middle panels of Fig. 9A). Given the estimates of � in 
our experiment, the magnitude of the possible estimation 
bias in experimental studies was non-negligible. Indeed, in 
our experiment, the median value of � was almost 2.0 (see 
Table 1). In the current simulation, this value was sufficient 
to halve the estimated values of � in the model that lacks a 
perseveration term. This finding implies that, for example, 
if two participants have different perseveration strengths and 
the same learning rate, a false difference in the learning rates 
will be detected if a model without perseveration is used.

In addition, the magnitude of this bias was weaker in 
WV blocks than in LV blocks for �W (Fig. 9A, left panel), 
but the reverse was true for �L (Fig. 9A, middle panel). In 
other words, the learning rates were estimated to be larger 

in volatile blocks than stable blocks even if the true learn-
ing rates were the same. These phenomena are intuitively 
consistent with the interaction observed in the M0 model in 
our experiment (Fig. 5, left panels).

We also explored the inverse temperature, � . For this 
parameter, estimates tended to be larger than the true 
value; this tendency was most obvious in the M0 model 
and less obvious in the M1m model. In the M0 model, the 
estimated values of � were more than twice the true value 
when the true value of � was more than 2.0. This result 
was again consistent with our estimation results from the 
experiment, showing larger values of � from the M0 model 
than the M1m model (see Fig. 6). This result implies that 
parameter estimates from the model without perseveration 
may be misleading. For example, when comparing two 
groups, if one group had a stronger tendency to repeat 
their past choices regardless of the experienced outcomes, 
researchers are likely to conclude that this group relies 
more heavily on outcome history than the other group from 
the comparison of � estimates. Thus, the group difference 
would be interpreted only as the difference in values of � 

Fig. 9  Parameter estimation bias in the model without and with per-
severation. The three columns show the estimated parameters �

W
 , �

L
 , 

and � when fitting the synthetic data with the model without a per-
severation term (A; the M0 model) and with the model with gradual 

perseveration (B; the M1m model). The M0 model underestimates the 
learning rates and overestimates the inverse temperature. Error bars 
indicate the standard errors of the mean



664 Computational Brain & Behavior (2023) 6:651–670

1 3

and not attributed to perseverance, which is the true origin 
of the group difference.

The possible mechanisms underlying these biases are 
discussed in the “Possible mechanism underlying estima-
tion bias” section.

Influence of Task Setting on Estimation Bias

Simulations in this section used a simplified task where 
only win domain was used as feedback (i.e., this simplified 
task did not have loss domain outcomes); thus, the corre-
sponding model included only a solo learning rate param-
eter, which facilitates interpretation of the influence of the 
missing perseveration term on the other model parameters. 
The number of trials was set at 200.

We first examined the influence of task settings (the 
reward probabilities and their reversal frequency) on esti-
mation bias when the generative model includes a perse-
veration term (the M1m model) but the fitting model does 
not (the M0 model). We also varied the true perseveration 
strength while fixing the true values of the other param-
eters at � = 0.4 , � = 4 , and� = 0.5 . We generated 500 syn-
thetic datasets using the M1m model for each combination 
of reward probability (50:50, 70:30, 80:20, and 90:10), 
reversal frequency (0, 1, and 3), and true perseveration 
strength (none: � = 0 , mild: � = 2 , and strong: � = 4 ). 
Then, the generated data were fitted with the M0 model. 
Figure 10 shows the results of parameter estimates. Over-
all, the stronger the true perseveration strength was, the 
lower the estimated parameter � and the higher the esti-
mated parameter � . These tendencies were robust regard-
less of task settings, while the estimation bias seemed to 
be slightly stronger in the condition with random reward 
probability.

Possible Mechanism of the Observed Biases

Model parameters can be more or less interdependent. Here, 
we clarified whether both the learning rate and inverse tem-
perature exhibited direct estimation bias by excluding perse-
veration parameters or the parameter that exhibited indirect 
estimation bias, as it was influenced by the parameter that 
exhibited direct estimation bias. For this purpose, the syn-
thetic datasets with mild perseveration ( � = 2 ) generated in 
the previous section were fit by the following four models.

– M0: a model with two free parameters, � and �
– M0_fixed � : a model with a fixed parameter � and a free 

parameter �
– M0_fixed � : a model with a fixed parameter � and a free 

parameter �
– M1m: a model including a gradual perseveration compo-

nent: �, � , � , and �

The synthetic data were fit by the above four models by 
setting the fixed parameters to the true parameter values 
( � = 0.4 , and � = 4 ). Figure 11 shows the estimated values 
of � (left) and � (right).

Comparing the results for � and � provided important 
insight into the mechanism underlying bias due to the lack 
of a perseveration term. Regarding the parameter �, a fixed 
� value did not affect the magnitude of the estimation bias 
caused by the lack of perseveration term (see Fig. 11 left 
panel and compare � values between the M0 and M0_fixed 
� models). That is, when a model lacks a perseveration com-
ponent, the parameter � is directly negatively biased (i.e., 
to a lower value than the true value). On the other hand, 
regarding the parameter � , a fixed � value suppressed the 
estimation bias (see Fig. 11 right panel and compare the � 
values between the M0 and M0_fixed � models). That is, 

Fig. 10  Influence of the task settings on parameter estimation bias. 
The results for parameters � (left) and � (right). Simulated data were 
generated by tasks with different reward probabilities (50:50, 70:30, 
80:20, and 90:10) and reversal frequency (0, 1, 3) for the two pre-

sented options. The generative model was the M1m model, and the 
fitting model was the M0 model. Error bars indicate the standard 
errors of the mean
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the parameter � is positively biased (i.e., produces higher 
values than the true value), especially when the parameter 
� is a free parameter. This result suggests that the lack of a 
perseveration term indirectly biases � ; in other words, this 
absence first biases the estimation of � , and then the change 
in � leads to bias in the value of �.

A possible explanation as to why the lack of a persevera-
tion term first affects the � value is that lower values of � 
stabilize the option values, which can mimic the data charac-
teristics caused by the perseveration (i.e., repeating the same 
choice). However, small � values simultaneously reduce the 
absolute difference in option values. Therefore, increased � 
values may mitigate this reduction if � is also a free param-
eter (i.e., if the M0 model is used). In contrast, changes to 
the � value alone cannot mimic perseveration without the 
value stabilization provided by decreases in � values.

However, the parameter � is also directly positively 
biased in situations in which there is a clear better option 
(e.g., 90:10 reward probabilities) and the reward probability 
is stable over the trials (e.g., no reversal condition). In such 
a situation, perseveration, i.e., repetition of the same action, 
can be expressed by value-dependent choices. Thus, the lack 
of a perseveration term is complemented by increases in the 
� value. However, when the reward feedback is provided at 
random (e.g., 50:50 reward probability), the lack of a perse-
veration term is complemented by decreases in the � value.

Discussion

Abundant research has shown that RL models contribute 
to an understanding of basic features or abnormalities in 
human information processing. These advances are based on 
interpretations of model parameters. However, studies often 
neglect the possibility of model misspecification and/or lack 
information on parameter reliability, which can mislead 

interpretations. Regarding the problem of model misspeci-
fication, this study focused on a perseveration term, which 
incorporates the effect of choice history on decision-making 
processes. Our experimental data showed that participant 
choices are well captured by including this term. Further-
more, if the RL model fitted to the data lacks a persevera-
tion term, the value-calculation process results in undesir-
able estimation biases. Regarding reliability of RL model 
parameters, we conducted the same task twice with a 1.5-
month interval and found poor (e.g., learning rates) to mod-
erate (e.g., inverse temperature and perseveration strength) 
test–retest reliability and systematic changes reflecting the 
learning effect.

Parameter Estimation Bias in the RL Model Without 
a Perseveration Term

We showed that the lack of a perseveration term in an RL model 
leads to a decrease in the learning rate and increases in the 
inverse temperature. By examining models’ ability to predict 
and generate behavioral trends, we revealed that a model with-
out a perseveration term underestimated win-stay probabilities 
and overestimated loss-shift probabilities. Furthermore, the bias 
magnitude correlated with the intrinsic perseveration, i.e., the 
tendency to repeat actions, in the data. Thus, the lack of a per-
severation term can easily induce misinterpretations of param-
eters related to the value-calculation process. For example, 
consider a case where a group of depressed patients exhibits 
a lower perseveration tendency than a control group, although 
both exhibit equal value-based calculation. If researchers fit an 
RL model without a perseveration term, they will incorrectly 
find a lower inverse temperature in the patient group than the 
healthy group, which will lead to misinterpretations and may 
affect patient treatment. To prevent such misinterpretations, we 
recommend that analyses include a model with a perseveration 
term at least as a candidate for model comparison.

Fig. 11  Simulated estimation bias. The panels show the estimated 
values of � (right) and � (left) from the four fitting models: M0, M0_
fixed � , M0_fixed � , and M1m. The reward probabilities were 50:50, 

70:30, 80:20, or 90:10. The reversal frequency was set to 0, 1, or 3. 
Error bars indicate the standard errors of the mean
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In addition, our simulations showed that the underes-
timates of learning rates due to use of a model without a 
perseveration term are slightly stronger in stable conditions 
than in volatile conditions. This bias can mimic the previous 
finding of a higher learning rate in volatile conditions than in 
stable conditions (Browning et al., 2015; Pulcu & Browning, 
2017; Pulcu et al., 2019). Our experimental data replicated 
this finding when applying a model without a persevera-
tion term but not when applying a model with a persevera-
tion term. Therefore, part of the difference in learning rates 
attributed to volatility may actually be due to using a model 
without a perseveration term. This result occurred in our 
experimental data but does not immediately refute the pos-
sibility that volatility influences learning rates. For example, 
Gagne et al. (2020) used a model with a perseveration com-
ponent (a choice kernel) and still reported volatility-based 
learning rate adjustment. Using RL models with a persevera-
tion term in the future will help clarify the effect of volatility 
on learning rates.

Regarding the learning rates, it is also notable to men-
tion that our result was in accordance with positivity biases 
reported as learning rate asymmetry (Lefebvre et al., 2017; 
Palminteri & Lebreton, 2022; Palminteri et al., 2017a). 
Although original positivity bias in the RL model was 
defined as the asymmetric learning rates depending on the 
prediction error (more weight on positive prediction errors 
than negative prediction errors), our finding is about asym-
metric learning rates for win vs. loss domains. Despite these 
differences, our results supported a similar positivity bias in 
which positive outcomes are weighted more heavily. This 
was particularly evident in the model that included a perse-
veration term.

Using simulations, we also investigated the influence of 
task settings (such as reward probabilities and reversal fre-
quency) on estimation biases. The estimation biases were 
consistently high across all task settings, and setting dif-
ferences seemed to have negligible effects. However, these 
simulations had implications for appropriate task settings. 
For example, we found that estimation biases are slightly 
larger with random action-outcome contingencies but that 
when the action-outcome contingency is too extreme, even 
the model with a perseveration term showed estimation bias.

Possible Mechanism Underlying Estimation Bias

Our simulation results demonstrated that the lack of a per-
severation term directly affects the learning rate estimations 
but indirectly affects the inverse temperature estimations 
(although some of the bias is still caused directly). The 
mechanism underlying this pattern may be explained as fol-
lows. A lower learning rate, � , stabilizes the option values 
and their relative order. However, because the decrease in 
� reduced the differences among option values, the inverse 

temperature, � , was increased to enhance the impact of dif-
ferences among option values on the choice probability, 
which resulted in repeated selection of the same option (i.e., 
perseveration-like choices). On the other hand, increased � 
values alone cannot mimic action perseveration unless the 
value differences are stable (i.e., through decreases in �).

We also found a nuanced interaction of bias regarding 
learning rates. That is, the underestimation of learning rates 
is slightly greater in stable conditions than in volatile con-
ditions, leading to slightly larger learning rates in volatile 
conditions than in stable conditions (Fig. 9). The mecha-
nism underlying the interaction between the learning rate 
and block volatility observed in the model without a perse-
veration term can be explained as follows. In the WV block, 
pursuing win outcomes rather than avoiding loss outcomes 
produces perseveration-like behavior. This is because the 
win outcomes are highly likely to accompany one option, 
while the loss outcomes are randomly distributed between 
two options. The opposite is true in the LV block. Thus, 
as this task’s volatility was linked with its predictability, 
the learning rate for wins, �W , was higher in the WV block 
compared to the LV block, and the learning rate for losses, 
�L , was higher in the LV block compared to the WV block, 
thus mimicking perseveration-like behavior. As mentioned 
in the “Parameter Estimation Bias in the RL Model With-
out a Perseveration Term” section, this interaction produces 
a phenomenon in which volatility appears to influence the 
learning rate.

Disentangling the interaction between the model param-
eters and clearly explaining the mechanism underlying esti-
mation bias is not always straightforward. However, under-
standing both aspects is key to understanding the nature of 
bias; this knowledge could be applied to other bias problems 
that arise elsewhere. In addition, these findings provide hints 
toward the construction of appropriate models and appropri-
ate task settings.

Relationship Between Value Calculation and Choice 
Perseveration

A model-neutral analysis and the model comparison showed 
that both value-calculation and choice-perseveration pro-
cesses influence choices on the task. The effect of the for-
mer was significantly stronger than that of the latter. That is, 
there was a larger influence of inverse temperature, � , than 
the perseveration size, � , on decision-making. This finding 
is in accordance with that of Palminteri (2021), but as he 
also pointed out, the type of task used may influence which 
parameter has a larger impact on choices.

In addition, there was a strong positive correlation 
between � and � in our data. However, this correlation 
does not mean that the two parameters reflect the same data 
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characteristics. As mentioned in the previous section, the 
overestimation of � by a fitting model that lacked a perse-
veration component ( � ) was due to the indirect effect caused 
by the direct underestimation of � . This finding implies that 
the two parameters, � and � , capture different characteristics 
of the choice data.

Regarding the observed positive correlation between 
� and � , there are two possibilities: a pseudo correlation 
occurred in the estimation process and a reflection of a 
meaningful feature of human behavior in this kind of task. 
The former possibility can be refuted based on the results 
of parameter recovery where we could not find a positive 
correlation between � and � (on the contrary, there was a 
weak negative correlation). Thus, the second possibility is 
likely the case. We think the positive correlation is caused 
by the task structure. The current task is a kind of reversal 
learning task; thus, both the outcome-based value calcula-
tion and a period of repetition of the same choice led to 
better outcomes. Then, those participants who understand 
well the structure of the task probably showed higher � and 
� values and these parameters showed a positive correlation. 
This possibility is supported by the fact that both parameters 
were higher in time 2 where a learning effect from time 1 
might exist. The detailed analyses on this possibility are in 
the Supplementary text 3, Fig. S2, and Table S2.

Reliability Differences Between the Model 
Parameters

In our study, � and � showed better test–retest reliabilities 
and parameter recoveries than �W , �L , and � . These differ-
ences in parameter reliability possibly originate partly from 
the model structure. While � and � are the parameters that 
determine the weight of the specific information processes 
(value calculation and choice perseveration), �L , �W , and � 
are the parameters that modify the contents of these pro-
cesses. In an extreme example, if � and � were zero or very 
small, the values of the other parameters would not be mean-
ingful. Thus, the estimates of �L , �W , and � are inevitably 
noisier than those of � and � . A previous study reported bet-
ter parameter generalization for � than � after comparing the 
parameters among different tasks (Eckstein et al., 2022). We 
speculate that these generalization differences may be partly 
caused by the differences in parameter reliability.

There are studies that have examined the parameter 
stability of RL models using tasks relating to the current 
study. A study using probabilistic learning tasks (a two-
armed bandit and a reversal learning task) reported that 
the test–retest reliability of inverse temperature was better 
than those of the learning rates for gain and loss outcomes 
(Schaaf et al., 2023). Their study also parallels ours in its 
use of a large internet sample and a comparable interval 
between tests (5 weeks vs. 1.5 months). A study using a task 

to examine affective bias (the go/no-go task) also reported 
low test–retest reliability of a learning rate although it is 
not a main parameter of this task (Pike et al., 2022). On the 
other hand, Mkrtchian et al. (2023) reported generally good 
reliability including learning rates using a four-armed bandit 
task with win-and-loss outcomes in each trial as was used 
in the current task. The difference in the results of those 
studies and ours may be due to a different test–retest interval 
(2 weeks or 1.5 months) or trial length (200 or 100) as well 
as task, modelling, or parameter estimation methods. As a 
direction of future studies, it would be prudent to assess 
task-specific (additionally considering the difference in task 
settings, estimation methods, or interval lengths) reliability. 
Information on parameter reliabilities is important for dis-
cerning limitations in the interpretation of model parameters 
when models are applied to examine individual differences 
or used in the clinical field. It is also important to note dif-
ferences in parameter stability, as stable parameters may 
facilitate the detection of group differences or correlations 
compared to noisy parameters in some contexts.

Overall Reliability of Model Parameters

In a comparison with self-report questionnaires, the 
reliability of the model parameters was not as excel-
lent overall, consistent with a previous study (Enkavi 
et  al., 2019; Moutoussis et  al., 2018). It may reflect 
that variables from behavioral tasks have low between-
subject variability and high within-subject variability, 
compared with variables of self-report questionnaires 
(Enkavi et al., 2019). High within-subject variability 
of parameters may be partly explained by one’s mood 
varying over time (Schaaf et al., 2023). In addition, low 
accuracy in parameter recovery cause within-subject 
variability and put an upper limit on test–retest reliabil-
ity. In our study, parameter recovery, defined as corre-
lations between true and simulated values, was around 
0.7 (except for that of the perseveration strength, which 
was 0.9). There is a possibility that using a task with 
longer trials would improve parameter recovery. Sha-
har et al. (2019) reported fewer than 1000 trials were 
insufficient for recovery of their parameter of interest 
(as for our study, 100 trials were performed for model 
parameter estimations). Although task length depends 
on task difficulty and model complexity, it is often dif-
ficult to apply long tasks in experiments with human 
participants because participants may become bored and 
thus respond with random or fixed choices. In addition, 
if the task is intended to be used for clinical patients, 
shorter durations are desirable.

A solution that has received substantial attention in 
recent years is the use of other estimation methods, such as 
empirical priors (Gershman, 2016) or hierarchical Bayesian 
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techniques (Brown et al., 2020; Katahira, 2016; Piray et al., 
2019). Although the issue of shrinkage warrants caution 
when using these techniques (Scheibehenne & Pachur, 
2015), they have been shown to increase estimation accu-
racy and improve test–retest reliability. However, differ-
ences in estimation methods cannot always compensate for 
parameter estimation when the task design is a main cause of 
inadequate parameter reliability (Spektor & Kellen, 2018). 
Alternatively, the use of other information, such as choice 
reaction time, in parameter estimation may improve estima-
tion (Ballard & McClure, 2019; Shahar et al., 2019). The 
use of latent variables or factor scores from several tasks for 
examining the same cognitive function may also be a candi-
date solution to overcome the inherent inevitable noises in 
individual tasks (Friedman & Banich, 2019).

Learning Effect on Model Parameters

We found increments of the values of � and � at Time 2 reflecting 
a learning effect as discussed in the “Relationship Between Value 
Calculation and Choice Perseveration” section. The task used in 
the current study can be seen as a kind of reversal learning task. 
A reversal learning task is a typical task used with RL mod-
els but once the task is experienced, participants have a settled 
value-based strategy and random choices are reduced (reflected 
as larger � values). Participants also learn the approximate num-
ber of trials until reversal and notice that repeating one option and 
neglecting rare bad outcomes for a while are beneficial (reflected 
as larger � values).

It would be noted that such a learning effect should be a 
limitation of using the RL parameters as trait-like indices. 
These features of model parameter possibly occur in other 
learning tasks and are sometimes inevitable. They should be 
considered in assessments of parameter stability and in the 
use of model parameters to assess cognitive function.

Limitation

This study assessed the effect of model misspecification on 
model parameters and the reliability of model parameters. How-
ever, a proper computational model may change depending on 
the task and the same model parameters may show different lev-
els of stability under different parameterization. For example, the 
current model formalized the processing of learning from dicho-
tomic outcomes. This is an advantage of model simplification 
by neglecting flexible human valuation processing for various 
magnitudes of feedback. However, the results may change if a 
researcher is interested in another task that has various outcome 
magnitudes or another environment with different volatility.

It would be necessary to obtain information about what 
causes model reliability differences and to understand pos-
sible adverse effects of model misspecification for proper 

use of computational models as a tool to detect individual 
differences in cognitive function, track changes under 
development, and characterize mental illnesses.

Conclusion

In this study, we first clarified the estimation biases on learn-
ing rates and inverse temperature in a model without a per-
severation term and its mechanism. Our findings showed that 
these biases were strong and could easily distort study con-
clusions. When the data are partly characterized by repeti-
tion of the same actions, independent of outcome history, we 
recommend using a model with a perseveration term. Second, 
we provided information about model parameter reliability. 
The test–retest reliability varied with model parameters, and 
that of the learning rates was worse than that of the inverse 
temperature. Also, some parameters showed a learning effect 
with an increment of the estimates in the second session. We 
recommend bearing in mind that parameter stability limits 
the study conclusions that can be drawn from the values of 
the parameters.

The simple truth is that a computational model is a 
hypothesis of information processing; thus, it inevitably 
possesses some level of estimation bias and noise. We 
believe that understanding possible estimation biases 
in parameters due to model misspecification as well as 
assessing and attempting to improve parameter reliabil-
ity are necessary steps to deriving computational models 
that accurately describe individual differences and provide 
meaningful and profound insights.
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