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Abstract
Despite advances in techniques for exploring reciprocity in brain-behavior relations, few studies focus on building
neurocognitive models that describe both human EEG and behavioral modalities at the single-trial level. Here, we introduce
a new integrative joint modeling framework for the simultaneous description of single-trial EEG measures and cognitive
modeling parameters of decision-making. As specific examples, we formalized how single-trial N200 latencies and centro-
parietal positivities (CPPs) are predicted by changing single-trial parameters of various drift-diffusion models (DDMs). We
trained deep neural networks to learn Bayesian posterior distributions of unobserved neurocognitive parameters based on
model simulations. These models do not have closed-form likelihoods and are not easy to fit using Markov chain Monte
Carlo (MCMC) methods because nuisance parameters on single trials are shared in both behavior and neural activity. We
then used parameter recovery assessment and model misspecification to ascertain how robustly the models’ parameters can
be estimated. Moreover, we fit the models to three different real datasets to test their applicability. Finally, we provide
some evidence that single-trial integrative joint models are superior to traditional integrative models. The current single-trial
paradigm and the simulation-based (likelihood-free) approach for parameter recovery can inspire scientists and modelers to
conveniently develop new neurocognitive models for other neural measures and to evaluate them appropriately.

Keywords Model-based cognitive neuroscience · Integrative joint modeling · Neurocognitive modeling ·
Electroencephalography (EEG) · Single-trial EEG analysis · Deep learning

Introduction

Recent decades have seen a remarkable growth in the devel-
opment of both the fields of mathematical psychology
and cognitive neuroscience to interpret and predict cogni-
tion from behavioral and brain data (Usher & McClelland,
2001; Brown & Heathcote, 2008; Ditterich, 2006; Gold &
Shadlen, 2007; Drugowitsch et al., 2012; Turner et al., 2013;
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Ratcliff et al., 2016). In particular, neurocognitive theo-
ries of perceptual decision-making have been proposed to
explain how evoked electroencephalography (EEG) mea-
sures and behavioral data from experiments result from the
specific time course of visual encoding, evidence accumu-
lation, and motor preparation (O’Connell et al., 2012a; van
Ravenzwaaij et al., 2017; Nunez et al., 2019; Lui et al.,
2021). Models derived from these theories can then be fit to
data and predict and explain both evoked EEG and behav-
ioral data. These neurocognitive models utilize trial- or
individual-level signatures of EEG or magnetoencephalog-
raphy (MEG) signals to assess, constrain, replace, or add
cognitive parameters in models (Nunez et al., 2017; 2022).
Moreover, Turner et al. have proposed many approaches
for directly or indirectly relating neural data to a cognitive
model; for instance, the field of model-based cognitive neu-
roscience has used BOLD responses and EEG waveforms
simultaneously and separately to predict and constrain cog-
nitive parameters and behavioral data (Turner et al., 2013,
2016, 2019; Bahg et al., 2020; Kang et al., 2021). Also,
Nunez et al. have introduced some neurocognitive models
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to study the effect of selective attention, the role of
visual encoding time (VET), and the relationship of readi-
ness potentials (RPs) in motor cortical areas to evi-
dence accumulation during perceptual decision-making
tasks (Nunez et al., 2017, 2019; Lui et al., 2021). Fur-
thermore, Ravenzwaaij et al. have suggested an explicit
and confirmatory model that reveals that the drift rate
parameter can describe simultaneously the behavioral
data and the neural activation in a mental rotation task
(van Ravenzwaaij et al., 2017).

Motivation

Are EEG measures able to track parameters of sequen-
tial sampling models? Sequential sampling models (SSMs),
especially drift-diffusion models (DDMs), assume that
human and animal decision-making are based on the inte-
gration of evidence over time which reaches a specific
threshold. The accumulation and non-accumulation param-
eters for a decision are usually measured by the firing
rate of neurons and ERP signatures (O’Connell et al.,
2018). Even though some joint models incorporate neu-
ral dynamics in classical DDMs, only some models have
been developed that consider EEG signatures as a partic-
ipant response similar to reaction time (RT) and accuracy
(van Ravenzwaaij et al., 2017). There are however many
studies linking event-related potential (ERP) components
and behavioral performance (O’Connell et al., 2012a; Gluth
et al., 2013; Philiastides et al., 2014; Loughnane et al.,
2016), as well as using EEG to constrain models’ param-
eters at the level of the experimental trial (Frank, 2015;
Nunez et al., 2017; Ghaderi-Kangavari et al., 2022). Mod-
els should be further developed that explain ERP data at
the trial level with generative models similar to response
times (RTs) and accuracy. Therefore, there is an impetus
to build a few of these models, develop associated model
fitting procedures, and then assess the idealized models
to test how robustly their parameters can be estimated.
In this paper, we introduce some practical models and
model fitting procedures which will help researchers in the
field of cognitive neuroscience to make better inferences
about individual differences and trial-to-trial changes in
neurocognitive underpinnings during perceptual decision-
making tasks. These new neurocognitive models are advan-
tageous compared to the traditional models. The benefits of
these models and model-fitting procedures are listed in two
categories.

First, we used model-fitting procedures that estimate
posterior distributions through invertible neural networks
(INNs). In particular, we used a new method named BayesFlow
https://github.com/stefanradev93/BayesFlow; (Radev et al.,
2020a). This allowed us to flexibly test complex models
of joint data without solving for closed-form likelihoods,

as well as test models that have no closed-form likeli-
hood. Specifically, we used BayesFlow to apply amortized
deep learning to build networks that quickly estimate poste-
rior distributions of complicated and likelihood-free models
rather than applying case-based inference. Note here that the
training of neural networks did depend on particular types
of prior distributions, similar to other Bayesian workflows,
and we felt that uniform distributions can be a good option
for generating sample parameters. After training, these pos-
terior approximators can be widely shared and applied
because they require less knowledge of computational and
model fitting procedures rather than Markov chain Monte
Carlo (MCMC) methods, non-amortized simulation-based
methods, and other amortized Bayesian inference methods
(Turner & Sederberg, 2012; Gelman et al., 2014; Lueck-
mann et al., 2019; Hermans et al., 2020; Turner & Van
Zandt, 2012; Fengler et al., 2021). These posterior approx-
imators still allow the estimation of full posterior distribu-
tions instead of summary statistics of the posterior (e.g.,
posterior mean or mode). The BayesFlow method has been
recently modified to distinguish correct posterior distribu-
tions from posterior errors when there are some deviations
between the assumed (simulated) model and the true model
that generated the observed data, a situation known as model
misspecification (Schmitt et al., 2021). This advantage is
mostly due to the use of the summary network, which usu-
ally obtains the most important information and helps to
detect the presence of unexpectedly contaminated data or
misspecified simulators (i.e., simulation gaps). We endeav-
ored to manage contaminated behavioral and neurological
data by building some neurocognitive models which contain
explicit mixtures of contaminants. For instance, the mixture
model of a DDM model and a lapse process (uniform distri-
bution) can be a good option to handle contaminated behav-
ioral data (Ratcliff & Tuerlinckx, 2002; Nunez et al., 2019).

The second category of benefit is that these models
explain EEG as single-trial-dependent variables. For exam-
ple, specific models can generate event-related potential
(ERP) latencies or ERP waveform shapes (ERPs explained
below) in addition to RT and accuracy data from latent cog-
nitive parameters. Some of these models separate visual
encoding times (VETs) from other non-decision times (see
Fig. 1), while some of these models also predict contami-
nants (e.g., “lapse” trials) in EEG measures and behavioral
performance. Other models constrain evidence accumula-
tion rate (i.e., drift-rate) parameters to make better param-
eter estimates (see Fig, 1). With these models, we can test
research questions about correlates of behavioral perfor-
mance and neural data (e.g., O’Connell et al., 2012a, Nunez
et al., 2019, 2022), new research questions (such as about
spatial attention, see Ghaderi-Kangavari et al., 2022), and
explain and predict ERP measures jointly with behavioral
measures. Another benefit is that these models are mea-
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surement models in that the estimated parameters reflect
interpretations of cognitive processes. Finally, these models
are easily extendable, such as similar models with linear and
non-linear collapsing boundaries (Evans et al., 2020b; Voss
et al., 2019).

Single-Trial ERP Analysis

EEG activity time-locked to particular events in an exper-
imental task and averaged-across trials, i.e., event-related
potentials (ERPs), have been frequently utilized as a pow-
erful method in the past century to study both clinical and
research applications such as the information processing
in the brain, biomarkers for a variety of disorders, neu-
ral mechanisms involving cognitive processes, highlighting
differences in brain activity, prediction of future cognitive
functioning, identifying cognitive dysfunction, individual
differences, etc. (Philiastides et al., 2006; Cavanagh et al.,
2011; Luck, 2014; Zwart et al., 2018; Manning et al., 2022).
Some advantages of using ERPs over other EEG measures
include as follows: enhancing signal-to-noise ratios, less
variance across conditional manipulations, and decreased
type II errors (Luck, 2014; Luck et al., 2000). However,
some disadvantages of trial-averaged ERPs are that: a large
number of participants are needed to achieve robust infer-
ences, there is a loss of abundant information contained in
EEG across trials, and it is difficult to use ERPs to constraint
cognitive models to estimate parameters within-trials. Nev-
ertheless, correlation and multiple linear regression methods
on the individual level have been crucial parts of anal-
ysis for researchers who assessed statistical relationships
between models’ parameters, ERPs components, and behav-
ioral performance (Nunez et al., 2015; Schubert et al., 2019;
Clayson et al., 2019; Manning et al., 2022). In fact, the two-
stage inference is a statistically attenuated approach because
parameters are estimated, and then their summary mea-
sures are put into a regression model, resulting in missing
information.

Improving upon the aforementioned disadvantages of
trial-averaged ERPs, ERPs can also be measured on
single trials under certain conditions (Nunez et al., 2017;
Bridwell et al., 2018). Single-trial ERPs can help the
neurocognitive models estimate and restrict cognitive
parameters simultaneously because of fluctuations in
cognition across experimental trials (Nunez et al., 2017).
However, one of the main difficulties in using single-
trial ERPs is the amount of noisy information due
to artifacts (electromyographic—EMG—signals, electrical
noise, and other unrelated brain activity). Therefore, modern
techniques are required to discard irrelevant information
and amplify relevant cognitive activity. In general, there
are two approaches to extracting single-trial ERPs: manual
and automatic. Using the manual method, researchers

might spatially average single-trial EEG waveforms across
electrodes in occipital, occipito-parietal, motor regions,
etc. However, using an automatic method, researchers
can apply machine learning approaches to identify linear
spatial weightings to generate a single waveform, such
that this single waveform contributes to the activity of
many electrodes. One example is to find single-trial
ERPs using a weighted map resulting from singular value
decomposition (SVD) of the traditional trial-averaged ERPs
at every electrode. This procedure has been successful in
our previous work (Nunez et al., 2019; Ghaderi-Kangavari
et al., 2022). In other work, a single-trial multivariate linear
discriminant analysis (LDA) has been used to determine
linear spatial weightings of the EEG electrodes for maximal
discrimination of target (faces) and non-target (cars) trials
during a simple categorization task (Philiastides et al., 2006;
Diaz et al., 2017).

N200 Latencies Can Reflect Visual Encoding Time

Estimating the time of visual encoding for perceptual
decision-making is challenging because it depends on
distinct variables, for instance: uncertainty of stimuli, target
selection, and figure-ground segregation (Lamme et al.,
2002; Loughnane et al., 2016). Consequently, researchers
have reported on the verity of time to encode visual
stimulus, and this research has converged on a specific
window of latency. We first review the previous literature on
visual processing and then the specific literature related to
decision-making.

Note that encoding for some emotional and threatening
stimuli project to the amygdala nuclei, and thus visual
encoding of these stimuli are expected to take a little
time to make innate and unconscious reaction (Tamietto
& De Gelder, 2010; Baars & Gage, 2013). In this work,
we are concerned with stimuli where the mechanism of
visual encoding is the transmission of information through
the LGN of the thalamus to the primary visual cortex,
and involves a different network to further process visual
information (Baars & Gage, 2013; Hall & Hall, 2020).
The visual path has a long way to go, and it takes a little
longer than the auditory pathway. The C1 (60–80 ms),
P100 (around 100 ms, also known as the P1), and N200
(120–180 ms, also known as the N1) are exogenous ERP
waves over the visual cortex that are thought to reflect
sensory stages of processing visual stimuli; such that the
C1 wave is not manipulated by attention, and both P100
and N200 peaks were manipulated by attention and visual
perceptual learning (Cobb & Dawson, 1960; Clark et al.,
1994; Luck et al., 2000; Ahmadi et al., 2018). The N200
latency component between sessions correlates negatively
with behavioral improvement in a texture discrimination
task (Ahmadi et al., 2018). Di Russo et al. showed by
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Fig. 1 A theoretical presentation of novel neurocognitive models for
the study of human cognition that explain single-trial neural activities
and behavioral data simultaneously. Three types of decision bound-
aries (static, linear collapsing, and Weibull collapsing) have been used
to design neurocognitive models. Single-trial EEG, such as single-trial
event-related potentials (ERPs) from the occipito-parietal area, can be
explained by these joint models; for example, N200 latencies (blue
line) and centro-parietal positivities (CPP) (green line). These data
constrain and predict latent parameters. Distributions of behavioral
performance such as RT and choice for correct and error are displayed

on both sides of the two choice boundaries. Latent parameters of the
DDM are also displayed, which reflect N200 latencies and CPP slopes.
Prior evidence has found that N200 waveforms track visual encoding
time (VET) and the onset of evidence accumulation (Loughnane et al.,
2016; Nunez et al., 2019). Moreover, P300 or CPP slope are assumed
to account for the accumulation time rather than non-decision time and
possibly reflect the mean of drift rate (O’Connell et al., 2012a). The
minimum N200 waveform has initiated the onset of the evidence accu-
mulation as well as the P300/CPP slope is similar to the mean slope of
the evidence accumulation

studying ERPs and the combination of structural and
functional magnetic resonance imaging (fMRI) that the
spatio-temporal patterns of the calcarine sulcus, primary
visual cortex, extrastriate and occipito-parietal activities
were in the latency range of 80–225 ms in response to flash
stimuli (Di Russo et al., 2003).

We define visual encoding time (VET) as the time
between the onset of stimuli and the relative starting of
the evidence accumulation process (Nunez et al., 2019).
VET is thought to take place sequentially before, not
in parallel to, the accumulation process (Weindel, 2021).
This is not necessarily true for all cognitive components
in decision-making; for instance, there is evidence to
suggest that motor planning evolves concurrently with the
evidence accumulation process (Dmochowski & Norcia,
2015; Servant et al., 2015, 2016; Verdonck et al., 2021).
Researchers proposed that the process of VET can be
completed from 150 ms to 225 after the appearance of
stimulus (Thorpe et al., 1996; VanRullen & Thorpe, 2001;
Nunez et al., 2019). Shadlen et al. demonstrate that the
evidence accumulation from the lateral intraparietal area
(LIP) begins at around 200 ms after the onset of random
dot motion with difference phase coherence (Roitman &
Shadlen, 2002; Kiani & Shadlen, 2009; Shadlen & Kiani,

2013). In addition, Thorpe et al. revealed that the visual
processing demanded a go/no-go categorization task can be
reached around 150 ms after the onset of stimulus (Thorpe
et al., 1996). Furthermore, Nunez et al. found evidence
that the latency of the negative N200 between 150 and
275 after stimulus onset in the occipito-parietal electrodes
reflects the VET needed for figure-ground segregation
before the accumulation of evidence (Nunez et al., 2019).
Finally, Ghaderi-Kangavari et al. used hierarchical Bayesian
models that included single-trial N200 latencies to identify
the effects of spatial attention on perceptual decision-
making and found evidence that perceptual decision-making
manipulates both VET before evidence accumulation and
other non-decision time process after or during evidence
accumulation (Ghaderi-Kangavari et al., 2022).

Centro-parietal Positivities Can Reflect Evidence
Accumulation

Analogous to well-known findings of invasive single
cell recordings that identified markers of how animals
accumulate information to make perceptual decisions
(Shadlen & Newsome, 2001; Roitman & Shadlen, 2002;
Gold & Shadlen, 2007; Shadlen & Kiani, 2013; Kiani
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& Shadlen, 2009; Jun et al., 2021), some researchers
have shown that non-invasive EEG recordings can also
describe how humans accumulate information towards a
specific bound to make a decision (Kelly & O’Connell,
2013; O’Connell et al., 2012a, 2018). O’Connell et al.
discovered an ERP signiture called the centro-parietal
positivity (CPP) identifying a build-to-threshold decision
variable (O’Connell et al., 2012a). They also clarify that
the CPP evoked by gradual decreases in the contrast
of stimuli is highly correlated to the classic P300 peak
elicited by invariant contrast of targets. In addition, the
P300/CPP dynamic taken from three electrodes centered
on CPz, the standard site for the P300, can predict both
timing and accuracy of perceptual decision-making in
humans (O’Connell et al., 2012a; Kelly & O’Connell, 2013;
McGovern et al., 2018). On the other hand, Loughnane
et al. showed that a pair of early negative deflections
at lateral occipito-temporal sites around 200 ms after
stimulus appearance can influence the onset of the centro-
parietal positivity (CPP) during a random dot motion task
(Loughnane et al., 2016). In summary, researchers have
shown that the CPP steadily increases at a certain rate and
is assumed to reflect the integration of evidence to reach a
particular peak at the time of response execution (O’Connell
et al., 2012a; Kelly & O’Connell, 2013). It should be noted
that the drift rate in drift-diffusion models (DDMs) is the
mean rate of evidence accumulation. Therefore, the slope of
the CPP can be assumed to be related to the drift rate (Nunez
et al., 2022), which is line with previous findings (Ratcliff
et al., 2009; Philiastides et al., 2014; van Ravenzwaaij et al.,
2017).

Simulation-Based Approaches

Neuro-cognitive models that describe both brain and
behavior could have complicated non-linear relationships
between parameters. In order to obtain estimates (or
full posterior distributions p(�|X)) of parameters of
neurocognitive models, component likelihood functions
L(�|X) (or the probability density of the data given the
parameters p(X|�)) can be derived to fit models using
maximum likelihood estimation (MLE) or MCMC methods.
However, in this paper, we will present plausible single-trial
integrative joint models for which the component closed-
form likelihoods are complicated, necessitating clever
mathematical derivations to derive component likelihoods,
if they are even tractable, i.e., possible to derive analytically.

Rejection-based approximate Bayesian computation
(ABC) is an alternative to the calculation of likelihood func-
tions with models only based on simulation (Csilléry et al.,
2010; Turner & Van Zandt, 2012; Sunnåker et al., 2013).
Rejection-based ABC algorithms estimate posterior distri-
butions by taking proposal samples from a prior distribution

θi ∼ p(θ) and then generating an artificial dataset from the
estimator model called the forward model xi ∼ p(x|θi) for
xi = 1, . . . , N . If the artificial dataset is close enough to
the observed dataset by a tolerance (ε), the sample (θi) is
chosen as a sample of the posterior (Csilléry et al., 2010;
Klinger et al., 2018). One can use a sufficient statistic
S(.) to summarize both artificial and observed data before
comparing them (Palestro et al., 2018b). However, suffi-
cient statistics are hard to obtain for complex models with
intractable likelihoods, and using insufficient statistics may
incur significant approximation error.

The pass/fail rule of rejection-based ABC is simple to
implement but does not optimally use all simulated data,
therefore kernel-based ABC algorithms can be an effective
alternative (Turner & Sederberg, 2012). Moreover, synthetic
likelihood methods and probability density approximations
have been used as likelihood-free algorithms to fit mech-
anistic models to observed data (Wood, 2010; Turner &
Sederberg, 2014; Palestro et al., 2018b). Both rejection-
based methods need to include predetermined tolerance
thresholds and the distributions of sufficient summary statis-
tics, while synthetic likelihood methods and probability
density approximation are computationally costly. Further-
more, these kinds of approaches have been identified as
performing case-based inference which has a few draw-
backs, such as expensive computations, inability to gen-
erate effective samples from posterior distributions, only
approximating posteriors for specific data, and sensitivity to
tolerance values.

Amortized Bayesian approaches are alternative methods
to approximate joint posterior distributions, which can
be applied quickly to new data. These methods also
use simulated data for training. However, this training
step is not necessary for each new dataset. For instance,
some researchers have used masked autoregressive flows
(Papamakarios et al., 2019) and probabilistic neural
emulator networks (Lueckmann et al., 2019) to learn
approximate likelihoods L(�|X) rather than instantaneous
posterior distributions p(�|X). Moreover, Hermans et al.
(2020) introduced a likelihood-to-evidence ratio estimator
to compute an approximation of acceptance ratios in
MCMC in order to draw posterior samples rather than
evaluating the likelihood directly. Fengler et al. (2021)
focused on two classes of architectures, multilayered
perceptrons (MLPs), and convolutional neural networks
(CNNs), to approximate likelihoods as well as estimate
cognitive models with varying trial numbers. In this
workflow by Fengler et al. (2021), two different posterior
sampling methods, MCMC and importance sampling,
are used for taking samples from posterior in each
iteration. Estimating summary measures of the posteriors
by constructing new artificial architectures for Bayesian
inference can be useful for many research topics. These
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methods include as follows: fully convolutional neural
networks as end-to-end architecture (Radev et al., 2020b),
deep neural networks (Jiang et al., 2017), autoencoders
(Albert et al., 2022), ABC random forests (Raynal et al.,
2019), and different approaches to approximate likelihood
and posteriors (Cranmer et al., 2020).

Radev et al. (2020a) have proposed a novel pathway
to find posterior distributions using neural networks for
globally amortized Bayesian inference. They proposed a
fitting procedure with two neural networks: a summary
network and an invertible neural network (INN). INNs are
neural network architectures in which the mapping from
input to output can be efficiently reversed (Ardizzone et al.,
2018), while permutation-invariant summary networks
are responsible for summarizing the independent and
identically distributed (i.i.d.) observation datasets with a
fixed-size vector automatically. The summarized data and
the true posteriors are then transformed directly through
an INN in the training phase into a simple latent space
(e.g., Gaussian). This network is trained to learn simulated
parameters, and then in the inference phase can then be
inverted to estimate the joint (and marginal) posteriors.
These networks are used to estimate posteriors in two main
phases: a relatively expensive training phase and a very
cheap inference phase (Radev et al., 2020a). Many of the
models we propose in this paper fit with the procedure
by (Radev et al., 2020a), although the models could also
conceivably fit with other methods, such as that proposed
by (Fengler et al., 2021) in the future.

Types of Joint Models

There are several strategies to link brain-behavior rela-
tionships in modeling (Turner et al., 2017; Palestro et al.,
2018a). However, only two general strategies are relevant to
our work. Directed and integrative models have been inves-
tigated to relate both unobserved parameters of behavior
and the brain, and these models could either be employed
for each participant or each experimental trial (see Fig. 2 to
visualize modeling strategies relevant to our work).

In directed joint modeling, one assumes connections
directly between EEG measures, denoted φ, and cognitive
parameters, denoted θ , that explain behavioral data (Turner
et al., 2019). This connection is usually applied via a linking
function. For instance, the linking function could be an
embedded regression model. Note that a regression model
the linking function allows EEG measures to be on any
non-standardized scale for mapping from φ to θ (e.g., in
the original scale of milliseconds for N200 latencies or
micro-volts μV per second for CPP latencies). Directed

neurocognitive models have been successfully used for
studying the effect of visual attention, noise suppression,
and spatial attention in perceptual decision-making tasks
(Nunez et al., 2017, 2019; Ghaderi-Kangavari et al., 2022)
as well as deployed to answer any other questions in related
to the cognitive control of single-trial EEG in decision-
making (Wiecki et al., 2013; Frank, 2015; Yau et al., 2021).
Note that directed joint models can often produce better
estimate parameter relationships between EEG measures
and cognitive parameters than other methods because these
models fit in a single step, as opposed to methods that
fit cognitive models and linear regression sequentially
(Ghaderi-Kangavari et al., 2021). However, while directed
models are extremely useful for discovering the relationship
between EEG data and cognition in exploratory research
(Nunez et al., 2022), directed models can neither easily
explain nor predict EEG data.

Integrative joint models describe, predict, and constrain
both behavioral and EEG data simultaneously (Palestro
et al., 2018a; Nunez et al., 2022). These models also
allow us to fit models closer to the theoretical process
models suspected to underlie both data types, as well
as include computational parameters of EEG measures
that are sometimes not necessarily tied to cognition. In
this investigation, we focus on parameter recovery and
robustness of novel integrative neurocognitive models to
predict data on individual experimental trials. As a result,
the models make both EEG measures (N200 and CPP)
and behavioral data (RT and accuracy) explainable and
predictable at the single-trial level.

Integrative model specification and formalization can
explicitly reflect our understanding of cognition. So, dif-
ferent mathematical models can represent different theo-
ries of cognitive processes. Thus, another reason to model
neurocognitive theory is to help understand the possible
relationships between the brain, cognition, and behavior
that can then be compared to data and tested in exper-
imentation (Guest & Martin, 2021; Nunez et al., 2022).
Therefore, the models presented here can help researchers
who want to understand human cognition using EEG signals
and behavioral data. Specifically, researchers can consider
these models in terms of underlying neurocognitive the-
ory, find parameter estimates of these models and compare
them across experimental conditions and participants, and
also compare models to find evidence for the most reason-
able theory. We also believe the current approaches will be
highly beneficial when applied to animal studies and when
extended to other electrophysiology (e.g., single-unit and
LFP data). Extensions of these models and simulation-based
model fitting procedures can be easily applied in the future.
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Fig. 2 Graphical models of a directed joint models, b a common inte-
grative joint model, and c the single-trial integrative joint model. These
graphical models represent approaches for linking EEG and behavioral
data. These figures follow standard graphical model notation (Lee,
2014; Palestro et al., 2018b) with one new notation addition for c.
Observed data are represented by shaded nodes, where node Z is the
EEG data and node X is the behavioral data. Unobserved variables
are represented by unshaded nodes. Nodes � are vectors of param-
eters that represent cognitive variables that describe both EEG and
behavioral data. Nodes � are vectors of computational parameters that
only describe EEG data. Nodes � are vectors of cognitive param-
eters that only describe behavioral data. The double-bordered node

in the directed model (a) refers to parameters that are not estimated
and deterministic, such that their posterior distributions can be derived
directly from posterior distributions of other parameters. The shaded
double-bordered node in the single-trial integrative model (c) refers
to parameters that are not necessarily estimable and are stochastic in
simulation. It means that the posterior of the mentioned node must be
estimated if we use closed-form likelihood approaches, but there is no
need to estimate if we use a simulation-based approach. The plates
that border the nodes represent replication over each trial i. Note that
there are two differences between a and c: the changing direction of
the arrow between Z and �, and the nature of the � node

Mathematical Models for Neurocognitive
Theory

We propose several neurocognitive models that reflect
certain hypotheses and can be used to analyze data and
answer research questions. These types of models can be
considered integrative approaches to joint modeling (Turner
et al., 2019). Specifically, they provide an architecture to
apply behavioral and neural responses simultaneously at
the single-trial level. These models also serve as examples
and modeling architecture for psychological, cognitive, and
neuroscience researchers who plan to construct explicit
statistical models to connect data with theory.

From a methodological point of view, after formalization
of these models, we implement them as simulation for
a range of realistic parameter values (draws from prior
distributions), and then submit these simulations through
the BayesFlow Python pipeline to train INNs that yield
samples from the parameter’s posterior distributions given
any observed data set. We then test the robustness of the
model fitting. We also provide saved fitted models, e.g.,
checkpoints in BayesFlow, of each trained model to be
applied in a fast and single step on new data.

A General Framework for Integrative Joint Models

As mentioned before, in the following we propose a few
models particular to the study of decision-making using
single-trial EEG, response times, and choice data. However,
our proposed models in this paper could be considered a
part of a general framework to describe and predict single-
trial EEG/behavior relationships. These models can be

considered true integrative models as previously discussed.
An important point to note here is that while known joint
likelihood functions and approximations exist for choice-
RTs (Tuerlinckx, 2004; Wagenmakers et al., 2007; Navarro
& Fuss, 2009), and common likelihood functions exist
that can be applied to single-trial EEG data (such as the
Normal distribution), known joint likelihoods that describe
all three data types on single trials do not exist. In such
cases, joint likelihoods are likely necessary to estimate
the parameters of these models using MCMC algorithms.
However, the primary model-fitting technique we used for
this work, BayesFlow, depends only upon being able to
simulate the model. We can therefore express each model as
a series of prior distributions and simulation equations from
conditional probability distributions.

The general form to describe (joint) behavioral data X
and neural data Z with shared latent single-trial cognitive
parameters � is the following, with i being the index for
one experimental trial, prior indicating a prior distribution,
and sim indicating a simulation block:

(�, �, �)
prior∼ K, (1a)

�i
sim∼ H(�), (1b)

Xi |�i
sim∼ F(�i, �), (1c)

Zi |�i
sim∼ G(�i, �). (1d)

where K is the joint prior probability density over all non-
single trial parameters, H is the marginal probability density
function describing latent single-trial cognitive parameters,
F is the probability density function of behavior conditional

323



Computational Brain & Behavior (2023) 6:317–376

on latent single-trial parameters, and G is the probability
density function of EEG conditional on latent single-trial
parameters. Note that the three simulation blocks could
be considered as simulations from one joint likelihood
(Xi ,Zi ) ∼ J (�, �, �). However, it is often useful to
think about three simulation blocks that share parameters
instead, for example, to connect non-joint models developed
in mathematical psychology and cognitive neuroscience.
Here it is worth considering that behavioral parameters
�, EEG measurement parameters �, and shared cognitive
parameters � can be estimated by BayesFlow under certain
conditions for identified models, as we show later in this
paper. Meanwhile, the issue to be highlighted here is
that single-trial cognitive parameters �i often cannot be
estimated. However, using BayesFlow, estimation of �i

is not necessary because we can simulate �i using the
� parameters without needing to directly estimate �i nor
treating �i as observed data.

These models can be fit to data using MCMC algorithms
under certain conditions. The true joint likelihood of
(Xi ,Zi ) must either be solved analytically by integrating
out the so-called nuisance parameters � or approximated
via estimation algorithms (Fengler et al., 2021) before
sampling. Note however that sampling statements similar
to the equations above written in programs such as
JAGS (Plummer, 2003) and Stan (Carpenter et al., 2017),
programs that fit MCMC models from a language of
distributional sampling statements, will attempt to find
posterior distributions for the nuisance parameters �i for
every trial i. For instance, a similar model with likelihoods,
priors, and hyperpriors is fundamentally different in that
the density H is no longer assumed as part of the assumed
model and instead reflects a prior belief about each single-
trial parameter:

(�, �, �)
hyper∼ K, (2a)

�i

prior∼ H(�), (2b)

Xi |�i
lik∼ F(�i, �), (2c)

Zi |�i
lik∼ G(�i, �). (2d)

These similar models with priors for every trial do
not easily converge to solutions due to a large number
of parameters compared to data observations. Note also
that the prior shape for single-trial parameters �i in these
models are influenced both by the functional form of H
as well as the uncertainty of the hyperparameters �, while
the models above have only an assumed probability density
function H as part of the assumed joint density. Therefore,

these are similar, but different, models (Gelman et al., 2014;
Merkle et al., 2019).

As a consequence, a fixed probability distribution
H must often be assumed that cannot result in a
new hierarchical posterior distribution for the nuisance
parameters �i on every trial. This could be considered
analogous to certain problems in decision-making models
of behavior. For instance, a normal distribution for trial level
drift rates δi is often assumed in DDMs (Ratcliff et al.,
2016). Single-trial drift rates δi as nuisance parameters in
this example are analogous to the single-trial �i nuisance
parameters in our framework. In order to estimate across-
trial drift-rate variability parameters η with MCMC (and
many other parameter estimation techniques), the trial-
specific drift-rate parameter δi must be integrated out of
the likelihood function, instead of estimating posterior
distributions for each trial’s drift rate (Tuerlinckx, 2004;
Ratcliff et al., 2016; Shinn et al., 2020). In these appropriate
MCMC procedures and BayesFlow, single-trial drift rates
are not estimated for every trial. However, integrating out
this parameter is not necessary with BayesFlow because the
entire model is instantiated in simulation.

Another similar model framework would be one in which
there is no nuisance parameter �i that varies over single
trials, but that both EEG and behavioral model likelihoods
(F and G) share some common parameters � and both
predict single trial data. These are models that can be fit
in using MCMC procedures, and similar joint models of
EEG and behavioral data have been proposed (Nunez et al.,
2022):

(�, �, �)
prior∼ K, (3a)

Xi
lik∼ F(�, �), (3b)

Zi
lik∼ G(�, �). (3c)

However, the key difference between this model frame-
work and our proposed model framework is that the single-
trial data is completely independent. That is, the same
parameter estimates will result from a random permutation
of the single-trial index i for EEG data Z if the single-trial
index of behavioral data X remains the same. This essen-
tially implies that the EEG data and behavioral data in these
traditional integrative models are not assumed to be related
on single-trials. This is not true of our proposed models
which share a joint (estimated) likelihood on the single-
trial level. A random permutation of EEG data will result
in different parameter estimates in our framework. We will
show later that these parameter estimates are intuitive in
our specific models, and that the true relationship between
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behavioral data X and EEG data Z can also be assessed with
our modeling framework.

Assuming Two Sources of Variance in Single-Trial
EEG

In directed models, it is intrinsically assumed that the
independent variable, the EEG measure Z, is a perfect
descriptor of the true neural signal (see Fig. 2). However,
for most electrophysiology and brain imaging, a perfect
measure of the brain is unrealistic. This is especially true
for EEG where derived measures of EEG are expected
to be influenced by muscle and electrical artifacts, even
when the measure of EEG is somewhat robust to artifact
(Nunez et al., 2016). While other forms of integrated
neurocognitive models could be beneficial for studying
human cognition (see Appendix), the key benefit of our
frameworks is that these models contain at least one source
of measurement noise for the EEG measures, σ 2, as well
as variance in the underlying cognition that can change
across trials s2. By measurement noise, we mean the
combination of electrical noise, artifacts due to EMG, and
unrelated cognitive processes embedded in all measures
of EEG (Whitham et al., 2007; Nunez et al., 2016).
Measurement noise is especially relevant for EEG on single
trials (Bridwell et al., 2018) because we are often not
using measures that are robust to EEG artifacts, like trial-
averaged ERPs (although even trial-averaged ERPs are not
completely robust to artifact either) (Nunez et al., 2016).
Note also that preprocessing steps for EEG measures often
have many degrees of freedom (Clayson et al., 2021),
and therefore models should provide some quantification
of the amount of relevant cognition described by single-
trial EEG measures compared to the amount of extraneous
information.

One would expect that both sources of variance,
measurement noise and variance related to cognition, could
contribute to the single-trial EEG. In our models, we
operationalize the sum of these two sources of variance
(e.g., (γ 2s2+σ 2) in model 2) to describe the variance in the
observed EEG measure for every trial i. However, only the
variance in the underlying cognition (e.g., s2 in model 2)
also describes the behavioral data. Therefore, an important
property of these models is that they can assess the amount
of variance in single-trial EEG related to cognition, given
by the fraction of variance r . As a specific example, in
model 2 (discussed below), the fraction of variance in EEG
related to cognition is r = (γ 2s2/(γ 2s2 + σ 2)). We will
discuss further assessment of these models below. Note
that the exact equation for the fraction of variance varies
across models (e.g. r = (s2/(s2 + σ 2)) in model 1 and
r = (γ 2η2/(γ 2η2 + σ 2)) in model 8.

The Base Evidence Accumulation Process of All New
Models

The base processes that describe a portion of behavior
and EEG data in our models are drift-diffusion models
(DDMs) (Ratcliff, 1978; Ratcliff & Rouder, 1998; Ratcliff
& McKoon, 2008). However, this framework can easily be
extended with various other decision models (e.g., Usher
& McClelland, 2004, Brown & Heathcote, 2008, Hawkins
et al., 2015, Voss et al., 2019, van Ravenzwaaij et al.,
2020, Hawkins & Heathcote, 2021), especially when using
BayesFlow, because the base DDM can be replaced with
any decision-making process that can be simulated. DDMs
presume that participants integrate continuous information
during choice tasks via a Wiener process (i.e., Brownian
motion), typically for one choice over another or a correct
over incorrect response. Once enough evidence is acquired,
by passing one of two boundaries, a decision is made. This
is one of many classes of ‘first pass time distributions’ that
share the same boundary crossing properties, such as linear
ballistic accumulators (LBAs) (Brown & Heathcote, 2008).
Mathematically, this flowing evidence accumulation is
assumed to be a diffusion process which can be represented
as:

dXt = δ · dt + ς · dWt , (4)

and a form of discrete approximation as a random walk
process with a small size time scale for use in simulation in
digital computers is as follows:

X(t + �t) = X(t) + δ · �t + ς · e · √
�t, (5)

where �t → 0 is a very small time scale (5 ms or 1
ms in our simulations) that approximates an infinitesimal
time step, Xt is the diffusion state, dWt represents the
independent increment of the Wiener process, e is noise
generated from the standard normal distribution N (0, 1),
the δ parameter is drift rate, and the ς parameter is
instantaneous variance (scaling parameter). Note that in
simulation-based model fitting, we use 5 ms to approximate
the very small time scale �t . We experimented with using
1 ms to see if this affected model fitting performance, but it
did not.

Standard DDMs have four major parameters. The first
parameter is the amount of evidence required to make a
decision, which is denoted by α. Psychologically, when this
parameter is changed, it can index a speed-accuracy trade-
off (Ratcliff & McKoon, 2008; Hanks et al., 2014). The
second parameter is the drift rate of the diffusion process.
It is the mean rate of evidence accumulation within a trial
which is denoted by δ, and psychologically, it is determined
by the quality of the stimulus. The third parameter β is
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the start point of the evidence accumulation path within a
trial, shown to empirically reflect bias in a decision (Voss
et al., 2004; Bowen et al., 2016). The fourth parameter is
the non-decision time. It is often assumed to be only the
summation of encoding and execution time (Ratcliff, 1978;
Voss et al., 2015), although this assumption has rarely been
tested (Ghaderi-Kangavari et al., 2022). Total non-decision
time is denoted by τ . One additional parameter is sometimes
estimated (Nunez et al., 2015, 2017), the instantaneous
variance within a trial, “diffusion coefficient” ς . However,
we fixed ς = 1 for all parameter recoveries.

Some integral formations have been derived to capture
intrinsic trial-to-trial variability of the cognitive parameters
in DDMs. However, only certain model likelihoods have
known integral solutions. For instance, there is a an exact
solution to estimate the four main variables (δ, α, β, τ ),
in addition to the trial-to-trial variance in the drift rate
η. This is achieved by assuming a normal distribution of
the nuisance parameter and integrating out the nuisance
parameter (see Tuerlinckx 2004; Voss et al. 2015, for more
information). Note however that in the simulation approach
to fitting models using BayesFlow, it is acutely convenient
to add across-trial variability parameters.

The General Structure of All New Single-Trial
Integrative Models

Figure 3 provides a graphical description of the overview
of the example neurocognitive models, including the
relationship and difference between them, in the paper.
Schematically, we use only the simulation statements to

describe the models. However, each model is defined by
both priors (listed below) and implicit likelihoods derived
from the simulation statements. A common sampling
statement is given by ri, xi ∼ DDM(λi, �) which refers to
a drift-diffusion model with single-trial nuisance parameter
λi (either single-trial non-decision times τ(e)i or single-trial
drift rates δi) and additional parameters �. The specific
parameters will be defined in each sampling statement.
Here, ri is the response time and xi is accuracy, coded with
1 for correct response and −1 for incorrect response. Also,
zi denotes the EEG measure in each model. Note that x, r ,
and z change on each trial i and for each participant.

Our methods here could be considered extensions of
models by Ratcliff and others (Ratcliff et al., 2016) that
allow trial-to-trial variability in the cognitive model param-
eters. These models are also similar to previously published
directed models in which the single-trial EEG data describes
trial-to-trial variability in the model parameters through
embedded linear linking functions to cognitive parameters
(Frank, 2015; Nunez et al., 2017; Ghaderi-Kangavari et al.,
2022). However, the models proposed here allow some of
the noise in the EEG to be described by measurement noise
unrelated to behavior, thus improving the ultimate reflec-
tion of the true process and improving the estimation of
single-trial behavior and EEG. Note that estimating the trial-
to-trial variability parameters of DDMs is difficult with
MCMC methods (Boehm et al., 2018). Using the current
neurocognitive models and deep learning approximations
of posteriors, parameters encoding across-trial variability of
non-decision time and drift rate can be recovered well and
conveniently.

Fig. 3 Organization of the
example proposed
neurocognitive models
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We present specific models to represent specific hypothe-
ses in the neurocognitive decision-making literature. How-
ever, many of our models could also be considered exten-
sions of simple linear regressions on single-trial nuisance
parameters. For instance, if we consider λi to be a specific
nuisance cognitive parameter of a DDM that changes on
each trial i that describes both choices xi and response times
ri , then we can assume that the EEG measures zi come from
linear regression with the nuisance parameter as the predic-

tor variable. That is zi
sim∼ N (γ · λi + ρ, σ 2), where γ is

the effect of the single-trial cognitive parameter on EEG,
ρ is the residual mean cognitive variable unexplained by
EEG, and σ 2 is the measurement noise in EEG unexplained
by this cognitive variable. Note that in some models we
have performed parameter transformations and reordering
of variables to reflect hypotheses in the neurocognitive lit-
erature. Also note that in some models γ = 1, such as in
the class of model 1 which assumes single-trial N200 laten-
cies are described by an additive component of non-decision
times. While in some models ρ = 0, such as in model 8
which describes single-trial CPP slopes as scaled descrip-
tors of drift rates. Unless otherwise specified as fixed, all
parameters on the right side of distributional statements are
free model parameters to be estimated.

Basic Single-Trial Integrative Models That Describe
N200 Latencies

One idea, which has been used in our recent work (Nunez
et al., 2019; Ghaderi-Kangavari et al., 2022), is that N200
peak-latencies can separate measures of visual encoding
time (VET), τe from other non-accumulation times during
decision making, e.g., motor encoding time (MET), τm.
The following models were designed to test and use this
idea with N200 latencies as the EEG data, although the
models could also be used with other EEG data types. We
will consider the separation of VET and MET in the first
set of new models, such that they do not depend upon the
assumption that single-trial N200s exactly reflect the onset
of VET but are instead driven by VET with measurement
noise.

The first, most simple, integrative joint model, model 1a,
adds two sources of variance: measurement noise of EEG
measures σ 2 and variance related to non-decision time on
single trials s2

(τ ) to a DDM framework. This model assumes
that one source of across-trial variance in non-decision
time is contained in an EEG measure and that this source
of variance in non-decision time is additive to fixed non-
decision time across trials. For instance, we could use this
model if we presume that the sources of non-decision time
variance arise from the variance of visual encoding time,
which is also reflected in N200 latencies, and not other

sources of variance. However, note that this model is more
general than this specific case:

ri, xi
sim∼ DDM(α, τ(e)i + τ(m), δ, β), (6a)

zi
sim∼ N (τ(e)i , σ

2), (6b)

τ(e)i
sim∼ N (μ(e), s

2
(τ )). (6c)

Note that we assume normal distributions for both the
EEG generation from single-trial cognitive variables as well
as the generation of across-trial variance in non-decision
time itself. We use normal distributions to be most flexible
for various EEG inputs, and not because we think the normal
distribution is the true data generation process of N200
latencies. We test these assumptions in simulation and with
real data, see “Robustness to Model Misspecification and
Fitting the Proposed Single-Trial Neurocognitive Models
on Experimental Data.” It is important to observe that the
mean non-decision time across-trials is τ = μ(e) + τ(m),
where μ(e) reflects the mean EEG measure and τ(m) reflects
the residual non-decision time after subtracting the mean
EEG measure across trials. The key point here is that
the posteriors of parameters reflecting cognitive-variability
across trials s2

(τ ) and measurement noise across trials σ 2,
and the percentage variance resulting from a transformation
of these measures, are more informative about the true
relationship between EEG and behavior than the mean
parameters (see discussion below). In this particular additive
model of non-decision time, the mean parameter μ(e)

reflects the mean EEG measure and the residual parameter
is just the mean non-decision time minus the mean EEG
measure: τ(m) = τ − μ(e).

A specific example is the case of the N200 latencies
reflecting visual encoding time (VET) (Nunez et al., 2019).
In this case, we might expect μ(e) to reflect the mean visual
encoding time (and N200 latencies) across trials, while the
residual non-decision time τ(m) would reflect the motor
execution time (MET). Thus, τ(e)i would reflect the fact that
visual encoding time depends on both trials and individual
levels. The residual non-decision time τ(m) would reflect
MET that does not change trial-to-trial.

It should be noted that the above formulas can be
transformed by instead parameterizing the models with a
single-trial non-decision time τi = τ(e)i + τ(m). This model,
labeled model 1b has the following form:

ri, xi
sim∼ DDM(α, τi, δ, β), (7a)

zi
sim∼ N (τi − τ(m), σ

2), (7b)

τi
sim∼ N (μ(e) + τ(m), s

2
(τ )). (7c)
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As it turns out, model 1b is just a more specific case
of the embedded linear regressions framework presented in
“The General Structure of All New Single-Trial Integrative
Models,” where γ = 1. Note we do not consider model
1b to be truly different from model 1a. However, we tested
whether parameter recovery would be different between the
two parameterizations.

Because of the positive quantity of N200 latencies, we
should confine them to a specific time window, for instance,
a window from 50 to 500 ms. Therefore, we also constructed
a neurocognitive model based on model 1b to evaluate
whether using a truncated normal distribution T N (.) lies
within the interval (a, b), as well as a uniform distribution
U (.) for non-decision time variability, can be identifiable
well. The following equations reflect model 1c:

ri , xi
sim∼ DDM(α, τi , δ, β), (8a)

zi
sim∼ TN (τi − τ(m), σ

2, a = .05, b = .5), (8b)

τi
sim∼ U

(
μ(e) + τ(m) − s(τ)

√
3, μ(e) + τ(m) + s(τ)

√
3
)

(8c)

where the mean and variance of the uniform distribution in
Eq. (8c) are the same as the mean and variance in Eq. (7c)
in model 1b.

An obvious extension to model 1a is one in which
the component of non-decision time that changes trial-to-
trial τ(e)i describes a portion of the EEG variance up to
a certain scalar value γ , called an “effect” parameter. We
therefore propose model 2 which changes only the second

equation from equation set Eq. (6a) to zi
sim∼ N (γ ·

τ(e)i , σ
2). In previous work, Nunez et al. (Nunez et al.,

2019) discovered some evidence of a 1 to 1 ms (albeit noisy)
relationship between non-decision time and N200 latencies.
This evidence was, in part, shown using Savage-Dickey
density ratios (Wagenmakers et al., 2010) to estimate Bayes
Factors (van Ravenzwaaij & Etz, 2021) that compare the
hypothesis of a slope of 1 in the linear link function of a
directed neurocognitive model. In this new model, we also
use the Savage-Dickey density ratio to test the relationship
between N200 latencies and non-decision time by again
testing whether γ = 1.

Extensions of Models That Describe N200 Latencies

Researchers often use cut-off values to truncate behavioral
data in order to remove so-called contaminant data.
For instance, for decision-making, these include slow
outlier response times (RTs) and fast-guess responses

(Vandekerckhove & Tuerlinckx, 2007; Ratcliff & Kang,
2021). Removing RTs outside a window from around 150
to 3000 ms has been frequently deployed, as well as
using an exponentially weighted moving average to find an
optimal lower cutoff (Vandekerckhove & Tuerlinckx, 2007).
Ratcliff and Tuerlinckx proposed a mixture distribution
model between standard DDM and a contaminant lapse
process described by a uniform distribution to estimate
a certain proportion of contaminant data (Ratcliff &
Tuerlinckx, 2002). Recently, to describe response times
due to fast guesses, Ratcliff and Kang have proposed a
mixture of DDM and a normal distribution that describe
some properties of observed choice-RT data that could not
be easily described by DDMs alone (Rafiei & Rahnev,
2021; Ratcliff & Kang, 2021). Therefore, in neurocognitive
models, we may would like to estimate automatically the
amount of contaminated data, including very fast responses
(e.g., due to lack of attention), very slow responses
(e.g., due to mind wandering), and some other possible
contaminant data that arises from the research environment.
As an example, we propose a mixture model of the
neurocognitive model and uniform distribution (U ), labeled
model 3, with a new certain parameter θ(l) describing
the probability of a lapse process, and the resulting eight
cognitive/computational parameters:

ri · xi
sim∼ (1 − θ(l)) · DDM

(
α, τ(e)i + τ(m), δ, β

)

+θ(l) · U( − max(r), max(r)
)
, , (9a)

zi
sim∼ N

(
τ(e)i , σ

2), (9b)

τ(e)i
sim∼ N

(
μ(e), s

2
(τ )

)
, (9c)

where max(r) is the maximum observed response time over
a vector of response times r. Note that we have encoded both
a Bernoulli(0.5) choice (with the mathematical convenience
of encoding each choice x with a −1 and 1 and then
multiplying by the response time) as well as a uniform
U response time from 0 ms to max(r). The θ parameter
represents the probability of a lapse response and exists only
in the [0,1] interval.

Trial-averaged ERPs are somewhat robust to contami-
nants since averaging can increase signal proportions and
decrease noise. However, single-trial EEG analysis often
relies on the development of specific signal processing
techniques (e.g., independent component analysis) (Shlens,
2014). Thus, single-trial EEG data could be contaminated
with external noise (equipment and environmental sources)
and internal noise (head motion, eye blinking, etc.). To
handle possible contaminated data in EEG measures, that
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is not due to simple measurement noise as encoded by
σ parameters in previous models, we may wish to find
the percentage of data that is described by a relationship
to EEG. Thus, to manage different sources of variance in
single-trial N200 latencies, the following neurocognitive
model, labeled Model 4a, is proposed which has seven free
parameters:

ri , xi
sim∼ (1 − θ(m)) · DDM

(
α, τ(e)i + τ(m), δ, β

)

+θ(m) · DDM
(
α, τ, δ, β

)
, (10a)

zi
sim∼ (1−θ(m)) · N (τ(e)i , σ

2
(e)

)+ θ(m) · N (v, σ 2
(v)), (10b)

τ(e)i
sim∼ N (μ(e), s

2
(τ )). (10c)

where τ is non-decision time parameter (visual encoding
time and motor execution time), σ 2

(e) is the measurement
noise in z (N200 latencies) when observed values arise
from the neurocognitive model, s2

(τ ) is across-trial variance
in non-decision time when observed values arise from the
neurocognitive model, and v and σ 2

(v) parameters are the
mean and variance of z (N200 latencies) when observed
values are not derived from the neurocognitive model.

As it turns out, the θ parameter can detect the
existence of the relationship between the brain and behavior,
measuring the proportion of experimental trials that come
from the neurocognitive model and what proportion that
cannot be examined by the neurocognitive model. In
fact, model 4a represents a new approach for comparing
two competing models across experimental trials. In this
case, a neurocognitive model versus two simple models: a
DDM that describes the behavioral data ri, xi and normal
distribution of EEG measures zi . That is, the first mixture is
model 1a as a neurocognitive model and another mixture is
the following model as a cognitive model:

ri, xi
sim∼ DDM(α, τ, δ, β), (11a)

zi
sim∼ N (v, σ 2

(v)). (11b)

We used model 4a as the joint mixture model to see
the amount of actual relationship between neural data and
behavior across trials, as discussed below. This model has
eleven parameters, but for better recovery, we reduced the
number of parameters to nine parameters. In model 1a,
the variance of the EEG measures zi in the first mixture
is s2

(m) + σ 2
(e) while the variance of the EEG measures

in the second mixture is an independent parameter, σ 2
(v).

Therefore, we removed a free parameter by forcing the
variance of the second mixture to be the same as the first. We
similarly forced the non-decision times and mean of EEG

measures to be the same in both mixture distributions. The
equations of the reduced model 4b are as follows:

ri, xi
sim∼ (1 − θ(m)) · DDM(α, τ(e)i + τ(m), δ, β) + θ(m) ·

DDM(α, μ(e) + τ(m), δ, β), (12a)

zi
sim∼ (1 − θ(m)) · N (τ(e)i , σ

2
(e))

+θ(m) · N (μ(e), s
2
(τ ) + σ 2

(e)), (12b)

τ(e)i
sim∼ N (μ(e), s

2
(τ )). (12c)

Models with Collapsing Boundaries

Drift-diffusion models with collapsing boundaries encode
participant behavior such that participants require less and
less amount of evidence to trigger a decision as time
passes (Drugowitsch et al., 2012; Hawkins et al., 2015;
Forstmann et al., 2016; Ratcliff et al., 2016). Mathematical
models with collapsing boundaries have gained remarkable
attention in some experimental and theoretical accounts.
Such models outperform the fixed boundary DDM in certain
circumstances and implement optimal decision-making
(Ratcliff et al., 2016; Drugowitsch et al., 2012; Evans et al.,
2020a). Other evidence for the accuracy of these models
has been mixed in the literature. Hawkins et al. (Hawkins
et al., 2015) consider both types of models for humans and
nonhuman primates over three different paradigms and then
by applying using model-selection methods showed that
fixed boundary models are generally better than collapsing
boundaries, although there is occasional evidence for a
collapsing-bound DDM. These authors also concluded that
models with collapsing boundaries are not a descriptive
model for the majority of human participants, while they can
be useful for interpreting the underlying components of non-
human cognition. Moreover, Voskuilen et al. (Voskuilen
et al., 2016) found that the fixed boundary model was
superior to the collapsing boundary model for all data
obtained from numerosity discrimination experiments and
motion discrimination experiments in human subjects.
Voss et al. (Voss et al., 2019) compared six distinct
types of accumulator models based on Wiener diffusion,
Cauchy-flight, and Lévy-flight models in four number-letter
classification tasks to examine if decision bounds can be
dynamic over times. They found some evidence in favor
of collapsing boundary rather than a fixed boundary. Also,
Evans et al. (Evans et al., 2020b) evaluated five different
collapsing boundary models based on DDM, linear ballistic
accumulator model (LBA), and urgency gating model and
then found out the linear collapsing boundary for DDM
can fit better in caution/urgency modulation as well as an
urgency-gating model with a leakage process. It has also
been shown that the drift-diffusion model with a time-
variant boundary can well explain both behavioral and
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neural electrophysiological data in non-human primates
(Roitman & Shadlen, 2002; Ditterich, 2006). Smith et al.
(Smith & Ratcliff, 2022) showed that the standard DDM
was the best model for conditions with constant stimulus
and time-variant boundary models were similar to the
standard DDM on changing-stimulus conditions.

Most of the findings support the idea that models with
collapsing boundaries are optimal for animal’s cognition,
in accordance with the idea that adept animals, which are
trained on fixed juice feedback, adjust their behavior with
urgency (Smith & Ratcliff, 2022). As a result, regardless
of whether collapsing boundaries are optimal for humans
and some paradigms or not, we deploy the use of collapsing
boundaries and analyze their parameter recoveries as a
generalization of our neurocognitive models.

We expand the previous neurocognitive models to
include collapsing boundary models that allow for decreas-
ing evidence used to make a decision over time. These
models are the same as model 1a with collapsing instead of
static boundaries. Specifically, we implemented two types
of collapsing boundary models: linear and Weibull functions
(Voss et al., 2019; Evans et al., 2020b). These are labeled
model 5, with seven free parameters, and model 6, also with
seven free parameters, respectively (Evans et al., 2020b;
Voss et al., 2019).

The linear collapsing boundary is instantiated as fol-
lows:

u(t) = α − aslope · t, (13)

l(t) = α − u(t), (14)

where aslope is the slope of the linear collapsing boundary,
α is the initial boundary value before any time elapses, u(t)

is the upper threshold, and l(t) is the lower threshold.
A scaled Weibull cumulative distribution function

describes the collapsing boundaries in model 6:

u(t) = α − (1 − exp(−(
t

ω
)k)) · (−0.5 · d · α), (15)

l(t) = α − u(t), (16)

where u(t) is the upper threshold and l(t) is the lower
threshold. The parameter k indicates the shape of collapse
(early vs. late). Also, ω is the scale parameter and shows the
onset at which the collapse begins, d encodes the amount of
collapse, and finally α again represents the initial boundary
before any time elapses. We fixed parameters of k = 3 and
d = −1.

Single-Trial Integrative Models That Describe CPP
Slopes

In this section, we propose an integrative neurocognitive
model that predicts CPP slope is related to the rate
of accumulation evidence variable on single trials. The

following model 7 assumed that trial-to-trial variability of
drift rate parameters at the model level comes from CPP
variance at ERPs signals as well as there is source noise of
CPP slope which is denoted by the parameter c as follows:

ri, xi
sim∼ DDM(α, τ, δi, β), (17a)

ci
sim∼ N (δi, σ

2), (17b)

δi
sim∼ N (μ(δ), η

2). (17c)

In one final model, we impose a γ = 1 effect of
CPP slope, changing the second equation of Eq. (17a).
This results in ci ∼ N (γ · δi, σ

2), i.e., model 8. Note
that both models are specific forms of linear regressions
presented in “The General Structure of All New Single-Trial
Integrative Models,” with trial-to-trial drift rate δi as the
nuisance variable λi . In the models of the previous sections,
the nuisance parameter was trial-to-trial non-decision time
τi or an additive non-decision time component τ(e)i for the
same fit.

Traditional Integrative Models That Describe N200
Latencies

As a comparison to our models built in our new single-trial
integrative framework, we also fit some similar traditional
integrative models using BayesFlow. The models in this
section predict single-trial behavior and EEG data but are
not described by (estimated) joint likelihoods. Therefore,
a random permutation of one of the data types will result
in the same model fit. This type of model is shown in

Fig. 2b. In these models, we replace the
sim∼ notation with

the ∼ notation because these models can all be fit using
MCMC algorithms and do not need to be directly simulated
for model inference. Thus, they can be directly written in
languages such as Stan for specific MCMC algorithms.
However, we used BayesFlow for fitting the traditional
integrative models in order to directly compare to previously
described single-trial integrative models that were fit using
BayesFlow.

The first model is analogous to model 1a. This
non-single-trial integrative neurocognitive model has six
parameters, labeled model 9. This model assumes that
both behavioral and brain data are independent at the level
of single trials, but it assumes that a non-decision time
component τ(e) (for instance VET) describes EEG on single
trials. Mathematically, the model equations are as follows:

ri, xi ∼ DDM(α, τ(e) + τ(m), δ, β), (18a)

zi ∼ N (τ(e), σ
2). (18b)
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As already pointed out, integrative neurocognitive
models can be divided into two groups based on how two
neural and behavior modalities constrain each other (see
Fig. 2): first, those models that have shared parameters on
a group level but predict independent behavior and neural
data on the single-trial level, and second, those models
that produce dependent data on the single-trial level. For
instance, model 9 has two independent relations which
constrain the non-decision parameter. It means that both sets
of random variables of Xi = {ri, xi} and Zi = {zi} are
independent on single trials. Therefore, by permutation of
zi across trials, the same posteriors will be estimated for all
parameters.

Meanwhile, there is another issue that should be
highlighted here. Actually, another problem with model 9
is that it cannot provide any inference about the relationship
between EEG measures and behavior. This is because τ(e)

provides an estimate of the mean EEG measure that is not
constrained at all by the non-decision time τ = τ(e) + τ(m),
because the estimate of τ(m) will just be the estimate of non-
decision time τ from behavior while τ(m) = τ − τ(e). Note
that in the class of model 1, we can judge the relationship
of EEG to behavior by exploring the posterior distributions
of s2

τ /(s2
τ + σ 2), which does not exist in model 9.

Now, consider the following model, labeled model 10,
with an additional parameter γ , ostensibly to solve the
aforementioned problem:

ri,, xi ∼ DDM(α, τ(e) + τ(m), δ, β), (19a)

zi ∼ N (γ · τ(e), σ
2). (19b)

When proposing a new neurocognitive model, it is
important to note that the model’s parameters must be
constrained by data in order to draw inference about the
parameters. In the above model, it is obvious that this model
is not a single-trial model; thus, the random variables ri, xi

and the random variable zi are independent statistically.
From the neural data zi , we can estimate both the mean (μ)
and the variance (σ 2 ) of the normal distribution, and on the
other hand, by the random variables ri, xi , we can estimate
non-decision time from DDM, which is the sum of τ(e) and
τ(m). Thereby, the following two relations are introduced:

μ = γ · τ(e), (20a)

τ = τ(e) + τ(m). (20b)

It should be noted that there are three variables and two
equations which make it impossible for each parameter to be
recovered perfectly. Figure 24 is the result of the parameter
recovery of model 10. As we expected, the latent parameters
can not be recovered and so this model cannot inform us at
all about cognition nor the brain-behavior relationship.

Traditional Integrative Models That Describe CPP
Latencies

To build a traditional neurocognitive model with CPP slope,
we used the following model, model 11, to constrain the
drift rate by CPP slope for each participant. In fact, CPP is
denoted by parameter ci as follows:

ri, xi ∼ DDM(α, τ, δ, β), (21a)

ci ∼ N(γ · δ, σ 2). (21b)

We also tested the following neurocognitive model that
predicts CPP slopes on single trials are described by both
the mean drift rate and trial-to-trial variance in drift rate.
Therefore, we use the following model, model 12:

ri, xi ∼ DDM(α, τ, δ, β, η), (22a)

ci ∼ N(δ, η2). (22b)

The above model assumes that single-trial CPPs are
explained by both the mean and variability of the drift rate,
but single-trial CPPs and choice-RTs are still independent.
Remember that both model 11 and model 12 are traditional
integrative models in that they predict the same parameters
for a random permutation of either the choice-RT pair
(ri , xi) or CPP slopes ci with respect to the other data.

Directed Joint Models That Incorporate N200
Latencies

Directed joint models are another approach to constrain both
behavioral data at the single-trial level. Recently, a new
linear formation of τi = τ(e)i + τ(m) = λ · zi + τ(m) has
been proposed to describe behavioral data directly by both
cognitive parameters and neural data (Nunez et al., 2019;
Ghaderi-Kangavari et al., 2022). Although note that these
models do not describe neural data. More precisely, these
approaches are able to make predictions of behavioral data
with only neural activity, but cannot easily predict neural
data from behavioral data. Parameter τ(m) is residual of the
linear formation, assumed to represent MET (Nunez et al.,
2019; Ghaderi-Kangavari et al., 2022), λ is the effect of
N200 latencies on single-trial non-decision times and the zi

parameter represents the N200 negative peak latencies for
each trial, such that λ · zi is assumed to represent VET. This
model has seven (non-nuisance) parameters, labeled model
13:

ri, xi ∼ DDM(α, τ(e)i + τ(m), δ, β), (23a)

zi ∼ N (μ(z), σ
2), (23b)

τ(e)i = λ · zi . (23c)

where μ(z) is the mean of N200 latencies.
In the above neurocognitive model, the single-trial non-

decision time variability is related to the N200 latencies
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single-trial variability. This means that the source of the
non-decision time variability is assumed to come only from
variability in a noiseless neural measure. Therefore, this
model is only more appropriate than model 2 if we expect
the EEG measure z to reflect the true cognitive process
without noise. To calculate the variability of τ , consider the
following equations:

Var[τ ] = Var[τ(e) + τ(m)] (24a)

= Var[τ(e)] = Var[λ · zi]
= λ2 · Var[zi] = λ2 · σ 2. (24b)

Therefore, in this model, the trial-to-trial variability of
non-decision time is given by s(τ) = λ2 · σ 2, which is also
true of model 2 above.

Priors

We assume “weakly informative” prior distributions for all
models (Gelman et al., 2014). For model 1a, model 1b, and
model 1c, we assume uniform distributions as the following
the prior distributions:

δ ∼ U(−3, 3),

α ∼ U(0.5, 2),

β ∼ U(0.1, 0.9),

μ(e) ∼ U(0.05, 0.6),

τ(m) ∼ U(.06, .8),

σ ∼ U(0, 0.3),

s(τ) ∼ U(0, 0.3),

(25)

It is important to note here that the parameters shared by
the models presented here had the same prior distributions.
For instance, model 2 has an additional parameter γ with
prior distribution γ ∼ U(0, 3). Other parameters, which
are similar to parameters in the class of model 1, have the
same prior distributions. For the sake of brevity, for the
following models, we do not mention prior distributions that
were previously mentioned in a previous models. Model
3 contains a prior distribution of the lapse parameter as
θ(l) ∼ U(0, 0.3). Other parameters, which are similar to
parameters in the class of model 1, have the same prior
distributions. Model 4a has additional prior distributions
τ ∼ U(0.1, 1), σ(v) ∼ U(0, 0.3), σ(e) ∼ U(0, 0.3), v ∼
U(0.04, 0.4), and θ(m) ∼ U(0, 1). Also, model 4b has
additional a prior distribution θ(m) ∼ U(0, 1). On the other
hand, model 5 contains a prior distribution of aslope ∼
U(0.01, 0.9). For model 6, it contains a prior distribution
of ω ∼ U(0.5, 4). For model 7, we assume uniform
distributions as the following the prior distributions:

δ ∼ U(0.01, 3),

α ∼ U(0.5, 2),

β ∼ U(0.1, 0.9)

η ∼ U(0, 2),

τ ∼ U(.1, 1),

σ ∼ U(0, 2),

(26)

Model 8 has an additional prior of γ ∼ U(−3, 3). Also,
for this model has the parameter β = .5. Other parameters,
which are similar to parameters in model 7, have the same

prior distributions. Note that we used a wider prior for the
parameter γ in model 8 compared to the range of γ in
model 2. This is because negative CPP slopes are reported
in the literature (e.g., see van Vugt et al. 2019) and thus
negative γ estimates were assumed to be possible.

For model 9, we also assume uniform distributions as the
following the prior distributions:

δ ∼ U(−3, 3),

α ∼ U(.5, 2),

β ∼ U(.1, .9)

τ(e) ∼ U(.05, .6),

τ(m) ∼ U(.06, .8),

σ ∼ U(0, .3),

(27)

Model 10 has an additional prior of γ ∼ U(.1, 4).
Finally, by viewing Figs. 25, 26, and 27 in the Appendix,
the range of parameters will be clear.

Recovering Parameters from Simulated
Models

Results of parameter recovery reveal whether the proposed
models reliably recover true parameters. We first tested
whether our model fitting procedure can extract reliable
parameter estimates for the data given that the data is
generated from the same model. Then we tested whether the
some models are robust to slight model misspecification,
another important test of models and model fitting
procedures before being applied to real experimental data.
These procedures indicate whether the estimation method
and the neurocognitive assumptions can successfully apply
to real data.

We used point parameter recovery to assess how
well the posterior mean of a proposed neurocognitive
model resembles data-generating parameters. In Bayesian
statistics, parameter recovery is conceptually beyond point
recovery, so we also report the uncertainty of parameter
approximations parameters as well as coverage percentages
of free posterior.

Training theModel Fitting Procedure

We train neural networks in BayesFlow via experience-
replay learning. Experience-replay learning has had success
recently within the deep learning community and is a type
of reinforcement optimization which uses a replay memory
technique to store trajectories of experiences (Sutton &
Barto, 2018). This technique will keep an experience
replay buffer from past simulations for taking samples
randomly for each iteration, so the networks will likely
use some simulations multiple times. This training can
efficiently simulate data on-the-fly for fast generation and
is optimal in comparison to pure online training (Radev
et al., 2020a). By increasing the number of epochs and
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iterations of deep learning, the parameters gradually become
more convergent. In the training phase, we used 500 epochs,
1000 iterations per epoch, a batch size of 32, and a buffer
size of 100 for the hyperparameter of memory for training
weights of the deep learning structure. Also, we simulate
a variable number of trials from 60 to 300 trials from a
uniform distribution during the training phase. Note that we
purposefully use a small number of trials in order to explore
parameter recovery of realistic observation counts in real
data. More precisely, we train these neural networks only
in one training period with the same prior distributions, and
then we generate posterior distributions from the trained
neural networks in each subsequent analysis (including
fitting real data in the next section).

Models Recover Simulated Parameters Accurately

Here, we generate figures of true parameters plotted
against parameter posterior estimates and credible intervals.
These parameter recovery figures are generated using 100
simulated datasets with 300 simulated trials each. It should
be noted that we obtain 2000 samples from posteriors in the
inference phase. Figure 4 as well as Figs. 13 and 14 in the
Appendix show parameter recovery of the seven parameters
from model 1a, model 1b, and model 1c, respectively, with
the x-axis as true parameters and the y-axis as posterior
distributions. Each figure includes the mean, median, 95%,
and 99% credible intervals related to each data point of
parameters. Also, Figs. 15, 16, and 17 in the Appendix
represent the result of parameter recovery for model 2,
model 3, and model 4a, respectively. Another parameter

recovery figure can be seen in the Appendix is Fig. 18,
which corresponds to model 4b with 100 datasets and
1000 trials for each. Looking further into the Appendix,
it is clear that this parameter recovery approach is clearly
confirmed for other proposed models in the same procedure.
For instance, we observe that Figs. 19 and 20 show the
results of parameter recovery of model 5 and model 6,
respectively. In addition, for models including CPP slope
results, Figs. 21 and 22 in the Appendix are related to model
7 and model 8, respectively. We used the fixed parameter
β = .5 from model 8 to provide the accuracy-based model
fitting of data in “Re-analysis of (van Vugt et al., 2019)
Data.” Furthermore, Figs. 23, 24, 25, and 26 in the Appendix
represent the parameter recovery of traditional integrative
joint modeling related to models 9, 10, 11, and 12. Finally,
Fig. 27 presents the parameter recovery of the directed joint
modeling of model 13.

We also assess the performance of the current models
in parameter recovery by calculating R2, the normalized
root mean square error (NRMSE) statistic, and the coverage
percentages of 95% and 99% credible intervals derived
from the posterior distributions of each parameter. In fact,
we use the estimated posterior means and the ground-
truth parameter values to calculate both R2 and NRMSE
measures. Note that using only the posterior mean is not
mandatory and the full joint posterior should be used for
model-based predictions. The R2 measure, also known as
the coefficient of determination, evaluates how well the
model explains the variability of the grand-truth parameters,
while the NRMSE measure represents the standardized
prediction errors, which facilitates the comparison between

Fig. 4 The plot of true
parameters versus posteriors of
estimated parameters for model
1a. The x-axis of each graph are
simulated parameters and the
y-axis represents posterior
distributions. The mean of the
posteriors is shown by teal star
symbols and the median of the
posterior of parameters is shown
by black circles. Also,
uncertainty of parameters is
indicated by 95% credible
intervals (dark blue lines) and
99% credible intervals (green
lines). Note that the orange line
is the function of y = x, where
we expected recovered posterior
distributions to be centered. The
estimated parameters follow the
orange line, corresponding to
the true recovery of these
parameters
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models of different scales. Mathematically, NRSME and R2

formula are defined as:

NRMSE =

√
∑N

i=1

(
ŷi−yi

)

N

max(y) − min(y)
(28a)

R2 = 1 −
∑N

i=1

(
ŷi − yi

)2

∑N
i=1

(
yi − mean(y)

) (28b)

where ŷi are the posterior means, yi are the ground-truth
parameters, and max(y) and min(y) are the maximum and
minimum of the ground-truth parameters, respectively.

In Table 1, these statistics to assess the performance of
each neurocognitive model in recovering true parameters
are reported. Note that both R2 and NRMSE statistics
are calculated using the mean posteriors of parameters
and true parameters. The coverage percentage of a
specific parameter represents the number of datasets whose
parameter’s credible interval contains the true parameter.
The coverage percentages for 95% and 99% credible
intervals are calculated in Table 1. We expect that 95%
and 99% of simulated datasets have true parameters which
are located inside 95% and 99% of the credible interval
respectively. Furthermore, we developed simple metrics
to express the uncertainty of estimated parameters by
calculating the (1) mean of the variances of the estimated
posterior distributions as well as (2) the variance of the
variances of the estimated posterior distributions. Table 8 in
the Appendix contains these values.

Looking more closely at Table 1, it can be seen that the
majority of the current models’ parameters are exceptionally
well recovered, although a number of parameters have
challenges in recovery. If there are few trials with no single-
trial relationship, the recovery of cognitive parameters in
model 4a will be inaccurate. However, by decreasing the
number of parameters in model 4a to model 4b, the
uncertainty of estimated cognitive parameters was shortened
(see Figs. 17 and 18). However, overall, the results show
that many of the parameters of the proposed models can
be recovered with real data to obtain information about the
neurocognitive process.

The Proportion of Cognitive Variance in Permuted
and Non-permuted EEGMeasures

We probe how associations of single-trial choice-RTs and
EEG measures affected posterior distributions when fitting
the neurocognitive models to simulated data. The current
single-trial integrative paradigm has two different sources of
variance that explain variance in EEG measures: cognitive

variability s2 (or γ 2s2 in model 2) and EEG measurement
noise (or noise not associated with cognition) σ 2. We
found that the posterior ratio r = s2/(s2 + σ 2) of these
parameters provides some information about the degree to
which single-trial EEG measures explain cognition.

To do so, we simulate model 1a but then randomly
permute the index of the EEG measures across trials
compared to the index of choice-RT. Thus, the EEG and
behavioral data are no longer paired per trial (see Fig. 5).
We then fit the permuted data using our model fits above.
We generate 100 datasets with 500 simulated trials for each
dataset and then take 5000 samples from the posteriors
in the inference phase. Figure 6 shows the percentage of
EEG measures explaining cognition related to both real and
permuted EEG measures. The model fit of the permuted
data provides larger estimates of EEG measurement noise
(σ ) and smaller estimates of cognitive non-decision time
variability (s2

(τ )) than the model fit of the original data.
Thus, the model fit of the permuted data results in smaller
estimates of the proportion of cognitive variance r than in
the non-permuted data.

These results imply that the fitted model not only
describes latent cognitive variables under the assumption of
the model given the data but can also be used to discover
the relationship of EEG to behavior. Thus, in model 1a
fits of experimental data, posterior means of r ≈ .27
(95% credible interval of mean posteriors across 1000
simulations) and below could be considered evidence that
EEG and behavior data are not related on the single-trial
level (see Fig. 6). Note however that EEG and behavior
data may or may not be related to the participant or
condition level if r < .27. Note also that the observed
empirical cutoff is not r = 0, likely because there is true
trial-to-trial variability in non-decision time that described
behavior better than fixed non-decision time. Figure 5
illustrates the comparison of simulated and permuted EEG
across trials compared to simulated (non-permuted) RT
for five random datasets with different parameter sets. As
a comparison, Fig. 28 in the Appendix demonstrates the
regression between simulated (no-permuted) EEG measures
and response times collapsed across 100 datasets and 1000
trials from each dataset collapsed across datasets, simulated
from model 1a. However, note that a more extensive
discussion on model comparison can be found in the section
below.

Figure 29 in the Appendix displays parameter recovery
in the model when EEG measures are permuted for many
different parameter sets in one figure. It should be noted
that we use 100 datasets and 500 trials for each dataset
to estimate posteriors of parameters (with 1000 posterior
samples each).
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Table 1 Assessment of each neurocognitive model between true, estimated parameters of each model by R2 and NRMSE statistics and the
coverage percentages of the true parameter by the 95% and 99% credible intervals

Model 1a δ α β μ(e) τ(m) σ s(τ)

R2 0.98 0.97 0.97 0.99 0.99 0.99 0.99

NRMSE 0.042 0.058 0.059 0.028 0.032 0.035 0.036

95% 0.972 0.966 0.96 0.936 0.953 0.963 0.967

99% 0.996 0.993 0.992 0.986 0.992 0.993 0.993

Model 1b δ α β μ(e) τ(m) σ s(τ)

R2 0.98 0.96 0.95 0.99 0.99 0.98 0.98

NRMSE 0.043 0.059 0.060 0.028 0.030 0.036 0.036

95% 0.950 0.956 0.944 0.920 0.953 0.974 0.947

99% 0.991 0.990 0.985 0.981 0.992 0.994 0.987

Model 1c δ α β μ(e) τ(m) σ s(τ)

R2 0.99 .97 0.98 0.99 0.99 0.95 0.95

NRMSE 0.035 0.054 0.043 0.024 0.025 0.064 0.063

95% 0.963 0.941 0.954 0.934 0.959 0.914 0.963

99% 0.994 0.985 0.990 0.989 0.992 0.979 0.992

Model 2 δ α β μ(e) τ(m) σ s(τ) γ

R2 0.97 0.96 0.956 0.90 0.95 0.92 0.98 0.90

NRMSE 0.047 0.055 0.057 0.089 0.061 0.078 0.040 0.089

95% 0.958 0.962 0.946 0.955 0.956 0.954 0.948 0.964

99% 0.991 0.993 0.988 0.991 0.991 0.990 0.989 0.994

Model 3 δ α β μ(e) τ(m) σ s(τ) θ(l)

R2 0.97 0.92 0.94 0.99 0.98 0.98 0.98 0.92

NRMSE 0.053 0.081 0.072 0.025 0.038 0.044 0.041 0.082

95% 0.95 0.953 0.962 0.960 0.950 0.939 0.952 0.956

99% 0.988 0.990 0.992 0.992 0.989 0.983 0.990 0.990

Model 4a δ α β μ(e) τ(m) τ σ(e) σ(v) s(τ ) v θ(m)

R2 0.98 0.96 0.96 0.90 0.89 0.91 0.77 0.83 0.85 0.82 0.86

NRMSE 0.038 0.056 0.054 0.085 0.092 0.081 0.129 0.114 0.110 0.117 0.105

95% 0.931 0.921 0.927 0.944 0.918 0.955 0.910 0.958 0.930 0.962 0.947

99% 0.983 0.975 0.980 0.987 0.979 0.991 0.973 0.990 0.982 0.992 0.989

Model 4b δ α β μ(e) τ(m) σ(e) s(τ ) θ(m)

R2 0.99 0.97 0.98 0.99 0.99 0.93 0.92 0.73

NRMSE 0.032 0.047 0.040 0.019 0.023 0.075 0.083 0.148

95% 0.952 0.941 0.951 0.964 0.949 0.95 0.934 0.939

99% 0.991 0.9848 0.991 0.994 0.9896 0.989 0.988 0.985

Model 5 δ α β μ(e) τ(m) σ s(τ) aslope

R2 0.82 0.93 0.97 0.99 0.98 0.98 0.98 0.67

NRMSE 0.124 0.075 0.048 0.030 0.044 0.039 0.040 0.166

95% 0.955 0.927 0.970 0.951 0.948 0.971 0.95 0.922

99% 0.990 0.979 0.993 0.990 0.989 0.995 0.990 0.982

Model 6 δ α β μ(e) τ(m) σ s(τ) ω

R2 0.92 0.92 0.95 0.99 0.97 0.97 0.97 0.52
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Table 1 (continued)

NRMSE 0.084 0.081 0.064 0.028 0.053 0.050 0.046 0.198

95% 0.975 0.960 0.966 0.968 0.9652 0.943 0.970 0.951

99% 0.995 0.993 0.994 0.995 0.992 0.988 0.993 0.989

Model 7 μ(δ) α β τ σ η

R2 0.99 0.98 0.99 0.999 0.94 0.94

NRMSE 0.030 0.045 0.026 0.006 0.071 0.071

95% 0.951 0.948 0.957 0.966 0.944 0.960

99% 0.988 0.989 0.991 0.992 0.987 0.992

Model 8 μ(δ) α τ σ η γ

R2 0.959 0.987 0.999 0.746 0.850 0.977

NRMSE 0.057 0.032 0.008 0.145 0.112 0.044

95% 0.949 0.949 0.970 0.965 0.958 0.951

99% 0.991 0.989 0.994 0.993 0.993 0.990

The values of R2 and NRMSE statistics show how well the mean of simulated posterior parameters are recovered. We can see realistic uncertainty
about these parameters when we fit the model to the data. Here, 10000 datasets, 300 trials, and 2000 samples from the posterior to calculate these
four measures are used

Robustness to Model Misspecification

The proposed neurocognitive models, like any cognitive
model, have specific assumptions. However, we expect
some of those assumptions could be robust to various model
misspecifications. Therefore, for a subset of models, we
keep the original assumptions when fitting data (and thus
the original trained neural networks) using slight differences
in the simulated data. The robustness tests fell into two
categories: robustness to normal distributional assumptions
and robustness to contaminant processes.

In the first set of robustness tests, we test the
robustness to normal distributional assumptions. In one
misspecification, we fit model 1a to sets of simulated data
where various Gamma distributions, G(α, β), with shape
parameter α = μ2

(e)/s
2
(τ ) and an inverse scale parameter

β = μ(e)/s
2
(τ ) which are used to simulate the single-trial

non-decision times τ(e)i . Note that we calculate the non-
decision time variability s2

(τ ) and the mean directly from the
simulated Gamma distribution parameters. The deviation of
the Gamma distribution from normality can be summarized
in part by the kurtosis, such that normal distributions always
have a kurtosis of 3. The mean and standard deviation
values of the kurtosis of the Gamma distributions were
approximately 10.30 and 16.05 across simulations. Figure 7
shows the parameter recovery when Gamma distributions
were used to simulate data. By looking at this figure, it
can be seen that all parameters are recovered well besides
some misestimation of non-decision time variability s2

(τ ) for

a few datasets, with the model estimating somewhat lower
variability than what was actually simulated.

We also conduct a robustness test to the normal distribution
assumption of N200 latencies zi . Indeed, we apply a
Gamma distribution instead of a normal distribution for
simulating zi . To do so, we fit model 1a to sets of simulated
data where various Gamma distributions with shape
parameter α = τ 2

(e)i/σ
2 and an inverse scale parameter

β = τ(e)i/σ
2 are used to simulate the N200 latencies zi .

The mean and standard deviation values of the kurtosis
statistics of the Gamma distributions were approximately
10.40 and 20.84 across simulations. The results are reported
in Fig. 32 in the Appendix. Apparently, the parameters are
well recovered besides a slight misestimation of mean EEG
and the non-decision time variability.

We also investigate the robustness of model model 1a
to contaminant processes. In the first such robustness test
of model 1a, we simulate a contaminant process where
5% of choice-response times are generated by uniform
distribution between 0 and 2 s, while all other parameters
are simulated following model 1a (Ratcliff & Tuerlinckx,
2002). Figure 30 in the Appendix reveals that parameters
of model 1 with 5% lapse distribution are recovered well
with a slight underestimation of extreme drift rates and
larger boundaries. The second contaminant process we
simulate is one in which of uniform noise within the N200
latencies, with a 5% probability of trial coming from a
uniform distribution between 0 and 300 ms instead of the
cognitive generation process. Figure 31 in the Appendix
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Fig. 5 Regressions of EEG measures versus response times simulated
from model 1a when we permute EEG measures compared to response
times as well as the original simulation data. We picked five datasets

drawn at random from five parameter sets. Each dataset was simulated
with a different parameter set from model 1a resulting in 1000 trials
for each dataset

shows parameter recovery of this situation. This model
recovers parameters incredibly well besides an occasional
misestimation of larger boundaries.

Posterior Predictive Checks

One of the main purposes of presenting and assessing
different models is to select the most appropriate model

for neurocognitive phenomena. The first step would be
to conduct a model comparison based on simulated and
observed data. Winning models can then be tested in
further confirmatory work and tests of selective influence
(Heathcote et al., 2015; Lee et al., 2019).

Due to the lack of likelihoods for the models (estimated
with the deep learning approach), we cannot report model
selection criteria such as Bayesian information criterion
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Fig. 6 The proportion of EEG
variance explaining cognition of
model 1a. Left: Posterior
distributions of r = s2/(s2 +σ 2)

when we fit the model to the
original simulated data. Right:
Posterior distributions of r when
we permuted EEG measures
before fitting model 1a to the
original behavioral and
permuted EEG data. See the
caption of Fig. 4 for additional
details of these plots

(BIC), Akaike information criterion (AIC), Deviance
Information Criteria (DIC), Watanabe-Akaike information
criterion (WAIC), the effective number of parameters
(PWAIC), and log pointwise predictive density (LPPD).
Instead, we use data generation to compare models by
posterior prediction checks. However, some deep learning
approaches estimate the likelihoods of models and therefore
could be used for calculating models selection criteria, e.g.,

(Fengler et al., 2021). Anyway, we think that this is beyond
the scope of this work and can be pursued in future work.

To evaluate models without known likelihoods, we focus
on posterior predictive checks to choose which model fits
well for particular data. The posterior predictive is the
distribution over new data (unobserved data) given observed
data. Thus, the posterior predictive check predicts new
data. Its formula is calculated for replications ypred and

Fig. 7 Parameter recovery when fitting model 1a to a simulation of a similar model with trial-to-trial non-decision time being simulated by a
Gamma distribution, τ(e)i ∼ Gamma, instead of a normal distribution as assumed by the model-fitting procedure. See the caption of Fig. 4 for
additional details of these plots
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the observed data y by integrating out the parameters θ as
follows:

p(yrep|y) =
∫

p(yrep|θ).p(θ |y)dθ . (29)

To sample from the above distribution, we first use the
BayesFlow deep learning architecture to estimate posteriors
of model parameters and then simulate new data under the
fitted model.

Moreover, we use a cross-validation paradigm to evaluate
a model in which the original dataset is divided into two
datasets: training data (in-sample data) and test data (out-
of-sample data). In this analysis, we randomly assigned
80% of the trials as in-sample data and 20% of the
trials as out-of-sample data. The in-sample prediction is
used as an indicator to show the performance of a model
because it shows how likely the data used to fit a model
is anticipated by the model itself (Blohm et al., 2019;
Nunez et al., 2022). On the other hand, out-of-sample
prediction can represent the generality of a model, which
is one of the main goals of cognitive scientists who
intend to introduce a model (Busemeyer & Wang, 2000;
Wagenmakers et al., 2006; Nunez et al., 2017; Lee et al.,
2019). Actually, out-of-sample predictions are thought to
better reflect how much a model can anticipate data that has
not been seen before, or how much a model can anticipate
similar behavioral performance and neural activity in other
experiments.

To do so, we simulate data from the current models
with certain parameters, and then split the data with
80% labeled “in-sample” and 20% labeled “out-of-sample.”
For example, in model 1a, we consider a certain set of
parameters {δ = 1, α = 1.5, β = .6, τ(e) =
0.180, τ(m) = 0.2, σ = 0.05} to generate data from
1000 trials. We next take 2000 samples from posterior
distributions of parameters and then use all these samples
to generate posterior predictive distributions. The results of
model 1a are shown in Fig. 8. In this figure, you can discern

how well both in-sample and out-of-sample data matches
the posterior predictive distribution, which was estimated
only by in-sample data.

Fitting the Proposed Single-Trial
Neurocognitive Models on Experimental
Data

We used three existing datasets to test the applicability of
our new proposed modeling framework. Different analysis
methods had been used on all three datasets previously.
The first public data set arises from a car-face perceptual
decision task by Georgie et al. (2018), which we previously
analyzed to see how spatial prioritization can affect latent
cognitive parameters. We found evidence with this data
that both visual encoding time and other non-decision
times can be manipulated by spatial cueing in decision-
making (Ghaderi-Kangavari et al., 2022). The second
dataset is related to a perceptual decision-making task
with some embedded visual signal-to-noise manipulations
(Nunez et al., 2019). Nunez et al. (2019) found evidence
that N200 latencies were linearly related to non-decision
times, with a slope of 1, in different visual signal-to-noise
conditions. The third dataset contains CPP slopes estimated
on single trials in memory and perceptual decision-making
tasks (van Vugt et al., 2019). The goal of this data collection
was to test whether CPP slopes are a general EEG signature
to track evidence accumulation in multiple task domains
(van Vugt et al., 2019).

Face-Car Perceptual Decision-making Task

In this section, we evaluate neurocognitive models related to
N200 latencies for some participants who completed a face-
car perceptual decision-making task. This data is publicly
available (Georgie et al., 2018), and we have previously
analyzed this data for another specific purpose (Ghaderi-

Fig. 8 Posterior predictive
distributions of error/correct
response time and N200
latencies of model 1a compared
to in-sample and out-sample
data. Error response times are
depicted on the negative x-axis
and correct response times are
depicted on the positive x-axis
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Kangavari et al., 2022). In this analysis, we estimate the
participants’ parameters for models 1–6. We also compare
observed data with predicted data by the models to see if the
results are reasonable.

In terms of extracting EEG signals to fit the models, we
applied some preprocessing steps including down-sampling
the raw data, a Butterworth IIR band-pass filter of 1-10
Hz, re-referencing to the average reference, epoching

the EEG data into −100- to 400-ms time segments that
are time-locked to the face/car onset, baseline correc-
tion, and eliminating irrelevant and noisy components by
independent component analysis (ICA). Then, to capture
single-trial N200 latencies, we use singular-value decom-
position (SVD) for calculating the weighted map on the
window from 125 to 225 ms. We then multiply the first or
second component of its right singular matrix to the prepro-

Fig. 9 Weighted maps, waveforms, and distributions of N200 laten-
cies for three participants from the dataset by Georgie et al. (2018).
These figures are derived from the first SVD component. The
weighted maps in the first column indicate the positive activa-
tion of occipito-parietal electrodes during the single-trial negative
N200s peaks between 100 and 250 ms after stimulus appearance. In

the middle column, shading bands around the bold line is the stan-
dard error across trials. Also, the last column shows the distribution
of single-trial N200 waveforms. Note that the single-trial estimates (in
red) which are boundary effects are not used in the model fitting, see
our previous work for more details (Ghaderi-Kangavari et al., 2022)
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cessed EEG in the time window from 100 to 250 ms after
stimulus for all 64 electrodes. This results in a single N200
waveform with less noise related to each trial. These steps
match our previous work (see Ghaderi-Kangavari et al.
2022, for more details).

Figure 9 shows the single trial N200 histogram, wave-
form, and a weighted map indicating the positive activation
on occipito-parietal electrodes during the single-trial N200s
peaks for three example participants (sub-001, sub-003, and
sub-006). Also, Table 2 reports the mean and standard devi-
ation (STD) of each parameter related to nine models which

capture N200 latencies for a specific participant (sub-003).
It is important to note that the values of the parameters
across the models are relatively stable. In addition, the pro-
portion of cognitive variance is estimated around r = 0.44
across participants by model 1a. Furthermore, it is impor-
tant to observe that the result γ ≈ 1 from model 2 in
Table 2 seems to support previous results by Nunez et al.
(2019), who found initial evidence that N200 latencies
track non-decision times with a 1-to-1-ms correspondence.

To clarify even more, Fig. 10 shows posterior prediction
distributions of response times and N200 latencies for

Table 2 The mean and standard deviation (STD) values of parameter posterior distributions of the introduced neurocognitive models fit to a
specific participant (sub-003) from the dataset by Georgie et al. (2018)

Model 1a δ α β μ(e) τ(m) σ s(τ)

Mean 0.954 1.100 0.658 0.157 0.0491 0.034 0.0302

STD (0.196) (0.051) (0.033) (0.005) (0.008) (0.005) (0.008)

Model 1b δ α β μ(e) τ(m) σ s(τ)

0.923 1.088 0.685 0.145 0.0566 0.039 0.012

(0.170) (0.046) (0.032) (0.006) (0.008) (0.006) (0.007)

Model 1c δ α β μ(e) τ(m) σ s(τ)

0.923 1.087 0.685 0.145 0.0566 0.039 0.012

(0.170) (0.046) (0.032) (0.006) (0.008) (0.006) (0.007)

Model 2 δ α β μ(e) τ(m) σ s(τ) γ

0.789 1.175 0.693 0.152 0.054 0.030 0.025 1.05

(0.189) (0.053) (0.040) (0.036) (0.022) (0.006) (0.008) (0.288)

Model 3 δ α β μ(e) τ(m) σ s(τ) θ(l)

1.019 1.102 0.68 0.156 0.071 0.034 0.033 0.0161

(0.190) (0.054) (0.036) (0.006) (0.010) (0.005) (0.005) (0.011)

Model 4a δ α β μ(e) τ(m) τ σ(e) σ(v) s(τ ) k θ(m)

1.115 1.108 0.620 0.141 0.082 0.141 0.014 0.030 0.033 0.164 0.456

(0.192) (0.056) (0.045) (0.013) (0.028) (0.041) (0.020) (0.019) (0.018) (0.018) (0.182)

Model 4b δ α β μ(e) τ(m) σ(e) s(τ ) θ(m)

0.725 1.116 0.670 0.155 0.049 0.031 0.029 0.185

(0.185) (0.051) (0.038) (0.005) (0.010) (0.006) (0.005) (0.148)

Model 5 δ α β μ(e) τ(m) σ s(τ) aslope

0.970 1.258 0.67 0.155 0.050 0.033 0.030 0.114

(0.174) (0.075) (0.029) (0.005) (0.006) (0.004) (0.006) (0.071)

Model 6 δ α β μ(e) τ(m) σ s(τ) λ

0.850 1.152 0.682 0.157 0.049 0.045 0.027 2.467

(0.231) (0.060) (0.038) (0.007) (0.009) (0.007) (0.009) (0.911)

For each model in each row, the parameters are estimated by the trained weights of each model

341



Computational Brain & Behavior (2023) 6:317–376

Fig. 10 Comparing observed
response times and N200
latencies of a specific
participant (sub-003) with
predicted values by six of the
current neurocognitive models.
Left side: The comparison of
observed and predicted response
times. Right side: The
comparison of observed and
predicted N200 latencies

each model for participant sub-003, in which 5000
samples from posterior parameters and 5000 trials for
each sample are used. Figure 33 in the Appendix displays
the posterior predictive distributions of response times
and N200 latencies for participants sub-001 and sub-006,
respectively.

Re-analysis of (Nunez et al., 2019) Data

To further show the reliability and feasibility of the
current models, we use all data from (Nunez et al.,
2019) in which 14 participants were recruited to perform
two different perceptual decision-making tasks. Data from
experiment 1 included EEG and behavioral performance
with 12 participants, and data from experiment 2 included
EEG and behavioral performance with 4 participants. Two
participants were common in both experiments resulting
in 14 unique participants for both experiments. In order
to estimate the N200 waveforms, five steps have been
implemented consecutively, applying bandpass forward-
backward Butterworth IIR filter over raw EEG data from
1 to 10 Hz, basedline correction using −100 ms of the
stimulus appearance, calculating traditional trial-averaged
ERP at 128 electrodes for each participant, applying a
singular value decomposition (SVD) over the ERPs for each
condition and EEG session, and extracting the first SVD
component as a spatial filtering or weighted-map to estimate
the N200 waveforms see the paper by Nunez et al. for more
details (Nunez et al., 2019).

We fit model 2 to all participants from two experiments
to estimate the posterior of its parameters. Table 3 reports
the mean and standard deviation (STD) of the parameters’
posteriors. Note that the STD of estimated parameters is
reasonably small, and mean parameters are also feasible. We

calculate the ratio of the fraction of two sources of variance
called r(σ, s(τ), γ ) to show the proportion of cognitive
variance to EEG variance. As previously mentioned in
more detail, this ratio shows the amount of variance of
cognition explained by EEG measures. Here, the mean
posterior ratio of explained variance is about r = 0.45
across all participants in the two experiments. Interestingly,
we expected γ ≈ 1 for most participants due to the findings
of the original analysis of this data by Nunez et al. (2019),
but the results of the model fits in Table 3 clearly show
positive γ below 1.

Experiment 2 consists of three conditions to manipulate
visual noise contrast at high, medium, and low levels.
Figure 11 shows the posterior predictive distribution
of RT and N200 latencies for two participants across
SRN conditions of experiment 2. The results show that
model 1a can describe observed RT and N200 latencies
simultaneously, even in the presence of censored EEG data
that were removed outside a pre-determined range (see
Nunez et al. 2019, for more details). Table 4 in the Appendix
shows the mean and STD of posterior of participants
from experiment 2 across the signal-to-noise ratio (SRN)
conditions for model 1a.

Re-analysis of (van Vugt et al., 2019) Data

In this section, we assess models 7 and 8 that describe CPP
slopes and behavior in real data. We first repeat the some
of the data extraction methods from the paper by van Vugt
et al. (2019) for clarity.

The data contained 23 participants with an age range
of 17 to 36 (average 23.9) in which 11 participants were
female (van Vugt et al., 2019). Participants were recruited
to perform two different tasks with alternating blocks.
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Table 3 The mean and standard deviation (STD) values of parameter posterior distributions of model 2 when fitting the model to data from
(Nunez et al., 2019)

Exp. Part. δ α β μ(e) τ(m) σ s(τ) γ r(σ, s(τ), γ )

1 1 0.494 1.118 0.573 0.404 0.039 0.017 0.060 0.482 0.73

(0.103) (0.043) (0.028) (0.038) (0.024) (0.008) (0.010) (0.057) (0.17)

2 0.634 1.002 0.487 0.431 0.030 0.028 0.057 0.440 0.44

(0.122) (0.0427) (0.027) (0.04) (0.026) (0.007) (0.011) (0.049) (0.15)

3 0.520 0.926 0.571 0.499 0.058 0.028 0.046 0.418 0.33

(0.120) (0.039) (0.028) (0.046) (0.037) (0.007) (0.009) (0.050) (0.14)

4 0.687 0.837 0.594 0.549 0.062 0.031 0.058 0.347 0.31

(0.156) (0.040) (0.034) (0.037) (0.028) (0.007) (0.009) (0.028) (0.121)

5 0.357 1.091 0.580 0.492 0.050 0.032 0.091 0.367 0.53

(0.189) (0.061) (0.043) (0.043) (0.025) (0.007) (0.016) (0.043) (0.138)

6 0.719 1.067 0.566 0.468 0.023 0.024 0.056 0.385 0.47

(0.117) (0.046) (0.029) (0.039) (0.025) (0.008) (0.012) (0.038) (0.17)

7 0.627 0.802 0.623 0.467 0.020 0.034 0.052 0.427 0.32

(0.175) (0.042) (0.036) (0.036) (0.027) (0.007) (0.009) (0.035) (0.19)

8 0.081 0.904 0.574 0.415 0.025 0.032 0.044 0.464 0.30

(0.138) (0.043) (0.029) (0.039) (0.026) (0.007) (0.010) (0.053) (0.13)

9 0.187 1.147 0.577 0.528 0.085 0.027 0.074 0.374 0.52

(0.163) (0.054) (0.0360 (0.045) (0.035) (0.007) (0.015) (0.046) (0.16)

10 0.005 1.222 0.619 0.445 0.022 0.024 0.073 0.445 0.64

(0.109) (0.049) (0.029) (0.040) (0.022) (0.008) (0.016) (0.049) (0.17)

11 0.298 1.177 0.631 0.557 0.095 0.027 0.099 0.325 0.60

(0.122) (0.045) (0.031) (0.031) (0.023) (0.008) (0.013) (0.029) (0.15)

12 0.606 0.748 0.504 0.394 0.065 0.024 0.043 0.476 0.44

(0.279) (0.039) (0.041) (0.042) (0.033) (0.006) (0.008) (0.061) (0.16)

2 1 0.604 0.981 0.679 0.340 0.110 0.023 0.019 0.571 0.24

(0.082) (0.0302) (0.022) (0.024) (0.019) (0.009) (0.005) (0.045) (0.18)

2 1.058 1.319 0.626 0.453 0.149 0.020 0.049 0.387 0.50

(0.071) (0.036) (0.025) (0.025) (0.017) (0.010) (0.008) (0.033) (0.23)

3 1.023 0.989 0.687 0.313 0.158 0.009 0.020 0.641 0.66

(0.086) (0.030) (0.023) (0.028) (0.024) (0.007) (0.004) (0.068) (0.24)

4 1.114 1.027 0.734 0.471 0.186 0.033 0.032 0.407 0.16

(0.092) (0.032) (0.025) (0.030) (0.0267) (0.001) (0.007) (0.036) (0.11)

For each participant and two experiments, the parameters are estimated via trained weights of the deep learning approach. Here, Exp. refers to the
experiment number, Part. refers to the participant number, and r(σ, s(τ), γ ) = γ 2s2

(τ )/(γ
2s2

(τ ) + σ 2) is the fraction of EEG variance explained by
cognition

In the perceptual decision-making task, participants were
presented two images of human faces on either side of the
screen and then asked to determine whether the two faces
on the screen belonged the same person. In recognition
memory task, participants had to memorize two faces and
after a variable delay in the range of several seconds,
they answered whether a probe face matched one of the
two memorized faces or not. To obtain the appropriate
number of trials for each task, participants did 12 four-
minute blocks in a quadruple cycle, in which there were two
blocks of the memory task followed by one block of the

perceptual decision task. During the process of performing
tasks, EEG activity was recorded from participants using
30 scalp electrodes electrodes based on the 10/20 system.
For preprocessing of behavioral data, trials with response
time outside of 3 standard deviations from the mean were
excluded from further analyses. For EEG preprocessing,
neuronal data were re-referenced to the average mastoids
and a bandstop filter at 50 Hz was applied to remove power
line noise. Also, approximately 5.4% of channels and 8.0%
of trials were excluded across all participants using three
different criteria (see the paper by van Vugt et al. (2019) for
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Fig. 11 Comparing observed response times and N200 latencies of two specific participants (1 and 14) of experiment 2 from (Nunez et al., 2019)
with posterior predictive distributions from fitted values of model 1a

more details). Finally, CPP was identified at three electrodes
CPz, CP1, and CP2 in accordance with O’Connell et al.
(2012b).

At first, we fit model 7 and model 8 to all participants
from two tasks to estimate the posterior of their parameters.
The results show that model 7 model cannot provide a
suitable account of the observed data for both experiments
but model 8 can because of existence of γ parameter.

Figure 12 shows the posterior predictive distributions over
the observed data for some participants in each task.

Table 5 in the Appendix shows the posterior probability
of the γ parameter from model 8 where the distribution is
above 0 for each task. We also reported Table 6 containing
the mean and standard deviation (STD) of the parameters’
posteriors of model 8 for some participants from two
experiments. The mean posterior ratio of explained variance
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Fig. 12 Comparing observed response times and CPP slope of three specific participants from (van Vugt et al., 2019) with posterior predictive
distributions from fitted values of model 7 and model 8

of perceptual decision-making is about r = 0.06 and
recognition memory tasks is r = 0.07 across all participants.

These results suggest that little variance of the single-
trial CPP is explained by cognition. It may be that trial-
averages in this data are necessary to find better cognitive

representations. It also is possible that other single-trial
EEG estimation techniques should be used for this data,
such as using the Mexican hat function used by Jin et al.
(2019). We could even compare single-trial estimation
techniques to see which techniques yield the largest
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posterior ratios r across multiple model fits with different
single-trial CPP estimations as data input (with appropriate
out-of-sample posterior predictive comparisons). However,
we felt this study was outside the scope of the current work.

How to Apply the Proposed Single-Trial
Neurocognitive Models to New Data

The results of these three datasets show that the proposed
single-trial framework and example neurocognitive models
can be conveniently used to estimate latent processes
underlying perceptual decision-making. Like other model
fitting procedures, a researcher can compare related
models in order to answer research questions related to
experimental hypotheses. The models can then be compared
using posterior predictive distributions to decide on the best
interpretation of the data.

Future researchers may would like to extract the single-
trial N200 latencies and CPP slope with methods to increase
signal-to-noise on single trials. We recommend researchers
use SVD or other decomposition methods to extract single-
trial N200 latencies, single-trial CPP estimates, and other
EEG measures. In this way, the main component can be
selected which describes the high variance of the original
signal. For more information about how to apply SVD in
ERP data, you can see the references of (Nunez et al., 2017,
2019; Ghaderi-Kangavari et al., 2022).

All pre-trained neural networks that we fit in this
paper are provided as checkpoints to be implemented in
BayesFlow on https://github.com/AGhaderi/NDDM. These
checkpoints allow future researchers to fit selected mod-
els to new data quickly in order to quickly obtain pos-
terior distributions of the example models in this paper.
If a researcher wishes to test different single-trial neu-
rocognitive models which do not incorporate perceptual
decision-making nor N200 latencies or CPPs in EEG, it
is completely feasible to build new models based on the
current paradigm and then evaluate them using posterior
predictive distributions.

Discussion

The neurocognitive models assume latent parameters of
the brain and cognition simultaneously to better predict
unobserved data and discover underlying mechanisms
of cognition. Our investigation aimed to introduce a
framework for integrative models to consolidate neural
activity and behavioral data at the single-trial level. The
current models contained nuisance parameters shared with
both brain measures and behavioral data at the single-trial
level. These models are difficult to fit, with at least some of

them being intractable in that they do not have closed-form
likelihoods.

In some example models, we proposed that single-
trial non-decision times in drift-diffusion models reflected
particular ERP components from EEG, N200 latencies, on
each trial. In other models, we proposed that single-trial
drift rates reflected another particular ERP component, CPP
measures, in every single trial. To fit these models, we used
a deep learning approach to learn the feed-forward model
in a training phase. To assess the reliability of estimated
latent parameter values of interests, we then recovered
parameters in a single step during the inference phase. The
results show that many of the proposed models recovered
parameters reasonably well. Also, investigation of model
misspecification showed that the single-trial integrative
models are robust to contaminant data and some assumption
violations. We also used three real experimental datasets to
test the reliability of the models. In general, the results of
using real data show that our models have a high degree
of flexibility and practicability. Therefore, even when the
models’ assumptions are violated and misspecified in real
data, their parameters can be informative for measuring the
neurocognitive process.

Moreover, by evaluating the ratios of noise parameters,
evaluating parameters in fits of mixture models (model 4),
and performing the model comparison, it can be discovered
whether the extracted neural activity is helpful to constrain
cognitive latent parameters. Specific parameters are also
able to provide some information about the relation between
EEG measures and behavior. For example, we can examine
if the effect parameters (e.g., γ in model 2) are close to zero
to identify the existence of a relationship between cognitive
parameters and EEG measurements, e.g., by calculating
Bayes factors (van Ravenzwaaij & Etz, 2021).

Limitations to Our Framework andModels

The main limitations of our approach stem from the
fact that the joint likelihood of paired single-trial EEG
and behavioral data is not solved, and likely cannot be
solved for most models. Therefore, approximate Bayesian
computation (ABC) should be used (Palestro et al., 2018b).
We choose to use BayesFlow in this paper (Radev et al.,
2020a); however, other algorithms and programs could be
used in the future to fit these same models or new models in
our framework (Palestro et al., 2018b; Klinger et al., 2018;
Fengler et al., 2021).

Another limitation is that fitting hierarchical models that
use our proposed models or modeling framework as a base
is somewhat difficult. There are often scientific questions
that are best asked by creating a model in which multiple
participants’ data are fit. Participants are expected to differ
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in their parameters sets but also expected to share some
overall effect across two experimental conditions. To the
best of our knowledge, it is not currently known how to
fit these models using BayesFlow that properly accounts
for participant differences with both priors and hyperpriors.
However, we believe that recent techniques (Fengler et al.,
2021) and future techniques are solving this problem.

Fitting the same neurocognitive models with fixed
parameters requires the neural networks as approximators
to be retrained. This is especially relevant when comparing
nested models. This type of design for model comparison
typically has a number of fixed and free parameters within
models.

Many of the joint models proposed here assume
intrinsic relationships between the EEG and behavioral data.
Posterior distributions of variance parameters can indicate
the reliability of this assumed relationship, and model
comparison can be performed to test assumed relationships.
However, fitting models in this framework should be used in
conjunction with fitting directed models when discovering
new EEG + behavioral relationships.

The proposed framework assumed normal distributions
for both describing EEG measures with measurement noise
as well as the connections between EEG measures and
cognitive parameters. Such assumptions may be somewhat
controversial for real data, though we showed the robustness
of the present models to model misspecifications. It is likely
that noise measurement of EEG is not normal since lots
of embedded physical and environment noise exists in the
real EEG signal. Theoretical development is necessary to
test models with different distributions. We felt assuming
normal distributions was a good first step, despite obvious
censored and skewed real EEG data.

The source of the less precise recovery of the linear
collapsing parameter in model 5 may be due to a failure
of our particular model estimation procedure, instead of the
model specifications. Previous findings have shown that the
mean of slope parameter is recovered relatively well (Evans
et al., 2020b; Fengler et al., 2021). On the other hand, the
poor recovery of the Weibull collapsing parameter in model
6 may be due to an unavoidable intrinsic unidentifiability of
the model (Evans et al., 2020b; Fengler et al., 2021).

Considerations About Parameter Estimation
Methods

Although it is not generally required to use simulation to
estimate posteriors of parameters, we have used it because
the closed-form likelihood of the current models is unknown
and common software such as Stan and JAGS can not easily
estimate parameters’ posterior when the models contain
nuisance parameters. Also, the INNs are based on standard

neural networks (not Bayesian neural networks) which are
able to directly take samples of the posterior portions of
the parameters (Adler et al., 2019; Radev et al., 2020a).
Summary neural networks help likelihood-free inference by
concentrating training only on valuable information in the
data. As a result, the fusion of a summary and INNs have
been constructed to estimate the parameters of each model.

All neurocognitive models were run on PC with a CPU:
Intel(R) Xeon(R) Gold 6226R CPU @ 2.90GHz 32 Core
X64, RAM: 64 GB = 2 × 32 GB, Model: SK Hynix 2x
32GB DDR4-2933 RDIMM and Operating System: Debian
4.19.181-1 (2021-03-19) x86 64 GNU/Linux. We suspect
that using a graphics processing unit (GPU) for training
weights of deep learning would lead to faster processing
times. Programming languages for deep learning (e.g.,
Keras and TensorFlow) with GPUs are great for highly
parallel processing.

Recommended Steps in Introducing NewModels in
This Framework

These three concepts are important to test new neurocog-
nitive models in our proposed framework: simulation,
parameter recovery, and model comparison. In this paper,
we elucidated our new single-trial modeling framework,
and in “Mathematical Models for Neurocognitive Theory,”
we sought to illuminate the theory and specification of
the framework. We used a deep learning implementation,
BayesFlow, and simulation in Python to fit and test the
current models. “Recovering Parameters from Simulated
Models” showed the results of parameter recovery related
to each single-trial integrative model and then “Posterior
Predictive Checks” and “Fitting the Proposed Single-Trial
Neurocognitive Models on Experimental Data” evaluated
the models by simulated and real data respectively. Note
that each type of distinct joint modeling approach contains
specific assumptions about the relation between the brain
and behavior. It is worthwhile to simulate these different
approaches with a plausible range of parameters’ values
in order to learn about the model and assess parameter
recovery.

There are some investigations into the meta-scientific
process on how to build robust models to address
hypothetical questions (Lee et al., 2019; Blohm et al.,
2019; Guest & Martin, 2021). Confirmatory models could
be determined in preregistration before data collection and
should anticipate the pattern of data that we want to collect.
However, the aim of the present research is to develop an
overall framework as well as example explanatory models
that make some explicit assumptions about data generation
and cognitive processes. These models could ultimately
inspire future confirmatory approaches.
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Inspiring New Research Questions

Neurocognitive models can identify underlying latent pro-
cesses. Latent parameters are the power of neurocognitive
models, which can show individual- and group-level differ-
ences in experimental data. Our proposed models are based
on specific theories and concepts. They not only have the
characteristics of descriptive models that identify individual
differences in task performance but also describe compactly
the underlying psychological parameters related to neural
activity. Thus, these neurocognitive models could be con-
sidered measurement models if they pass future tests of
selective influence in experimental work. That is, changes
in the neurocognitive processes as induced by experimen-
tal conditions should be reflected in the corresponding
parameters in the models.

Our example models are intended to propose some intu-
itive research questions in order to answer questions about
neurocognitive processes. Indeed, the models intrinsically
provide some criteria and inspirations for designing new
experiments. In particular, models 1a, 1b, and 1c can
answer some questions about visual encoding time (VET)
and motor execution time (MET) in perceptual decision
making tasks. Which one of VET and MET can be changed
significantly by specific experimental manipulation, for
instance by a visual attention manipulation? Which of VET
and MET is typically longer than the other across individu-
als? Under noninvasive brain stimulation, e.g., transcranial
alternating current stimulation (tACS) and transcranial mag-
netic stimulation (TMS), how are motor execution and
visual encoding disturbed? Or does the trial-to-trial variabil-
ity of drift rate come from the CPP variability? These are
just some of the example questions that could be answered
with our models. We expect many research questions can be
answered with our proposed single-trial integrative frame-
work.

The Future of Neurocognitive Modeling

Our framework can easily be extended to different data
types (e.g., single-trial fMRI data) and multiple data
types (e.g., single-trial fMRI, EEG, and behavioral data).
Also, a benefit of these models is that they are easily
extended to multiple EEG variables. For instance, one
could extend the class of model 1 so that the non-
decision time variable influences both the visual sensory
system and motor performance, by explaining both single-
trial N200 latencies and readiness potentials (Lui et al.,
2021; Nunez et al., 2022). This model would be achieved
with an additional equation that describes the second peak
in the RP potential from a second trial-to-trial nuisance
parameter.

Recent models have proposed the use of accumulation
processes to describe on- versus off-task behavior, as
well as keeping track of the time to response (Hawkins
et al., 2019; Hawkins & Heathcote, 2021). We did not
implement such models, but these models could conceivably
be implemented for joint models using our integrative
single-trial framework.

Neuro-cognitive extensions of these models within our
framework could be improvements upon our proposed
models, specifically our mixture models: model 3 and
model 4. In the future, using a similar method to model
4, researchers can easily compare two or more models
to draw an inference about whether a specific neural
measure can constrain and predict cognitive processes
effectively.

The single-trial integrative models impose dependency
between neural and behavioral data at the single-trial
level. As a result, the authors of this article envisage
that the single-trial approach will be very worthwhile and
practical in interpreting cognitive processes in the future,
and researchers will endeavor to further develop it.

Conclusions

There is now rich literature on the relationships between
EEG measures, behavioral data, and latent cognitive
parameters. However, few studies focus on building models
for the combination of EEG data and behavioral data
at the trial level simultaneously. Here, we introduced a
novel integrative framework to connect both brain and
behavior modalities in single trials. We then approximated
posteriors of parameters in example models directly via a
deep learning approach named BayesFlow. We also showed
the robustness of the models to model misspecification.
The results of using the current models for fitting three
real data show that they can be applicably and easily
used by researchers. Future researchers can introduce new
single-trial integrative joint models via the current paradigm
to set their explicit assumptions. Although we focused
on EEG measures to build some relevant models, the
present ideas can be also feasible for other data, including
magnetoencephalography (MEG) data, fMRI, and invasive
single-cell recordings in animal studies.

Appendix

Simulation

We used the following code to simulate model 3 in Python.
For other models, little changes in code are required.
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import numpy as np
def prior(n_sets):

""" Prior ranges of the simulator"""
n_parameters = 8
p_samples = np.random.uniform(low=(-3.0, 0.5, 0.1, 0.05, 0.06, 0.0, 0.0, 0.0),

high=(3.0, 2.0, 0.9, 0.6, 0.8, 0.3, 0.3, 0.3),
size=(n_sets, n_parameters))

return p_samples.astype(np.float32)
def diffusion_model3(drift, boundary, beta, mu_e, tau_m, sigma, s_tau, theta_l,

n_trials, dc=1.0, dt=.001):
""" Simulates some trials from the diffusion model """
choicert = np.empty(n_trials)
z = np.empty(n_trials)
for i in range(n_trials):

n_steps = 0.
evidence = boundary * beta
# Simulate a single DM path
while (evidence > 0 and evidence < boundary):

# DDM equation
evidence += drift*dt + np.sqrt(dt) * dc * np.random.normal()
# Increment step
n_steps += 1.0

# Response time
rt = n_steps * dt
# visual encoding time for each trial
tau_e_trial = np.random.normal(mu_e, s_tau)
# N200 latency
z[i] = np.random.normal(tau_e_trial, sigma)
if evidence >= boundary:

ddm_choicert = tau_e_trial + rt + tau_m
else:

ddm_choicert = -tau_e_trial - rt - tau_m
# lapse distribution U(-max(r), max(r))
uniform_choicert = np.random.uniform(-3, 3)
# RT*ACC ˜ (1-theta_l)*DDM + theta_l*U(-maxrt,maxrt)
rng = np.random.uniform(0,1)
if rng <= 1-theta_l:

choicert[i] = ddm_choicert
else:

choicert[i] = uniform_choicert
return choicert, z

def simulator_ddm(prior_samples, n_trials):
""" Simulate multiple datasets from diffusion model """
n_sim = prior_samples.shape[0]
sim_choicert = np.empty((n_sim, n_trials), dtype=np.float32)
sim_z = np.empty((n_sim, n_trials), dtype=np.float32)
# Simulate diffusion data
for i in range(n_sim):

drift, boundary, beta, mu_e, tau_m, sigma, s_tau, theta_l = prior_samples[i]
sim_choicert[i], sim_z[i] = diffusion_model3(drift, boundary, beta, mu_e,

tau_m, sigma, s_tau, theta_l, n_trials)
sim_data = np.stack([sim_choicert, sim_z], axis=-1)
return sim_data

n_sets = 100
n_trials = 300
params = prior(n_sets)
data = simulator_ddm(params, n_trials)
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Figures Associated with Parameter Recovery Results

Fig. 13 The plot of true parameters versus posteriors of estimated parameters for model 1b. See the caption of Fig. 4 for additional details of
these plots
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Fig. 14 The plot of true parameters versus posteriors of estimated parameters for model 1c. See the caption of Fig. 4 for additional details of these
plots
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Fig. 15 The plot of true parameters versus posteriors of estimated parameters for model 2. See the caption of Fig. 4 for more details
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Fig. 16 The plot of true parameters versus posteriors of estimated parameters for model 3. See the caption of Fig. 4 for more details
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Fig. 17 True parameters versus posteriors of estimated parameters for model 4a. See the caption of Fig. 4 for more details
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Fig. 18 True parameters versus posteriors of estimated parameters for model 4b. See the caption of Fig. 4 for more details
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Fig. 19 True parameters versus posteriors of estimated parameters for model 5. See the caption of Fig. 4 for more details
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Fig. 20 True parameters versus posteriors of estimated parameters for model 6. See the caption of Fig. 4 for more details

Fig. 21 The plot of true parameters versus posteriors of estimated parameters for model 7. See the caption of Fig. 4 for more details
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Fig. 22 True parameters versus posteriors of estimated parameters for model 8. See the caption of Fig. 4 for more details

Fig. 23 True parameters versus posteriors of estimated parameters for model 9. See the caption of Fig. 4 for more details
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Fig. 24 True parameters versus posteriors of estimated parameters for
model 10. We demonstrated that the model cannot recover the related
parameters when we are going to add a γ effect parameter to the
model in an irrational and non-technical way. Therefore, we are very

uncertain about the parameters. Although this model is convergent,
we did not actually add any information to the model with brain data
compared to when we only had behavioral data

Fig. 25 True parameters versus posteriors of estimated parameters for model 11. See the caption of Fig. 4 for more details
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Fig. 26 True parameters versus posteriors of estimated parameters for model 12. See the caption of Fig. 4 for more details

Fig. 27 True parameters versus posteriors of estimated parameters for model 13. See the caption of Fig. 4 for more details
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Fig. 28 Regression between EEG and RT on model 1a on 100 datasets and 1000 trials for each

Fig. 29 Parameter recovery of model 1a when we permuted the index of simulated EEG measures with respect to simulated behavior
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Fig. 30 Parameter recovery when fitting model 1a to a simulation of
a similar model with a contaminant process of choice-response times.
On 5% of trials, choice-response times are simulated by a uniform dis-

tribution, ri , xi ∼ Unif orm(0, 2) seconds, instead of a drift-diffusion
model distribution. See the caption of Fig. 4 for additional details of
these plots
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Fig. 31 Parameter recovery when fitting model 1a to a simulation of
a similar model with a contaminant process of N200 latencies. On
5% of trials, N200 latencies are simulated by a uniform distribution,

zi ∼ Unif orm(0, 0.3) seconds, instead of the original generation
process that was influenced by trial-to-trial variability in non-decision
time. See the caption of Fig. 4 for additional details of these plots
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AssessingModel Fits Experimental Data

Fig. 32 Parameter recovery when fitting model 1a to a simulation of
a similar model with the single-trial N200 latencies zi instead being
simulated by a Gamma distribution, zi ∼ Gamma, instead of a nor-

mal distribution as assumed by the model-fitting procedure. See the
caption of Fig. 4 for additional details of these plots
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Fig. 33 Comparing observed response times and N200 latencies of
two specific participants (sub-001 and sub-006) with predicted values
by six of the current neurocognitive models. Left side: The comparison

of observed and predicted response times. Right side: The comparison
of observed and predicted N200 latencies
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Table 4 Posterior means of estimated parameters of model 1a when fitting the model to data from (Nunez et al., 2019)

Part. SRN. δ α β μ(e) τ(m) σ s(τ)

Low 0.607 1.105 0.566 0.224 0.225 0.025 0.017

1 Med. 1.271 1.157 0.569 0.200 0.172 0.022 0.014

High 1.095 1.119 0.593 0.183 0.185 0.016 0.014

Low 1.145 1.507 0.513 0.225 0.348 0.021 0.010

2 Med. 1.439 1.568 0.509 0.193 0.290 0.0160 0.010

High 1.435 1.563 0.512 0.174 0.270 0.013 0.008

Low 1.092 1.051 0.556 0.221 0.216 0.023 0.023

3 Med. 1.323 1.130 0.623 0.201 0.216 0.019 0.021

High 1.634 1.167 0.593 0.184 0.208 0.012 0.018

Low 0.606 1.105 0.566 0.224 0.224 0.025 0.017

4 Med 1.731 1.221 0.569 0.209 0.347 0.025 0.018

High 1.672 1.237 0.583 0.199 0.363 0.026 0.020

For each participant in each condition in rows, the parameters are estimated via trained weights of the deep learning approach. Here, Part. refers
to the participant number, and SNR is the signal-to-noise ratio

Table 5 Estimates of the γ parameter from model 8, fitted to both perceptual decision-making and recognition memory tasks from work by van
Vugt et al. (2019)

Part . 1 2 3 4 5 6 7 8 9 10 11 12

Pr perc 0.737 0.978 0.414 0.448 0.228 0.396 0.194 0.977 0.997 0.995 0.619 0.368

mem 0.807 0.905 0.512 0.396 0.088 0.935 0.613 1 0.999 0.803 0.31 0.837

Part . 13 14 15 16 17 18 19 20 21 22 23

Pr perc 0.925 0.78 0.744 0.742 0.957 0.998 0.947 0.564 0.825 0.601 0.985

mem 0.481 0.506 0.571 0.716 0.614 0.5 0.847 0.201 0.653 0.596 0.886

Where Part. refers to the participant number, “perc” denotes the perceptual decision making task, and “mem” denotes the recognition memory
task. Pr is the posterior probability that the γ parameter is above 0. Pr is calculated by computing the integral of the estimated posterior
distribution from 0 to +∞
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Table 6 The mean and standard deviation (STD) values of parameter posterior distributions of model 8 when fitting the model to data from van
Vugt et al. (2019)

Part . Task μ(δ) α τ σ η γ r(σ, η, γ )

perc 0.842 1.845 0.579 0.0911 0.424 0.017 0.035

1 (0.108) (0.076) (0.017) (0.027) (0.263) (0.030) (0.073)

mem 1.304 1.304 0.442 0.103 0.666 0.015 0.028

(0.157) (0.074) (0.011) (0.023) (0.381) (0.017) (0.049)

perc 0.630 2.031 0.371 0.156 0.292 0.093 0.053

2 (0.095) (0.054) (0.022) (0.040) (0.220) (0.049) (0.077)

mem 0.944 1.373 0.341 0.077 0.494 0.031 0.070

(0.124) (0.071) (0.012) (0.024) (0.327) (0.024) (0.11)

perc 0.357 2.033 0.246 0.177 0.021 −0.031 0.008

3 (0.063) (0.048) (0.027) (0.040) (0.160) (0.103) (0.024)

mem 0.696 1.872 0.288 0.105 0.354 0.002 0.021

(0.099) (0.074) (0.019) (0.027) (0.265) (0.040) (0.046)

perc 0.748 1.940 0.728 0.075 0.161 0.005 0.023

4 (0.088) (0.057) (0.021) (0.029) (0.201) (0.039) (0.075)

mem 0.921 1.746 0.299 0.058 0.300 −0.008 0.043

(0.114) (0.087) (0.018) (0.025) (0.264) (0.028) (0.112)

perc 0.835 1.890 0.800 0.076 0.392 −0.023 0.048

5 (0.105) (0.072) (0.018) (0.027) (0.278) (0.032) (0.090)

mem 0.878 1.778 0.445 0.095 0.743 −0.034 0.088

(0.127) (0.099) (0.015) (0.025) (0.354) (0.024) (0.109)

perc 0.926 2.054 0.554 0.123 0.465 −0.008 0.016

6 (0.110) (0.052) (0.020) (0.031) (0.216) (0.029) (0.036)

mem 1.176 1.203 0.390 0.103 0.727 0.026 0.058

(0.158) (0.065) (0.009) (0.025) (0.406) (0.018) (0.083)

perc 0.863 1.987 0.600 0.086 0.239 −0.027 0.025

7 (0.097) (0.054) (0.020) (0.029) (0.210) (0.032) (0.060)

mem 0.743 1.467 0.374 0.114 1.109 0.006 0.051

(0.144) (0.102) (0.012) (0.024) (0.413) (0.023) (0.084)

perc 0.858 1.362 0.570 0.072 0.427 0.050 0.121

8 (0.124) (0.075) (0.012) (0.025) (0.335) (0.025) (0.167)

mem 1.116 1.273 0.326 0.088 0.901 0.066 0.312

(0.151) (0.069) (0.009) (0.025) (0.354) (0.020) (0.202)

perc 1.086 1.433 0.576 0.103 0.516 0.053 0.094

9 (0.137) (0.084) (0.012) (0.025) (0.340) (0.021) (0.113)

mem 1.396 1.605 0.447 0.121 1.024 0.068 0.264

(0.188) (0.108) (0.012) (0.027) (0.333) (0.020) (0.156)

perc 1.008 1.891 0.754 0.107 0.552 0.071 0.141

10 (0.120) (0.074) (0.016) (0.029) (0.263) (0.029) (0.145)

mem 0.847 1.870 0.439 0.106 0.662 0.0212 0.052

(0.123) (0.091) (0.0167) (0.026) (0.34) (0.027) (0.083)

perc 0.711 2.027 0.729 0.066 −0.015 0.0150 0.023

11 (0.086) (0.050) (0.027) (0.035) (0.149) (0.042) (0.092)
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Table 6 (continued)

Part . Task μ(δ) α τ σ η γ r(σ, η, γ )

mem 0.986 1.695 0.450 0.083 0.965 −0.011 0.064

(0.148) (0.118) (0.014) (0.023) (0.408) (0.020) (0.101)

perc 0.574 2.092 0.555 0.120 0.026 −0.018 0.007

12 (0.077) (0.047) (0.025) (0.042) (0.172) (0.052) 0.029

mem 1.082 1.709 0.292 0.096 0.448 0.024 0.031

(0.134) (0.089) (0.015) (0.025) (0.287) (0.024) (0.059)

For 12 out of 23 participants and each task, the parameters are estimated via trained weights of the deep learning approach. Here, Part.
refers to the participant number, “perc” refers to the perceptual decision making task, “mem” refers to the recognition memory task, and
r(σ, η, γ ) = (γ 2η2/(γ 2η2 + σ 2)) is the fraction of EEG variance explained by cognition
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Table 7 Posterior means and standard deviation (STD) of estimated parameters of model 2 when fitting the model to data from Georgie et al.
(2018)

Part. Cond. δ α β μ(e) τ(m) σ s(τ) γ r(σ, s(τ), γ )

1 P 2.344 1.127 0.619 0.219 0.065 0.036 0.031 0.81 0.307

(0.369) (0.125) (0.080) (0.044) (0.024) (0.008) (0.012) (0.226) (0.160)

NP 2.650 1.071 0.521 0.208 0.098 0.025 0.022 0.910 0.367

(0.264) (0.110) (0.062) (0.053) (0.038) (0.008) (0.011) (0.320) (0.231)

2 P 0.619 1.148 0.766 0.181 0.046 0.028 0.038 0.850 0.539

(0.325) (0.077) (0.056) (0.035) (0.017) (0.008) (0.012) (0.211) (0.190)

NP 1.046 1.206 0.600 0.125 0.063 0.022 0.017 1.327 0.468

(0.254) (0.076) (0.051) (0.036) (0.023) (0.009) (0.012) (0.421) (0.279)

3 P 1.510 1.097 0.625 0.179 0.097 0.029 0.014 0.955 0.183

(0.330) (0.080) (0.058) (0.053) (0.042) (0.007) (0.011) (0.394) (0.173)

NP 1.809 1.047 0.559 0.178 0.082 0.035 0.019 0.948 0.208

(0.344) (0.0868) (0.059) (0.050) (0.036) (0.007) (0.012) (0.367) (0.159)

4 P 1.950 0.654 0.780 0.277 0.049 0.043 0.051 0.522 0.285

(0.779) (0.074) (0.075) (0.029) (0.018) (0.007) (0.010) (0.064) (0.100)

NP 1.946 0.877 0.720 0.243 0.054 0.033 0.042 0.637 0.391

(0.502) (0.091) (0.078) (0.034) (0.019) (0.007) (0.010) (0.111) (0.145)

5 P 0.969 1.386 0.800 0.246 0.0648 0.022 0.038 0.597 0.510

(0.333) (0.105) (0.055) (0.039) (0.024) (0.008) (0.011) (0.123) (0.208)

NP 1.295 1.281 0.701 0.258 0.068 0.027 0.040 0.599 0.424

(0.331) (0.097) (0.067) (0.047) (0.028) (0.008) (0.013) (0.146) (0.185)

6 P 0.969 1.386 0.800 0.246 0.065 0.022 0.038 0.597 0.423

(0.333) (0.105) (0.056) (0.039) (0.024) (0.008) (0.011) (0.123) (0.187)

NP 1.295 1.281 0.701 0.258 0.068 0.027 0.040 0.599 0.299

(0.331) (0.097) (0.067) (0.047) (0.028) (0.008) (0.013) (0.146) (0.168)

7 P 2.190 1.008 0.768 0.225 0.048 0.035 0.038 0.791 0.417

(0.481) (0.131) (0.070) (0.033) (0.018) (0.008) (0.009) (0.137) (0.146)

NP 2.347 1.071 0.607 0.181 0.0497 0.028 0.029 1.025 0.504

(0.369) (0.111) (0.072) (0.037) (0.018) (0.008) (0.011) (0.251) (0.201)

8 P 1.192 1.0520 0.827 0.265 0.067 0.034 0.034 0.571 0.244

(0.505) (0.095) (0.057) (0.039) (0.028) (0.007) (0.009) (0.108) (0.118)

NP 1.960 1.206 0.769 0.263 0.074 0.033 0.038 0.586 0.322

(0.442) (0.138) (0.072) (0.043) (0.028) (0.007) (0.010) (0.124) (0.149)

9 P 2.154 0.744 0.722 0.133 0.044 0.033 0.035 1.100 0.564

(0.566) (0.075) (0.073) (0.023) (0.012) (0.008) (0.009) (0.210) (0.159)

NP 2.598 0.72 0.469 0.145 0.033 0.037 0.041 0.996 0.529

(0.356) (0.073) (0.058) (0.025) (0.0121) (0.008) (0.011) (0.196) (0.150)
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Table 7 (continued)

Part. Cond. δ α β μ(e) τ(m) σ s(τ) γ r(σ, s(τ), γ )

10 P 0.647 1.219 0.611 0.220 0.035 0.043 0.051 0.672 0.348

(0.270) (0.103) (0.059) (0.051) (0.025) (0.009) (0.021) (0.246) (0.163)

NP 0.266 1.291 0.633 0.228 0.040 0.026 0.047 0.691 0.550

(0.235) (0.089) (0.0520 (0.049) (0.0261) (0.009) (0.020) (0.213) (0.226)

11 P 1.916 0.793 0.794 0.197 0.050 0.027 0.040 0.725 0.533

(0.606) (0.0903) (0.065) (0.026) (0.014) (0.007) (0.008) (0.102) (0.158)

NP 1.803 0.747 0.724 0.220 0.043 0.036 0.052 0.613 0.433

(0.644) (0.085) (0.082) (0.029) (0.017) (0.007) (0.011) (0.093) (0.128)

12 P 1.767 0.914 0.543 0.153 0.039 0.030 0.036 0.973 0.546

(0.392) (0.080) (0.063) (0.032) (0.015) (0.008) (0.013) (0.256) (0.182)

NP 2.104 0.803 0.608 0.207 0.037 0.038 0.052 0.681 0.463

(0.492) (0.092) (0.082) (0.032) (0.014) (0.008) (0.012) (0.125) (0.140)

13 P 1.075 1.198 0.506 0.180 0.089 0.028 0.022 1.027 0.355

(0.250) (0.081) (0.046) (0.057) (0.042) (0.010) (0.015) (0.437) (0.257)

NP 1.121 1.392 0.516 0.120 0.114 0.022 0.007 1.615 0.352

(0.206) (0.082) (0.047) (0.046) (0.038) (0.012) (0.011) (0.579) (0.317)

14 P 1.137 0.837 0.754 0.159 0.0468 0.031 0.039 0.838 0.503

(0.547) (0.079) (0.069) (0.029) (0.014) (0.007) (0.011) (0.174) (0.162)

NP 1.489 0.782 0.775 0.215 0.0420 0.045 0.062 0.612 0.414

(0.606) (0.086) (0.074) (0.029) (0.014) (0.008) (0.012) (0.093) (0.118)

15 P 1.437 1.119 0.624 0.176 0.065 0.029 0.023 0.946 0.342

(0.338) (0.084) (0.061) (0.042) (0.027) (0.008) (0.011) (0.300) (0.206)

NP 1.085 1.139 0.614 0.119 0.104 0.024 0.008 1.440 0.274

(0.257) (0.068) (0.046) (0.041) (0.033) (0.009) (0.009) (0.505) (0.255)

For each participant in each condition in rows, the parameters are estimated via trained weights of the deep learning approach. Here, Part.
refers to the participant number, and Cond. refers to conditions. P refers to prioritized condition and NP and non-prioritized condition. Finally,
r(σ, s(τ), γ ) = γ 2s2

(τ )/(γ
2s2

(τ ) + σ 2) is the fraction of EEG variance explained by cognition
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Table 8 Assessments of uncertainty of recovery posterior distributions

Model 1a δ α β μ(e) τ(m) σ s(τ)

Mean-of-var 8.24e−02 9.61e−03 2.56e−03 2.20e−04 5.37e−04 1.16e−04 1.41e−04

Var-of-var 6.92e−03 1.96e−04 4.78e−06 1.42e−08 2.46e−07 3.29e−09 5.08e−09

Model 1b δ α β μ(e) τ(m) σ s(τ)

Mean-of-var 6.21e−02 9.38e−03 2.07e−03 2.28e−04 5.18e−04 1.56e−04 1.18e−04

Var-of-var 3.66e−03 1.56e−04 3.12e−06 1.28e−08 8.90e−08 7.50e−09 4.51e−09

Model 1c δ α β μ(e) τ(m) σ s(τ)

Mean-of-var 4.71e−02 5.29e−03 1.12e−03 6.30e−05 2.01e−04 3.52e−05 4.51e−05

Var-of-var 1.44e−03 5.26e−05 4.80e−07 2.64e−09 2.39e−08 6.81e−10 1.83e−09

Model 2 δ α β μ(e) τ(m) σ s(τ) γ

Mean-of-var 9.71e−02 9.19e−03 2.63e−03 2.59e−03 2.19e−03 3.44e−04 1.81e−04 4.57e−02

Var-of-var 1.19e−02 1.22e−04 7.58e−06 1.52e−05 1.25e−05 1.23e−07 1.33e−08 5.06e−03

Model 3 δ α β μ(e) τ(m) σ s(τ) θ(l)

Mean-of-var 9.72e−02 1.40e−02 3.56e−03 2.28e−04 8.98e−04 1.57e−04 1.55e−04 6.32e−04

Var-of-var 4.85e−03 3.50e−04 1.01e−05 1.34e−08 6.99e−07 9.87e−09 1.26e−08 1.25e−07

Model 4a δ α β μ(e) τ(m) τ σ(e) σ(v) s(τ ) v θ(m)

Mean-of-var 4.89e−02 5.55e−03 1.48e−03 1.72e−03 2.69e−03 3.92e−03 1.09e−03 1.26e−03 7.79e−04 1.84e−03 9.31e−03

Var-of-var 2.61e−03 6.81e−05 1.25e−06 7.35e−06 2.56e−05 6.44e−05 1.70e−06 4.14e−06 1.34e−06 8.09e−06 3.07e−04

Model 4b δ α β μ(e) τ(m) σ(e) s(τ ) θ(m)

Mean-of-var 1.71e−02 1.87e−03 5.26e−04 8.60e−05 1.56e−04 2.90e−04 3.41e−04 7.85e−03

Var-of-var 1.73e−04 4.75e−06 1.12e−07 2.26e−09 1.08e−08 1.35e−07 4.05e−07 1.77e−04

Model 5 δ α β μ(e) τ(m) σ s(τ) aslope

Mean-of-var 5.57e−2 3.09e−2 1.78e−3 3.16e−4 1.19e−3 1.78e−4 1.53e−4 1.72e−2

Var-of-var 3.25e−03 6.57e−04 2.09e−06 2.64e−08 9.01e−07 1.33e−08 1.24e−08 1.98e−04
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Table 8 (continued)

Model 6 δ α β μ(e) τ(m) σ s(τ) ω

Mean-of-var 7.54e−02 3.71e−02 3.16e−03 1.15e−03 1.83e−03 2.42e−04 2.37e−04 4.73e−01

Var-of-var 7.82e−03 2.17e−03 8.55e−06 7.25e−05 1.66e−05 3.94e−08 1.80e−08 1.57e−01

Model 7 μ(δ) α β τ σ η

Mean-of-var 8.03e−03 4.96e−03 4.79e−04 3.24e−05 2.14e−02 2.08e−02

Var-of-var 2.64e−05 8.08e−05 4.11e−08 9.83e−10 2.93e−04 2.35e−04

Model 8 μ(δ) α τ σ η γ

Mean-of-var 3.35e−02 3.28e−03 6.76e−05 8.78e−02 6.90e−02 4.46e−02

Var-of-var 2.64e−05 8.08e−05 4.11e−08 9.83e−10 2.93e−04 2.35e−04

Model 9 δ α β τ(e) τ(m) σ

Mean-of-var 3.91e−02 6.34e−03 8.02e−04 1.51e−04 1.81e−04 8.21e−05

Var-of-var 7.07e−04 1.04e−04 1.50e−07 9.45e−09 1.07e−08 2.36e−09

Model 10 δ α β τ(e) τ(m) σ γ

Mean-of-var 7.30e−03 1.78e−03 2.52e−04 1.46e−03 1.53e−03 3.27e−05 1.13e−01

Var-of-var 2.73e−05 7.24e−06 2.59e−08 1.34e−06 1.31e−06 1.81e−10 1.61e−02

Model 11 δ α β τ σ γ

Mean-of-var 5.59e−03 2.00e−02 3.43e−04 1.92e−04 3.81e−03 3.99e−02

Var-of-var 1.78e−05 1.42e−03 2.52e−07 5.65e−08 1.57e−05 6.32e−03

Model 12 δ α β τ η

Mean-of-var 1.47e−03 7.21e−03 1.28e−04 6.69e−05 7.48e−04

Var-of-var 1.05e−06 1.54e−04 1.45e−08 7.81e−09 2.45e−07

Model 13 δ α β τ(m) σ (e) λ μ(z)

Mean-of-var 1.23e−01 5.20e−03 1.55e−03 4.23e−04 7.13e−05 7.50e−03 1.821e−04

Var-of-var 5.12e−02 9.96e−05 3.75e−06 1.37e−06 1.89e−09 7.45e−04 9.55e−09

Mean-of-var refers to mean of the variances of the estimated posterior distributions as well as Var-of-var refers to the variance of the variances of
the estimated posterior distributions
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Schmitt, M., Bürkner, P. C., Köthe, U., & Radev, S.T. (2021).
Detecting model misspecification in amortized Bayesian inference
with neural networks. arXiv:2112.08866.

Schubert, A. L., Nunez, M. D., Hagemann, D., & Vandekerckhove,
J. (2019). Individual differences in cortical processing speed
predict cognitive abilities: A model-based cognitive neuroscience
account. Computational Brain & Behavior, 2, 64–84.

Servant, M., White, C., Montagnini, A., & Burle, B. (2015). Using
covert response activation to test latent assumptions of formal
decision-making models in humans. Journal of Neuroscience, 35,
10371–10385.

Servant, M., White, C., Montagnini, A., & Burle, B. (2016). Linking
theoretical decision-making mechanisms in the Simon task with
electrophysiological data: A model-based neuroscience study in
humans. Journal of Cognitive Neuroscience, 28, 1501–1521.

375

http://arxiv.org/abs/2112.08866


Computational Brain & Behavior (2023) 6:317–376

Shadlen, M. N., & Kiani, R. (2013). Decision making as a window on
cognition. Neuron, 80, 791–806.

Shadlen, M. N., & Newsome, W. T. (2001). Neural basis of a
perceptual decision in the parietal cortex (area LIP) of the rhesus
monkey. Journal of Neurophysiology, 86, 1916–1936.

Shinn, M., Lam, N. H., & Murray, J.D. (2020). A flexible framework
for simulating and fitting generalized drift-diffusion models.
ELife, 9, e56938.

Shlens, J. (2014).
Smith, P. L., & Ratcliff, R. (2022). Modeling evidence accumulation

decision processes using integral equations: Urgency-gating
and collapsing boundaries. Psychological Review, 129, 235–
267.
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