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Abstract
Teaching people clever heuristics is a promising approach to improve decision-making under uncertainty. The theory of 
resource rationality makes it possible to leverage machine learning to discover optimal heuristics automatically. One bot-
tleneck of this approach is that the resulting decision strategies are only as good as the model of the decision problem that 
the machine learning methods were applied to. This is problematic because even domain experts cannot give complete and 
fully accurate descriptions of the decisions they face. To address this problem, we develop strategy discovery methods that 
are robust to potential inaccuracies in the description of the scenarios in which people will use the discovered decision strat-
egies. The basic idea is to derive the strategy that will perform best in expectation across all possible real-world problems 
that could have given rise to the likely erroneous description that a domain expert provided. To achieve this, our method 
uses a probabilistic model of how the description of a decision problem might be corrupted by biases in human judgment 
and memory. Our method uses this model to perform Bayesian inference on which real-world scenarios might have given 
rise to the provided descriptions. We applied our Bayesian approach to robust strategy discovery in two domains: planning 
and risky choice. In both applications, we find that our approach is more robust to errors in the description of the decision 
problem and that teaching the strategies it discovers significantly improves human decision-making in scenarios where 
approaches ignoring the risk that the description might be incorrect are ineffective or even harmful. The methods developed 
in this article are an important step towards leveraging machine learning to improve human decision-making in the real world 
because they tackle the problem that the real world is fundamentally uncertain.

Keywords  Decision-making · Planning · Boosting · Resource rationality · Heuristics · Robust strategy discovery · Cognitive 
tutors

Introduction

The decisions we have to make in the real world are too 
complex and too diverse for us to make them all with the 
same strategy. People therefore need different decision strat-
egies for different types of decisions (Gigerenzer & Todd, 
1999; Simon, 1956; Todd & Gigerenzer, 2012). While peo-
ple often have good heuristics for certain types of decisions 
(Todd & Gigerenzer, 2012), they often lack good decision 

strategies for other situations. This negatively affects peo-
ple’s decisions about their finances, health, and education 
(O’Donoghue and Rabin, 2015). The resulting mistakes can 
have devastating consequences for the individuals, families, 
organizations, and society at large. One way to address this 
problem is to increase people’s decision-making literacy. 
This idea is currently being advocated for as a public pol-
icy intervention under the name of boosting (Hertwig and 
Grüne-Yanoff, 2017). One approach to boosting is to dis-
cover clever heuristics for the types of decisions that people 
struggle with and teach them to people (Hafenbrädl et al., 
2016; Gigerenzer & Todd, 1999). Recent work has built 
on the definition of optimal heuristics for human decision-
making by (Lieder and Griffiths, 2020) to develop machine 
learning methods for discovering clever heuristics for 
human decision-making (Callaway et al., 2018a; Callaway, 
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Gul et al., 2018; Lieder et al., 2017; Krueger et al., 2022; 
Callaway et al., 2022b; Skirzyński et al., 2021; Consul et al., 
2022) as well as intelligent cognitive tutors that teach them 
to people (Callaway et al., 2022a; Consul et al., 2022) and 
AI-generated decision aids that guide people through the 
application of the discovered strategies (Becker et al., 2022). 
Here, we use the term “heuristic” in the broad sense of “any 
decision strategy that uses only a subset of all potentially 
relevant information and is not guaranteed to always yield 
the optimal solution.”

Automatic strategy discovery methods compute strategies 
that achieve the best possible trade-off between the quality 
of the resulting decisions and the amount of effort that peo-
ple have to expend to reach them (Callaway et al., 2018a; 
Callaway, Gul et al., 2018; Lieder et al., 2017; Consul et al., 
2022; Krueger et al., 2022). This optimization is performed 
on a model of the environment in which the decision strat-
egies are to be used. This approach works well when the 
model of the decision environment is accurate. However, 
when there is a mismatch between the model and reality, the 
discovered strategy can perform arbitrarily poorly in the real 
world. To illustrate this problem, let us consider a hypotheti-
cal application of automatic strategy discovery to improving 
how credit officers decide which mortgage applications to 
approve. In this case, the decision strategy might take the 
form of a decision tree, such as “If the applicant’s credit 
score is at least 740, then approve the application. Else, if 
the applicant’s credit score is at least 580, then approve the 
application if the applicant’s disposable income is at least 
x% of the requested amount”.1 The model of the decision 
environment would have to include which information is 
available to the credit officer (e.g., the price of the house the 
applicant is planning to buy, the mortgage’s interest rates, 
the applicant’s credit score, income, and savings), which 
outcomes of granting the mortgage would have in different 
scenarios (e.g., housing prices increase/decrease by x%), 
how probable those scenarios are, and how the outcomes the 
bank would experience in each of those scenarios (e.g., not 
getting their money back because the borrower goes bank-
rupt) depend on the available information. Building such 
a model requires estimates of the probabilities of various 
events (e.g., a collapse of the housing market) that have to 
be obtained from domain experts (e.g., credit officers). In the 
following, we will refer to such estimates as descriptions of 
the environment.

One important obstacle to applying automatic strategy 
discovery to improve human decision-making is that our 

models of the real-world scenarios in which people have to 
make decisions will usually be at least somewhat inaccurate 
(model-misspecification). For instance, prior to the subprime 
mortgage crisis, most credit officers’ descriptions of the 
housing market would have severely underestimated the risk 
that housing prices might drop as precipitously as they sub-
sequently did (Demyanyk and Van Hemert, 2011). If extant 
automatic strategy discovery methods had been naively 
applied to the estimates of those domain experts, then they 
would most likely have recommended heuristics that pay too 
little attention to information about the applicant’s ability to 
pay back their mortgage if their house were to lose most of 
its value. Strategy discovery methods therefore have to be 
robust to the ways in which the description they are applied 
to might be wrong. Concretely, in this example, a robust 
strategy method should produce a heuristic for evaluating 
mortgage applications that works not only if the credit offic-
ers’ estimates were correct but also if those estimates were 
distorted by fallibility of human judgment that arises from 
limitations of human memory, systematic errors in people’s 
judgments (Tversky and Kahneman, 1974), limited informa-
tion, and fundamental uncertainty about the future (Hertwig 
et al., 2019). Therefore, a robust strategy discovery method 
might have recommended a heuristic that pays more atten-
tion to the applicant’s income, savings, and credit score than 
would be necessary if the credit officers’ descriptions of the 
housing market were correct.

The main contribution of this article is to propose a gen-
eral machine learning method for discovering clever heu-
ristics that is robust to errors in the description of the deci-
sion problem (e.g., deciding which mortgage applications 
to approve and which to decline). Unlike previous meth-
ods, our new method yields good decision strategies even 
when the description of the decision problem is biased and 
incomplete (see Fig. 1). The basic idea is to find the heu-
ristic that works best in expectation over all possible reali-
ties that could have given rise to the likely incomplete and 
partially incorrect description provided by a human expert. 
The resulting uncertainty about what the world might be 
like is handled using Bayesian inference. Our approach com-
putes the heuristics that performs best in expectation over all 
possible worlds that might have given rise to the provided 
specification. In our example, this would include scenarios 
in which the risk that housing prices might drop is higher 
than the provided estimate, as well as scenarios in which it is 
lower. We thereby provide a first proof-of-concept for lever-
aging machine learning to discover heuristics that are robust 
to our uncertainty about the environment. We evaluate our 
new method in simulations and behavioral experiments 
across two domains: route planning and multi-alternative 
risky choice. In each case, we apply our machine learning 
method to derive adaptive decision strategies from incor-
rect descriptions of multiple decision problems and teach 

1  This example is completely fictional and only serves to illustrate 
the notion of a decision tree. We do not claim that this is anywhere 
near a viable heuristic. Nor do we claim that it bears any resemblance 
to the heuristics used by credit officers.
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people to apply the automatically discovered strategies. In 
each case, people who were taught the strategies discov-
ered by our new robust method made significantly better 
decisions than people who were either taught no strategies 
or strategies discovered by previous methods. Our findings 
suggest that our method is robust to common systematic 
and non-systematic errors in people’s descriptions of dif-
ferent decision problems. The discovered heuristics tend to 
work well in the true environment, even when the model was 
derived from a biased description of limited experience. This 
will be important for future efforts to derive clever heuristics 
from people’s descriptions of the decisions they face in the 
real world. Moreover, our definition of rational strategies 
for robust decision-making has implications for the debate 
about human rationality. Our theory and methods provide 
a starting point for understanding the robustness of human 
decision-making, modeling how people learn robust deci-
sion strategies, and recreating this robustness in machines.

The structure for this paper is as follows: We start by 
introducing the theoretical and technical background for 
automatic strategy discovery (Section 2). We then intro-
duce our general new approach to making strategy discov-
ery methods robust to uncertainty and model misspecifica-
tion (Section 3). The following sections apply this general 
approach to the domains of planning (Section 4 and Sec-
tion 5) and multi-alternative risky choice (Section 6 and 
Section 7), respectively. For each domain, we first apply our 
computational approach to discover robust decision strate-
gies (Section 4 and Section 6) and then conduct experiments 
to test if teaching them to people is a viable approach to 
improve human decision-making (Section 5 and Section 7). 
In both cases, our approach succeeds to help people make 
better decisions when the true environment is partially 
unknown. We close with a discussion of directions for future 

work on understanding and improving human decision-mak-
ing (Section 8).

Background

Our approach to improving human decision-making through 
robust strategy discovery builds on the theory of resource 
rationality, machine learning methods for automatic strategy 
discovery, empirical methods for assessing human decision-
making, intelligent cognitive tutors, and previous findings 
about people’s cognitive biases. Here, we therefore briefly 
introduce each of these concepts in turn.

Resource Rationality

Lieder and Griffiths (2020) recently introduced a new the-
ory of bounded rationality that provides a mathematical 
definition of optimal heuristics for human decision-making. 
Unlike previous normative theories, such as expected util-
ity theory (von Neumann and Morgenstern, 1944), it takes 
into account that people’s time and cognitive resources 
are bounded. Its prescriptions for good decision-making 
(Lieder and Griffiths, 2020; Lieder et al., 2017; Krueger 
et al., 2022; Callaway et al., 2022b) thus, at least sometimes, 
resemble simple fast-and-frugal heuristics (Gigerenzer & 
Todd, 1999).

Building on the notion of bounded optimality from arti-
ficial intelligence (Russell and Subramanian, 1994), the 
theory of resource rationality states that people should make 
optimal use of their finite computational resources. These 
computational resources are modeled as a set of elementary 
information processing operations. Each of these operations 
has a cost that reflects how much computational resources 

Fig. 1   The general idea of robust strategy discovery. The goal is to 
discover heuristics that perform well in the real world when given 
only people’s biased descriptions. To achieve this, we explicitly 
model how cognitive biases distort domain expert’s descriptions of 
the scenarios in which people have to make decisions. Metaphori-

cally speaking, the difference between those descriptions and the 
real-world scenarios they are meant to capture is akin to the differ-
ence between the maps that early explorers like Columbus used and 
the territory that those maps were meant to depict
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it requires. Those operations are assumed to be the build-
ing blocks of people’s cognitive strategies. To be resource-
rational, a planning strategy has to achieve the optimal trade-
off between the expected return of the resulting decision and 
the expected cost of the planning operation it will perform 
to reach that decision. Both depend on the structure of the 
environment. Concretely, Lieder and Griffiths (2020) define 
the extent to which using the cognitive strategy h in an envi-
ronment E constitutes effective use of the limited compu-
tational resources of the agent’s brain B as the strategy’s 
resource rationality

where u(result) is the agent’s subjective utility u of the out-
comes ( result ) of the choices made by the heuristic h, and 
cost(th, �) denotes the total opportunity cost of investing the 
cognitive resources � used or blocked by the heuristic h for 
the duration th of its execution. Both the result of applying 
the heuristic and its execution time depend on the situation 
in which it is applied. The expected value ( � ) weighs the 
utility and cost for each possible situation by their posterior 
probability given the environment E, the situation s the deci-
sion-maker finds themselves in, and the cognitive capacities 
of the decision-maker (B).

The brain’s computational limitations and uncertainty 
about the environment limit how effective people’s decision 
strategies can be. That is, the brain can only execute some 
strategies ( HB ) but not others, and the extent to which people 
can adapt to their environment is constrained by the limited 
data d that they have about the environment and which situa-
tions they will encounter (Lieder and Griffiths, 2020). Under 
these constraints, the resource-rational heuristic is

(1)
RR(h, s,E,B) = �[u(result | h, s,E,B)] − �

[
cost(th, �) | h, s,B,E

]
,

(2)h⋆ = argmax
h∈HB

�E,s|d[RR(h,s,E,B)].

Automatic Strategy Discovery

Equation 2 specifies a criterion that optimal heuristics must 
meet. But it does not directly tell us what those optimal heu-
ristics are. Finding out what those optimal heuristics are is 
known as strategy discovery.

Given a model of the environment, the resource-rational 
heuristic h⋆ for an agent with the computational resources 
B can be computed by reformulating the definition of the 
resource-rational heuristic as the solution to a metalevel 
Markov decision process (MDP) and applying methods from 
dynamic programming or reinforcement learning to compute 
its optimal policy (Callaway et al., 2018a; Callaway, Gul 
et al., 2018; Lieder et al., 2017; Krueger et al., 2022; Calla-
way et al., 2022b). This approach models the decision pro-
cess as a series of computations that can be chosen one by 
one. Each computation updates the person’s beliefs about the 
returns of alternative courses of action. Rules for selecting 
computations correspond to alternative decision strategies.

As illustrated in Fig. 2a, the basic idea of this approach 
is to use a metalevel MDP to model the decision problems 
that people face and the cognitive architecture that they 
have available to solve them, and then apply a reinforce-
ment learning method to approximate its optimal policy. 
Formally, a metalevel MDP (see Fig. 2b) is a four-tuple 
Mmeta = (B, C, Tmeta, rmeta) comprising the set of possible 
beliefs B that the agent can have, the set of computational 
primitives C , a probabilistic model Tmeta(b, c, b

�) of how 
possible computations c might update the belief state (e.g., 
from b to b′ ), and the metalevel reward function rmeta which 
encodes the cost of computations c ∈ C and the utility of the 
action chosen when deliberation is terminated. In this for-
mal framework, cognitive strategies correspond to metalevel 
policies ( �meta ∶ B ↦ C ) that specify which computation will 
be performed in a given belief state.

Fig. 2   Automatic strategy discovery. a Illustration of the general 
approach. We discover optimal decision strategies by modeling the 
decision problems people face as metalevel Markov decision pro-
cesses (MDPs) and solving them using reinforcement learning meth-
ods. The discovered optimal strategies can then be taught to people 

using intelligent cognitive tutors. b Illustration of a metalevel MDP. 
A metalevel MDP is characterized by its set of belief states (B), the 
computations (C) which represent deliberation, and move an agent 
from one belief state to another belief state. Computations incur 
costs, and provide rewards (R) upon termination of deliberation
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Methods for Assessing Human Decision‑Making 
and Measuring People’s Decision Strategies

To find out which heuristics people use to make decisions, 
some decision scientists conduct experiments in which they 
measure which pieces of information participants acquire at 
which point in their decision-making process (Payne et al., 
1993). These experiments initially conceal all information 
about the choices behind opaque boxes. To reveal the infor-
mation underneath a box, the participant must click it. This 
requirement renders each click indicative of the elemen-
tary information processing operation that incorporates the 
revealed information into the decision. By reporting the 
sequence of clicks that a participant makes, these methods 
thereby yield insights into the underlying decision strategies.

We have recently extended this approach to sequential 
decision problems that require planning (Callaway et al., 
2022b; Jain et al., in press). Our Mouselab-MDP paradigm 
(see Fig. 3) shows the participant a map of an environment 
where each location harbors an occluded positive or negative 
reward. To find out which path to take, the participant must 
click on the locations they consider visiting to uncover their 
rewards. Each of these clicks is recorded and interpreted as 
the reflection of one elementary planning operation. The cost 
of planning is externalized as a fee that people have to pay 
for each click. People can stop planning and start navigating 
through the environment at any time. However, once they 
have started to move through the environment, they cannot 
resume planning. The participant has to follow one of the 
paths along the arrows to one of the outermost nodes.

This experimental task allows us to measure the extent to 
which a person’s decision-making is resource-rational using 
the measure of resource rationality specified in Eq. 1. In 
this task, for a given trial, u(result) is the sum of rewards 
along the chosen path. cost(th, �) is the number of clicks the 
participant made because their opportunity cost is assumed 
to be $1 per click. The resource-rationality score RR is then 
measured as the difference of the average result and the aver-
age cost of clicking across all the trials a participant goes 
through.

Intelligent Cognitive Tutors

Early work found that teaching people economic princi-
ples for arriving at the best possible decision had limited 
success at improving their decisions in the real world 
(Larrick, 2002). This is likely because economic princi-
ples ignore crucial constraints on human decision-making 
(i.e., limited time and bounded cognitive resources). The 
exhaustive planning that would be required to apply those 
principles to the real world would waste virtually all of 
a person’s time on the very first decision (e.g., “Should I 
get up or go back to sleep?”), thereby depriving them of 
the opportunities afforded by later decisions. In contrast, 
resource-rational heuristics allocate people’s limited time 
and bounded cognitive resources in such a way that they 
earn the highest possible sum of rewards across the very 
long series of decisions that constitute life. This is why 
teaching resource-rational heuristics might improve peo-
ple’s decisions in large and complex real-world problems 
where exhaustive planning would either be impossible or 
take a disproportionately large amount of time that could 
be better spent on other things.

In some of our prior work, we have built on automatic 
strategy discovery methods to develop intelligent tutors 
that teach people the optimal planning strategies for a 
given environment (Lieder et al., 2019; Callaway et al., 
2022a; Consul et al., 2022). Most of the tutors let people 
practice planning in the Mouselab-MDP paradigm and 
gave them immediate feedback on each planning opera-
tion that they chose to perform. Callaway et al. (2022a) 
found that participants learned to use the automatically 
discovered strategies, remembered them, and used them 
in larger and more complex environments with a simi-
lar structure. Furthermore, Callaway et al. (2022a) also 
found that participants were able to transfer the taught 
strategy to a naturalistic planning task. These findings 
suggest that automatic strategy discovery can be used to 
improve human decision-making if the discovered strate-
gies are well-adapted to the real-world situations where 
people might use them. Finally, Consul et al. (2022) found 

Fig. 3   Illustration of the Mou-
selab-MDP paradigm. Rewards 
are revealed by clicking with the 
mouse before selecting a path 
using the keyboard. This figure 
shows one concrete task you 
can create using this paradigm. 
Many other tasks can be created 
by varying the size and layout 
of the environment, the distribu-
tions the rewards are drawn 
from, and the cost of clicking
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that showing people video demonstrations of the click 
sequences made by the optimal strategy is also highly 
effective. Here, we build on this finding to develop cogni-
tive tutors that teach automatically discovered strategies 
by demonstrating them to people.

Biases, Uncertainty, and Ignorance

Existing strategy discovery methods assume that the envi-
ronment is completely known. But this is rarely the case for 
decision problems in the real world. On the contrary, deci-
sion-making in the real-world is characterized by funda-
mental uncertainty about the structure of the environment 
because the real world is very complex and even domain 
experts have only limited information about its structure 
(Hertwig et al., 2019). Research on judgment and decision-
making has revealed a long list of systematic errors that 
people make when judging the probabilities of possible 
outcomes (Kahneman et al., 1982). For instance, people’s 
estimates of the probability that an event will occur are 
known to be biased by how easily it comes to mind (Tver-
sky and Kahneman, 1973) and how easily an event comes 
to mind is affected by several biases in human memory. For 
example, when a person has experienced an event that was 
extremely bad or extremely good they remember it much 
more easily than an equally common event that is more 
neutral (Madan et al., 2014). Furthermore, recent events 
come to mind more easily than distant events (Deese and 
Kaufman, 1957) and people tend to underestimate the 
frequency of rare events in decisions from experience 
(Hertwig et al., 2004). As a consequence of these biases, 
people’s descriptions of real-world environments tend to 
be incomplete and biased. Modern methods for eliciting 
estimates from domain experts (Garthwaite et al., 2005) 
ask experts in such a way that the expert’s answers are not 
overly distorted by his or her biases, but even the best elici-
tation methods cannot eliminate the influence of cognitive 
biases entirely. Moreover, even if these methods succeeded 
at eliciting the expert’s true beliefs, those beliefs would 
still be distorted by the biases in how the expert formed 
those beliefs.

Robust Strategy Discovery

The definition of resource-rational heuristics in Eq. 2 inte-
grates out our uncertainty about the true environment E and 
the situations that decision-makers might find themselves in. 
If we ignored this uncertainty and instead used an expert’s 
description d = (ds, dE) of the environment ( dE ) and the situ-
ation ( ds ), then we could approximate the resource-rational 
heuristic by

The danger of that approach is that the expert’s description 
of the environment (e.g., the stock market) could be wrong.

Even if we ask domain experts (e.g., investment bank-
ers), their answers could be incomplete or biased in ways 
that suggest strategies that ignore critical information. For 
instance, the formal and informal models that led to the 
excessive risk taking that caused the global financial crisis 
did not consider that the housing market might collapse, 
and very few financial experts would have anticipated that 
a pandemic might cause a global recession in 2020. Over-
looking the possibility of such significant extreme events is 
very dangerous (Taleb, 2007). It is therefore imperative to 
model and account for the ways in which people’s descrip-
tions of a decision environment might be incorrect. We refer 
to these discrepancies as model-misspecification. The main 
contribution of this article is to propose a general method 
for discovering clever heuristics that are robust to model-
misspecification. The basic idea is to find the heuristic that 
is most resource-rational in expectation over all possible true 
environments that could have given rise to the likely incom-
plete and partially incorrect description provided by a human 
expert. The following three subsections describe the three 
key steps of this process: (i) formulating a model of the ways 
in which people’s descriptions might be wrong (Section 3.1), 
(ii) using this model to infer which true environment might 
have given rise to this description (Section 3.2), and (iii) 
training strategy discovery methods (Section 3.3) on poten-
tial true environments.

Modeling Model Misspecification

People’s descriptions d of a given environment e vary 
depending on what they have experienced, which parts of 
their experience they remember, and how they interpret 
it. Each of these three aspects varies considerably across 
different people. We therefore model the process giving 
rise to a description d as a probabilistic generative model 
P(d, e) = P(e) ⋅ P(d|e) . This model combines two parts: a 
broad prior distribution P(e) over which environments might 
be possible and the likelihood function P(d|e) that specifies 
how likely a given environment e is to give rise to a pos-
sible description d. This likelihood function expresses the 
probability with which different types of model misspecifi-
cation might occur and what their consequences might be. 
One way to develop such a likelihood function is to model 
how likely different aspects of the environment will (not) 
be observed ( P(�|e) ), what a person who has made those 
observations ( � ) is likely to remember ( P(�|�) ), and how 
a person might describe the environment based on their 
memories ( P(d|�) ). The first component will reflect the 

(3)hnonrobust = max
h

RR(h, s,E,B).
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fact that rare events are unlikely to be experienced—a fact 
known to cause the underestimation of extreme events in 
decisions from experience (Hertwig et al., 2004). The latter 
two elements can be informed by the extension literature on 
biases in human memory, such as memory biases in favor 
of extreme events (Madan et al., 2014), and biases in human 
judgment (Kahneman et al., 1982). The three components 
can then be combined into a model of model misspecifi-
cation, that is P(d�e) =

∑
�,� P(d��) ⋅ P(m�� ⋅ P(o�e)); we 

will use a simple version of this approach in “4” and “5”. 
Alternatively, one can empirically estimate P(d|e) by having 
people interact with a known environment and modeling 
their descriptions as a function of the true environment; we 
will use this approach in “6” and “7” (see “6.2.1”).

Performing Bayesian Inference on the True 
Environment to Compute Resource‑Rational 
Heuristics

According to Eq. 2, the optimal heuristic given a description 
d achieves the best possible cost-benefit trade-off in expecta-
tion across all possible environments. In this expectation, the 
heuristic’s resource rationality in each possible environment 
e is weighted by the posterior probability of that environ-
ment given the description d. This suggests that strategy 
discovery methods can be made robust by applying them 
to samples from the posterior distribution P(E|d) instead of 
applying them to the description d itself. Therefore, our solu-
tion proceeds in two steps: 

1.	 Estimate �(�|�) . We use Bayesian inference to get a 
probability distribution over the possible true environ-
ments. The posterior distribution over possible environ-
ments is 

 where P(E = e) is the prior distribution over possible 
environments, and the likelihood function P(D = d|e) is 
a probabilistic model of model misspecification.

2.	 Apply strategy discovery methods to samples from 
the posterior distribution. To generate a training set 
that encourages robust solutions, we independently sam-
ple training environments from the posterior distribu-
tion, that is {ek}Nk=1 ∼ P(E|d). Given sufficiently many 
samples from the posterior distribution, standard rein-
forcement learning methods can be used to approximate 
the resource-rational heuristic h⋆ defined in Eq. 2 by 
the policy that maximizes the average return across the 
MDPs defined by the sampled environments {ek}Nk=1.

(4)P(E = e|d) = P(E = e) ⋅ P(D = d|e)
P(D = d)

,

Methods for (Robust) Strategy Discovery

In this work, we created a robust and a non-robust version 
of each of the three strategy discovery methods presented 
in the remainder of this section: deep recurrent Q-learning, 
deep meta-reinforcement learning, and Bayesian metalevel 
policy search. The robust versions are trained on the poste-
rior distribution over the possible true environment given 
the description, whereas the non-robust versions are trained 
directly on the description or the decision problem. These 
two approaches approximate the resource-rational heuris-
tic defined in Eq. 2 and the non-robust heuristic defined in 
Eq. 3, respectively. In the subsequent sections, we will eval-
uate the policies found by those six methods against each 
other and against a random policy, which always samples 
uniformly from the set of available computations.

The neural-network-based methods (i.e., deep recurrent 
Q-networks and meta reinforcement learning) were imple-
mented using TensorFlow (version 1.12) (Abadi et al., 2015) 
in Python. For these methods, the Adam optimizer (Kingma 
& Ba, 2019) was used for training. Furthermore, for these 
approaches, we employed early stopping (Zhang and Yu, 2005) 
to prevent overfitting. Hyperparameter selection was carried 
out following the common principles and standard approaches 
(Smith, 2018), and the best model was stored for evaluation.

Bayesian Metalevel Policy Search (BMPS)

According to rational metareasoning, an optimal metalevel 
policy is one that chooses the action that maximizes the value 
of computation (VOC) at each step (Russell et al., 1991):

where VOC(c,b) is the expected increase in utility on per-
forming computation c in belief state b compared to taking 
a decision immediately.

The calculations of expected values of various possible 
computations can be arbitrarily hard. Therefore, the Bayes-
ian metalevel policy search (BMPS) method (Callaway, Gul 
et al., 2018) attempts to approximate the VOC by a linear 
combination of information-theoretic features:

where the weights {wi}
3
i=1

 are constrained to lie on the proba-
bilistic simplex and w4 ∈ [1, h] , such that h is an upper bound 
on the number of performed computations. The weights are 
learned by using Bayesian Optimization (Mockus, 2012) 
with the expected return as an objective function.

(5)𝜋⋆
meta

= argmax
c

VOC(c, b) ∀b ∈ B

(6)
V̂OC(c, b;�) = w1 ⋅ VOI1(c, b) + w2 ⋅ VPI(b)

+w3 ⋅ VPIsub(c, b) − w4 ⋅ cost(c)
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Consequently, we obtain an approximately optimal policy 
that selects computations which maximize V̂OC:

The following sections describe the methods we used as 
baselines for our new robust BMPS method; therefore, read-
ers who are primarily interested in the results may wish to 
skip them.

Deep Recurrent Q‑learning

Recent advances in deep reinforcement learning have led 
to great performance in planning tasks and sequential deci-
sion problems (Arulkumaran et al., 2017). The standard deep 
Q-network (DQN) (Mnih et al., 2013) architecture assumes 
that the state of the environment is fully observable. How-
ever, this is not the case for the robust strategy discovery 
problem, where the structure of the true environment is 
unknown. On such, so-called partially observable tasks, the 
performance of neural networks can be improved by adding 
recurrent layers to the neural network (Hausknecht & Stone, 
2015; Narasimhan et al., 2015). We therefore use the result-
ing deep recurrent Q-network (DRQN) architecture as one 
of the models for comparison (Hausknecht & Stone, 2015).

Here, we represented the current state of the environment 
as a stack of two matrices. Each entry of the first matrix 
encoded whether the corresponding node had already been 
inspected or not. For the inspected nodes, the entries of 
the second matrix were the nodes’ rewards. For the unin-
spected nodes, the entries of the second matrix were zero. 
This representation allowed us to treat input as an array and 
pass it into a convolutional neural network(CNN) which 
formed the initial layers of our DRQN model. The model 
architecture consisted of four convolutional layers, which 

(7)�meta(b;�) = argmax
c

V̂OC(c, b;�)

had 32, 64, 128, and 200 filters respectively. The outputs 
from convolutional layers were passed into a long short-term 
memory (LSTM) network layer with 200 units (Hochreiter & 
Schmidhuber, 1997). The activations of this layer were then 
passed on to a fully connected layer that outputs Qmeta of the 
state predicted by the network for each possible computa-
tion. Action selection was performed in an epsilon-greedy 
fashion, that is, the action with the highest activation in the 
output layer was selected with probability 1 − � and oth-
erwise the action was selected uniformly at random. The 
action output was either the number of the node to be clicked 
on next or the operation that terminates planning and selects 
the path with the highest expected value according to the 
current belief state ( ⊥).

We also used the additional training utilities like experi-
ence replay buffer as used in (Hausknecht & Stone, 2015). 
Experience buffers enable the learning algorithm to use the 
seen episodes multiple times while training, and Epsilon-
Greedy action selection helps address the exploration-
exploitation trade-off.

The pseudocode of our algorithm is provided in Algorithm 2 
in Appendix 1. We selected hyperparameters following the 
standard practices for hyperparameter optimization (Smith, 
2018); the resulting values are shown in Table 1 in Appendix 1 
and were then used in the simulations reported below.

Deep Meta Reinforcement Learning

Even though the incorporation of a recurrent network makes 
the DRQN more flexible than the DQN, its architecture and 
training paradigm only make it suitable for discovering 
strategies in a single environment. Our aim, however, is to 
discover robust strategies that perform well across multi-
ple potential true environments. We therefore need learn-
ing methods that can incorporate information from multiple 

Fig. 4   Deep Meta-RL network 
architecture. The DRQN 
architecture is identical, except 
that the LSTM does not receive 
the computation and cost of the 
previous time step as an input
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training environments. One such method is the deep meta-
reinforcement learning (Deep Meta-RL) (Wang et al., 2016). 
Deep Meta-RL learns to quickly adjust its strategy to the 
structure of the environment it is.

Our Deep Meta-RL method uses a neural network archi-
tecture that is similar to the DRQN architecture (see Fig. 4). 
The main difference is that the action taken and reward 
obtained in the previous time step serve as additional inputs 
to the state of the LSTM in the next time step (Wang et al., 
2016). This enables the network to identify whether its cur-
rent strategy is working or if it needs to be changed, hence 
increasing the adaptability of the method. The belief state 
that was an input to the CNN encoder was represented in that 
same manner as described in the DRQN section above. The 
CNN encoder had three convolutional layers with 32, 128, 
and 264 filters, respectively. The LSTM layer had 400 units.

Here, we trained this network architecture with the Asyn-
chronous Actor-Critic Agent (A3C) Algorithm (Mnih et al., 
2016). The hyperparameters we used are listed in Table 2 in 
Appendix 1.

Binz et al. (2022) have recently used a similar approach 
to discover heuristics for choosing between two alternatives 
based on multiple attributes.

Discovering Robust Planning Strategies 
by Modelling Biases in People’s Descriptions 
of the Environment

To evaluate our general approach to robust strategy dis-
covery, we first apply it to the domain in which automatic 
strategy discovery has been studied most extensively so far: 
planning in the Mouselab-MDP paradigm. Concretely, we 
create two sets of benchmark problems based on two dif-
ferent tasks. For each set, we evaluate the robust versions 
of the three strategy discovery methods described in Sec-
tion 3.3 against their non-robust counterparts and a meta-
level policy that chooses planning operations randomly. 
We start by briefly describing how we applied our general 
approach to robust strategy discovery to the domain of plan-
ning, and then present benchmark problems and how well 
our methods performed on them. We found that Bayesian 
inference on the structure of the true environment signifi-
cantly increases the robustness of all strategy discovery 
methods (Section 4.2). Moreover, we were able to replicate 
these findings on a second set of more complex benchmark 
problems (see Appendix 3).

Application of Robust Strategy Discovery 
to Planning Problems

To evaluate how good our approach is at discovering plan-
ning strategies, we applied it to a metalevel MDP model 

(Section 4.1.2) of the Mouselab-MDP planning paradigm 
(Section 4.1.1).

Modeling Planning Tasks and Planning Strategies

As it is not possible to observe human planning directly, the 
underlying cognitive processes must be inferred from their 
behavior. This makes it difficult to study what strategies they 
discover, learn, and use. Process-tracing paradigms, such as 
the Mouselab paradigm (Payne et al., 1988), present partici-
pants with tasks that make their behavior highly diagnostic 
of their unobservable cognitive strategies. The Mouselab-
MDP paradigm (Callaway et al., 2017) is a process-trac-
ing paradigm for measuring how people plan. An example 
Mouselab-MDP environment used in this study is shown 
in Fig. 5a. In these environments, participants are tasked to 
select one of several possible paths through a spatial envi-
ronment, where each location harbors a reward. The partici-
pant’s goal is to maximize the sum of the rewards along the 
chosen path. All the rewards are initially concealed, but the 
participant can uncover them by clicking on the locations. 
Critically, each click has a cost of $1 . Thus, the participant 
has to trade the cost of collecting information off against 
the value of the collected information for making a better 
decision.

Discovering (Robust) Planning Strategies by Solving 
Metalevel MDPs

Discovering Planning Strategies by Solving Metalevel 
MDPs

As described in Section 2.2, the problem of deciding how 
to plan in the Mouselab-MDP paradigm can be modelled as 

Fig. 5   a An example environment of the Mouselab-MDP paradigm 
as shown to participants. b Alternative representation of an exam-
ple environment as a grid of three node types. The node values are 
independently sampled from a uniform distribution (U) with high (H; 
U({−48,−24, 24, 48}) ), medium (M; U({−8,−4, 4, 8}) ), and low (L; 
U({−2,−1, 1, 2} ) variance
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a metalevel MDP. The set of possible beliefs B consists of 
belief states b that represent the belief about the values 
underlying the all the nodes. The belief about the value of a 
node is represented by a probability distribution if the node 
is unobserved and the observed value if the node is observed. 
In our experiments, we use uniform distributions over a set 
of values. Thus, the belief state b(t) at a time t can be repre-
sented as ( R(t)

1
, ...R

(t)

K
 ) where R(t)

K
 represents the set of values 

Xk the node K can take such that b(t)(Xk = x)) = U(x;R
(t)

K
) is 

the probability mass function of a discrete uniform distribu-
tion over the set R(t)

K
 . The set of computations 

C = {c1, c2, ...cK ,⟂} , where ck is the click reveals the value 
of the node k and ⟂ terminates planning and selects the path 
with the highest expected sum of rewards according to the 
current belief state. The transition function Tmeta(b

(t), c, b(t+1)) 
of how the computation ck might update the belief state (e.g., 
from b(t) to b(t+1) ). Performing computation ck sets R(t+1)

k
 to 

{x} with probability 1

|R(t+1)

k
|
 and the metalevel reward function 

rmeta which encodes the cost of computations c ∈ C and the 
utility of the action chosen when computation is terminated. 
rmeta(b

(t), c) = −�  f o r  c ∈ {c1, c2, ...ck}  a n d 
rmeta((R1,R2, ...,Rk),⟂) = max

t∈T

∑
k∈t

1

�Rk�
⋅

∑
x∈Rk

x where T is 
the set of all paths t . In this formal framework, planning 
strategies correspond to metalevel policies ( �meta ∶ B ↦ C ) 
that specify which computation will be performed in a given 
belief state. To find out the solution to the metalevel MDP, 
we use the strategy discovery methods described 
in Section 3.3.

Applying the Bayesian Approach to Discovering 
Robust Planning Strategies from Erroneous Descriptions

To discover robust planning strategies, we applied the 
general robust strategy discovery approach described in Sec-
tion 3 to descriptions of planning tasks. That is, we perform 
Bayesian inference on the structure of the true environment 
given a description and then train our strategy discovery 
methods on samples from the posterior distribution over 
planning tasks (see Appendix 2).

In this case, the environment and its description are speci-
fied in terms of how variable the possible rewards are at the 
different locations along the possible routes one could plan 
(for more detail, see Section 4.2.1).

Strategy Discovery Methods

We discover (robust) planning strategies by solving the 
metalevel MDPs (Section 4.1.2) of deciding how to plan 
using the methods described in Section 3.3. In addition to 
the standard versions of these four learning methods, we also 
create the corresponding robust versions. To achieve robust-
ness, we train each method on samples from the posterior 
distribution over possible true environments.

The BMPS policy is defined in terms of features that 
depend on assumptions about the structure of the environ-
ment. Therefore, the robust version of BMPS additionally 
performs online inference about the structure of the environ-
ment during the execution of the BMPS policy. We refer to 
the resulting version of BMPS as robust BMPS.

Robust Bayesian Metalevel Policy Search (BMPS)
In general, the robustness of the strategy discovery meth-

ods is achieved by the usage of the posterior distribution 
over the possible true environments. BMPS makes use of 
the posterior distribution by using it in its feature computa-
tion step.

The features of the BMPS method rely on a model of the 
environment. The standard version of the BMPS method 
would run on a model description d. We introduce a robust 
version of the BMPS method that performs online inference 
on the environment (E) based on the description (d) and the 
belief state (b) that the agent has formed by interacting with 
the environment, that is, EE|d,b

[
V̂OCE(b, c;�)

]
 . Critically, 

this approximation becomes computationally expensive 
when there are many possible environments. Therefore, we 
approximate this expected value by the normalized weighted 
average across the smallest set of possible environments Emin 
whose combined posterior probability given the current 
belief state exceeds a threshold pthresh.

For the purpose of our experiments, we set pthresh = 0.99.

Evaluation on the Flight Planning Task

The Flight Planning game is a three-step sequential deci-
sion-making task that we implemented using the Mouse-
lab-MDP paradigm (see Fig. 5a). In this game, participants 
plan the route of an airplane across a network of airports. 
Figure 5b illustrates the statistical structure of one of the 
Mouselab-MDP task environments we used in this study. 
This environment is motivated to capture the sequential 
nature of decision-making in real life.

Benchmarks

To create the first set of benchmarks for robust strategy dis-
covery, we build a dataset comprising 66 (e, d, p)-triplets 
where the environment e is a version of the task illustrated in 
Fig. 5, the description d is generated according to the model 
of model misspecification described below, and the prob-
ability p = P(E = e) ⋅ P(d|e) specifies the relative frequency 
of this pair in the set of benchmarks. The descriptions and 

ptotal|i,b =

[
∑

e∈Emin

P(E = e|d, b)
]
≥ pthresh

EE|d,b

[
V̂OCE(b, c;�)

]
≈

1

ptotal|d,b
⋅

∑

e∈Emin

P(E = e|d, b) ⋅ V̂OCe(b, c;�)
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the environments are 3 × 3 matrices where each entry is 
either L, M, or H (see Fig. 5). Those entries specify whether 
the variance of the reward distribution at the corresponding 
location is low (L), medium (M), or high (H). There are 
36 equally probable true environments ( P(E = e) = 1∕36 ) 
and they all share the property that each row contains one 
high (H), one medium (M), and one low (L) variance node. 
Moreover, the arrangement of node types is the same in the 
bottom two rows.

For each true environment e, our model of model mis-
specification yields 2 possible descriptions d—one generated 
according to the recency effect (Deese and Kaufman, 1957) 
and the other from the underestimation of rare events (Her-
twig et al., 2004). For six such environments, the resulting 
descriptions from the two biases turned out to be the same.

What makes these benchmark problems difficult is that 
many environments can give rise to the same specification. 
As a result, each description d could have plausibly been 
generated from 11 different true environments.

Model of Model Misspecification
As proof of concept, we worked with two admittedly sim-

plistic models of how the recency effect and the underesti-
mation of rare events affect the way a person would describe 
a 3-step Mouselab-MDP environment they experienced, rep-
resented by P(d|e,mrecency) and P(d|e,munderestimation) , respec-
tively. Figure 6 illustrates these two models.

In brief, the first model incorporates the recency effect in 
remembering experiences based on how far away in the past 
they occurred. This model always misremembers the rewards 
in the first two steps from the starting point as having been 
identical to the reward in the last step (top row). This is because 
of the order in which the nodes are walked upon after the par-
ticipants stop clicking, making the first two steps the less recent 
ones, whereas the other incorporates the bias in representing 
rare events. This model underestimates the frequency of rare 

events by always remembering the rare event in each column 
as the most frequent one.

For simplicity, we assume that model misspecification 
arises half of the time from the recency bias and half of 
the time from the underestimation of the frequency of rare 
events. We therefore model the probability that a person 
with experience in an environment e will describe it by the 
description d as

These assumptions merely serve as a placeholder for a more 
realistic model of model misspecification to be developed in 
future work. The contribution of this article is the general 
approach that combines the Bayesian inversion of such a 
model with automatic strategy discovery methods.

Simulation Results

We found that robust and non-robust strategy discovery 
methods discovered qualitatively different types of planning 
strategies that achieved lower levels of resource rationality.

Figure 7 compares the behavior of two strategies that 
were discovered by the most-robust method versus the least-
robust strategy discovery method, respectively. The strate-
gies are compared in two different scenarios. In scenario A, 
where the true environment matches the model, both strate-
gies make similar clicks. However, in scenario B, when the 
true environment differs from the model, the strategy dis-
covered by the non-robust method fails to uncover the high-
variance nodes because it inflexibly follows the approach 
that would have been optimal if the description were cor-
rect. In contrast, the robust strategy quickly adapts to the 
discrepancy between the model and the true environment 
and collects all the most valuable information. Intuitively, 

(8)P(d|e) = 1

2
⋅ P(d|e,mrecency) +

1

2
⋅ P(d|e,munderestimation)

Fig. 6   Illustration of how 
cognitive biases might give rise 
to misspecified models of the 
environment shown on the left. 
Recency bias: the initial two 
rows are mistaken to be similar 
to the last row. Underestimation 
bias: the odd row (top row) is 
mistaken to be similar to the 
other two rows
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the click sequences generated by this robust strategy seem 
to illustrate the simple rule of thumb “Find and inspect the 
large positive or negative outcome of each row. Then choose 
a path that collects the large positive outcomes and avoids 

the large negative outcomes.” Critically, the planning strat-
egy discovered with the robust method performs well in both 
environments, whereas the strategy discovered with the non-
robust strategy fails when the true environment does not 
match the description.

As shown in Fig. 8, we found that the BMPS method 
with Bayesian inference on the true environment achieved an 
almost perfect relative robustness score ( �rel = 0.99 , abso-
lute score = 53.25) and outperformed all the other methods 
(all p < .0001 ). The second-best method was meta-RL with 
Bayesian inference on the true environment ( �rel = 0.91 , 
absolute score = 49.16). The addition of Bayesian infer-
ence on the true environment significantly improved the 
robustness of all methods: It improved the resource ration-
ality of the decision strategies discovered by BMPS from 
42.47 ± 0.41 to 53.25 ± 0.42 ( t(47914) = −34.78 , p < .001 ; 
effect size d = .318 ) and had similar effects for the meta-RL 
method ( 35.54 ± 0.43 vs. 49.16 ± 0.41 ; t(47894) = −44.60 , 
p < .001 , d = .408 ) and the DRQN method ( 35.75 ± 0.42 
vs. 46.26 ± 0.40 ; t(47894) = −35.38 , p < .001 , d = .323).

Fig. 7   Comparison of the plan-
ning strategies discovered by 
a robust method (BMPS with 
Bayesian inference) versus a 
non-robust method (DRQN 
without Bayesian inference). 
Example A illustrates the strate-
gies in the specified environ-
ment. Example B illustrates 
their behavior in a different 
environment that could have 
given rise to the same descrip-
tion

Fig. 8   Resource-rationality scores of the decision strategies discov-
ered by different methods with versus without Bayesian robustness in 
the Flight Planning task
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Discussion

We developed an approach for making automatic strategy 
discovery robust to model-misspecification and evaluated 
its performance on a set of benchmark problems. We found 
that Bayesian inference on the true environment that might 
have led to a given biased description significantly increases 
the robustness of automatic strategy discovery. Moreover, 
we were able to replicate this finding on a second set of 
more complex benchmark problems with a different model 
of model misspecification (see Appendix 11). This suggests 
that our approach to robust strategy discovery will likely be 
beneficial in other environments as well. Furthermore, both 
evaluations showed that BMPS is a more robust strategy 
discovery method than previous approaches based on neu-
ral networks. These findings suggest that combining BMPS 
with Bayesian inference is a promising approach to discov-
ering planning strategies that are robust to all the ways in 
which the real world might differ from our descriptions. This 
approach might make it possible to improve human planning 
even when we cannot be sure which planning problems they 
might face in the real world. In the next section, we test this 
hypothesis by conducting a large online experiment.

Improving Human Planning

How people plan determines which choices they make. Pre-
vious research suggests that people sometimes fail to con-
sider some of the most important potential consequences 
of their choices (O’Donoghue and Rabin, 1999; Jain et al., 
2019; Taleb, 2007). The resulting choices can have devastat-
ing consequences for people’s physical, mental, and finan-
cial well-being and society at large. If people’s reliance on 
suboptimal planning strategies is partially responsible for 
this problem, then teaching near-optimal planning strategies 
might be a way to ameliorate such problems. To explore 
whether teaching the heuristics discovered by our robust 
strategy discovery methods might be a viable approach to 
improving human decision-making, we leveraged the robust 
strategy discovery methods introduced above to develop a 
robust version of the cognitive tutor introduced by (Lieder 
et  al., 2019). This tutor uses our most-robust and best-
performing strategy discovery method—the robust BMPS 
method—to discover a robust planning strategy from a given 
description of the environment and then teaches it to peo-
ple by showing them video demonstrations of its planning 
behavior.

To evaluate how beneficial it is for people to be trained 
by the robust tutor, we conducted a behavioral experiment 
with the three-step sequential decision problem introduced 
in Section 4.2. That is, for each participant, we sampled one 
of the 66 benchmark problems according to their respective 

probabilities; for instance, the benchmark problem (ek, dk, pk) 
would be sampled with probability pk . The participant was 
assigned the role of the novice who is being trained by the 
robust cognitive tutor and then tested on the true environ-
ment ek . Critically, the cognitive tutor does not know the 
true environment ek , but only the usually erroneous descrip-
tion dk . The robust tutor infers what the true environment 
might be given the description ( P(E|dk) ), derives the optimal 
strategy from this probabilistic knowledge, and then dem-
onstrates it on environments sampled from its posterior dis-
tribution over possible environments ( P(E|dk) ). To find out 
what aspects of the robust tutor contribute to the effective 
learning, we compared it to two conditions where no tutor 
was provided and a condition with a Non-Robust Tutor. The 
Non-Robust Tutor was based on the best-performing (non-
robust) standard machine learning algorithm (non-robust 
DRQN, which assumes that dk is the true environment).2

Methods

Participants  We recruited 357 participants on Amazon 
Mechanical Turk (average age 36.4 years, range: 18–77 
years; 216 female). Participants were paid $1.20 plus a per-
formance-dependent bonus (average bonus $1.54). The aver-
age duration of the experiment was 15.0 min. Participants 
were randomly assigned to the control condition without 
tutoring and without practice (89 participants), the control 
condition without tutoring but with practice (87 partici-
pants), the experimental condition with the non-robust cog-
nitive tutor (94 participants), or the experimental condition 
with the robust cognitive tutor (87 participants).

Materials The experimental task was the Flight Plan-
ning game described in Section 4.2. As illustrated in Fig. 5, 
participants are tasked to select one of nine possible routes 
from the starting position at the bottom to one of the final 
destinations at the top. Each location harbors a reward. The 
participant’s goal is to maximize the sum of the rewards 
along the chosen path. All the rewards are initially con-
cealed, but the participant can uncover them by clicking on 
the locations. Critically, each click has a cost of $1 . Thus, 
the participant has to trade the cost of collecting information 
off against the value of the collected information for making 
a better decision.

Procedure We conducted a between-subjects experi-
ment with four groups. For each participant, we first ran-
domly selected one of the 66 benchmark problems described 
in Section 4.2.1. The participant was not shown the descrip-
tion itself. Instead, the usually inaccurate description of the 

2  BMPS is not a standard machine learning algorithm but a precursor 
of robust BMPS that we designed to already have a certain degree of 
robustness (Krueger et al., 2022).
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selected benchmark was used to generate the trials of the 
training blocks. In contrast, the trials of the subsequent test 
block were generated according to the benchmark’s true 
environment.

The experiment was structured into instructions, 5 rounds 
of playing the Flight Planning game in environments sam-
pled from the prior distribution (see Section 4.2.1), a quiz 
that tested the participant’s understanding of the game, a 
training block (except in the control condition without 
tutoring and without practice) and a test block in which the 
participant played the Flight Planning game in the bench-
mark’s true environment. The instructions described the 
Flight Planning game in general and did not mention the 
description or potential differences between the practice tri-
als and the training block versus the test block. In the two 
experimental conditions, the training block comprised 10 
tutor demonstrations. Each tutor demonstrated the strategy 
that it had derived from the usually inaccurate description. In 
the control condition with practice and without demonstra-
tions, the training block comprised 10 trials of playing the 
Flight Planning game in the environment specified by the 
benchmark’s inaccurate description. There was no training 
block in the control condition without tutoring and without 
practice.

To motivate participants to pay close attention to these 
demonstrations, they were told that their bonus would 
depend on correctly answering a quiz about the demon-
strated strategy and were given the option to review the 
demonstrations before moving on to the quiz.

Each demonstration (see Fig. 7a-c in the training block 
of the two experimental conditions started from a differ-
ent fully occluded instance of the task illustrated in Fig. 5a. 
In the non-robust tutor condition, the spatial layout of the 
rewards was generated according to the inaccurate descrip-
tion. In the robust tutor condition, the spatial layout of the 
rewards was sampled from the posterior distribution P(e|d) 
and each round used a different sample. The demonstration 
then showed the participant the first click that the automati-
cally discovered strategy would make and the reward that 
it revealed. After a 1.1-s delay, the demonstration showed 
the second click that the strategy would make based on the 
outcome of the first click. This continued until the strategy 
decided to terminate planning. At this point, the participant 
was shown the sequence of moves that the strategy would 
choose, and the rewards collected along the way.

In the first experimental condition, the demonstrations 
showed the strategies that the DRQN method without Bayes-
ian inference derived from the potentially misspecified mod-
els (Non-Robust Tutor). The strategy learned by the Non-
Robust Tutor always clicks on the same three nodes that 
should have high variance according to the description of the 
environment in all demonstrations, regardless of what their 
values are (see Fig. 7b and d). In the second experimental 

condition, the demonstrations showed the strategies dis-
covered by BMPS with Bayesian inference (Robust Tutor). 
When a high variance node is not in its expected location, 
then these robust strategies continue to search for it until 
they find it (see Fig. 7a and c). In the Non-Robust Tutor, 
all demonstrations were performed on the reward structure 
specified by the model, as illustrated in Fig. 7b. In contrast, 
the reward structures in the Robust Tutor were sampled from 
the posterior distribution over the true environment given 
the model specification; thus, some demonstrations were 
performed on environments that differed from the model as 
illustrated in Fig. 7c.

To ensure high data quality, we applied two pre-deter-
mined exclusion criteria. We excluded the 4% of participants 
who affirmed that they had not paid attention to the instruc-
tions or had not tried to achieve a high score in the task. 
We excluded 12% of the remaining participants who did 
not make a single click on more than half of the test trials 
because not clicking is highly indicative of speeding through 
the experiment without engaging with the task.

Results

Applying the Shapiro-Wilk test for normality, we find that 
the scores are normally distributed for all the conditions: 
control condition without tutor demonstrations and without 
practice ( W(68) = 0.97 , p = .086 ), control condition without 
tutor demonstration but with practice ( W(77) = 0.118 , 
p = .002 ), the non-robust tutor condition ( W(86) = 0.98 , 
p = .100 ) and the robust tutor condition ( W(85) = 0.99 , 
p = .564 ). ANOVA test showed that the three groups dif-
fered significantly in their resource-rationality score on the 
test trials ( F = 4.5 , p = .004 ). Planned pair-wise compari-
sons confirmed that teaching people strategies discovered by 
the robust method significantly improved their resource-
rationality score (41.6 points/trial) compared to the control 
condition without practice (33.5 points/trial, t(153) = 3.28 , 
p < .001 , d = .528 ) and the control condition with practice 
(36.2 points/trial, t(162) = 2.08 , p = .0193 , d = .326 ). In 
contrast, teaching strategies discovered by the non-robust 
method failed to improve people’s resource rationality (33.1 
points/trial) when compared to the control condition without 
practice ( t(154) = 0.0 , p = .498 , d = 0.001 ) and the control 
condition with practice ( t(154) = −1.03 , p = .153 , 
d = 0.161 ), and also led to significantly lower resource-
rationality scores than teaching strategies discovered by the 
robust method ( t(171) = −3.49 , p < .001 , d = .533 ). Each 
person’s resource-rationality score in the Mouselab-MDP 
task is the sum of the rewards they collected minus the cost 
of their clicks. We can therefore interpret it as a measure of 
how well their strategy trades off the quality of the resulting 
decisions with the cost of decision-making. To make the 
scores more interpretable, we compute each group’s 
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resource-rationality quotient ( RRpeople

RR
h⋆

 where RRpeople is the 
group’s average score). As shown in Fig. 9, teaching people 
strategies discovered by the robust method brought their 
resource rationality closer to that of the best possible heu-
ristic for the true environment. Concretely, people’s 
resource-rationality quotient increased from 47.5% in the 
control condition without practice to 75.1% in the robust 
tutor condition and to only 56.7% in the control condition 
with practice and 56.8% in the non-robust tutor condition.

These differences in resource rationality reflect differ-
ences in the underlying planning strategies. Inspecting the 
planning strategies that participants used in the test block 
showed that participants who had been taught by the robust 
tutor inspected the values of all the most informative high-
variance nodes on 62.0% of the trials, whereas participants 
in the non-robust tutor condition or the control condition did 
so significantly less often (41.3% and 46.7% , respectively, 
�2(2) = 117.3 , p < .001).

Discussion

The findings of our behavioral experiment showed that our 
new robust strategy discovery method (robust BMPS) can 
allow us to improve human decision-making in cases where 
two non-robust off-the-shelf machine learning methods 
failed. Because we compared BMPS with Bayesian infer-
ence against a non-robust machine learning method without 
Bayesian inference, we cannot be sure which proportion of 
this improvement was due to performing Bayesian inference 
on the structure of the environment versus using BMPS. 
The results shown in Fig. 8 suggest that more than half of 
the improvement was due to performing Bayesian infer-
ence. Future work could test this assumption by running an 
experiment with a factorial design that manipulates the use 
of Bayesian inference on the structure of the environment 

separately from the reinforcement learning algorithm trained 
on the samples from the posterior distribution (BMPS vs. 
DRQN).

Our experiment made the simplifying assumption that 
the utility participants derive from their decision is propor-
tional to the number of points they earned in the task, even 
though the utility of money is nonlinear (Kahneman and 
Tversky, 1979). For a more detailed discussion of this issue, 
see Section 8. Another limitation of the present work is that 
it assumed a perfect model of the biases in the generation 
of model specifications. Furthermore, our assumptions about 
the cognitive biases were very simplistic. Another limitation 
is that the task used in the experiment is rather artificial. To 
address these shortcomings, the following two sections evalu-
ate our approach on a more realistic problem, namely deriving 
investment strategies from erroneous descriptions provided 
by people. In that application, the cognitive biases are those 
of real people, and our method has to rely on a model of what 
those biases might be. Section 6 describes how we applied 
our robust strategy discovery approach to this problem. Sec-
tion 7 reports a behavioral experiment in which we tested 
whether the risky choice strategies discovered in this way can 
improve people’s ability to make decisions under risk.

Discovering Robust Heuristics 
for Multi‑alternative Risky Choice

In the previous sections, we introduced a robust machine learn-
ing method for deriving resource-rational decision strategies 
from potentially biased and incomplete descriptions of the 
decision problems to be solved. The robustness of strategy 
discovery methods is especially important for improving peo-
ple’s decisions in scenarios where the stakes are high, and 
the environment is highly uncertain (Hertwig et al., 2019). A 
prime example of this kind of real-life decisions is investing 
in the stock market. Previous research has found that people 
make a number of systematic errors when deciding whether 
and how to invest in the stock market (Benartzi and Thaler, 
1995; Hirshleifer, 2015). The stock market is highly unpredict-
able, and even experienced investors tend to overlook impor-
tant eventualities. Therefore, the decision strategies that traders 
use have to be robust to our uncertainty about what the stock 
market is really like (Taleb, 2007). It has been argued that sim-
ple heuristics can help people make better financial decisions 
precisely because they are more robust to such uncertainties 
than more complex decision procedures (Neth et al., 2014; Lo, 
2019). Previous work has developed machine learning meth-
ods for discovering resource-rational heuristics for risky choice 
(Lieder et al., 2017; Gul et al., 2018; Krueger et al., 2022). 
Here, we extend these approaches to a slightly more realistic 
formulation of risky choice and make them robust to model 
misspecification.

Fig. 9   Resource-rationality quotient by condition (average resource-
rationality score of people divided by the resource-rationality score of 
the most resource-rational planning strategy)
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To capture some challenges of applying our approach to 
this real-world problem, we first collected people’s descrip-
tions of how likely investments are to yield positive or neg-
ative returns of different magnitudes directly from people 
who had first-hand experience with those investments. We 
use these descriptions to create a naturalistic set of bench-
mark problems for discovering robust strategies for mak-
ing decisions under risk (Section 6.1). We then extend and 
apply our Bayesian robust strategy discovery approach to 
this problem in Section 6.2 and evaluate it on the new bench-
marks in Section 6.3.

Realistic Benchmarks for the Discovery of Robust 
Strategies for Risky Choice

To construct a challenging, yet tractable, set of benchmark 
problems for the robust discovery of risky choice strategies, 
we chose to work within the widely used Mouselab para-
digm for studying risky choice (see Section 6.1.1). To make 
this paradigm more realistic, we base the distribution of its 
payoffs on stock market returns (Section 6.1.3). Critically, 
we base our benchmark problem’s on the generally errone-
ous descriptions of real people. To obtain those descrip-
tions, we conducted an experiment in which participants first 
repeatedly chose between a number of investments and then 
described the distributions of their returns (Section 6.1.4). 
The resulting benchmark problems are publicly available.

Multi‑alternative Risky Choice in the Mouselab Paradigm 
as a Model of Investment Decisions

Deciding which stock to invest in, like many other real-life 
decisions, entails choosing between several alternatives 
based on their multiple attributes. Although perusing the 
attributes is informative, one also cannot know exactly 
how well the investment will play out. The decision-maker 
can increase their chances of making a good decision by 

collecting more information, but collecting information 
takes time and effort. Therefore, the decision-maker has to 
find a good tradeoff between the quality of their decision and 
its costs. The experimental paradigm known as multi-alter-
native risky choice captures all of these important aspects 
of decision-making in the real world (Payne, 1976). In this 
paradigm, participants choose between multiple risky pros-
pect based on what their payoffs would be in several possible 
scenarios (see Fig. 10). To make an informed decision, the 
participant can inspect what the payoffs of different gam-
bles (columns) are in different scenarios (rows) by clicking 
on the corresponding cell of the payoff matrix for a certain 
fee. Participants can additionally inspect how likely each 
scenario is to occur.

Formally, each trial presents a choice among G gambles 
(see Fig. 10). After the participant has chosen a gamble, one 
of K event occurs. The payoff of gamble g in the case of the 
kth event is given by the entry vk,g of the payoff matrix V. 
� = [p1,… , pk] are the probabilities of the k possible events, 
where pk represents the probability of the kth outcome occur-
ring. In our experiments, � is sampled from a symmetric Dir-
ichlet distribution. We will vary the distribution parameter 
� to model two different situations. A small � leads to what 
we call the high dispersion case, wherein one outcome is 
much more likely than the others. A large � results in the low 
dispersion case, wherein the probabilities of the outcomes 
lie close to each other.

Initially, the values of V and � are unknown. To reveal 
them, the participant has to click on the corresponding cell 
on the screen. Each click is costly. The participant’s goal is 
to maximize the expected payoff minus the cost of clicking. 
Here, we focus on the special case where in each environ-
ment e all payoffs Vk,g are independently drawn from the 
same distribution �e . Moreover, we assume that this dis-
tribution is a piece-wise uniform distribution of the form 
�
e
(x) =

∑10

i=1
�
e,1 ⋅ Uniform(x;[−100; − 80]) + �

e,2 ⋅ Uniform

(x;[−80; − 60]) +⋯ + �
e,10 ⋅ Uniform(x;[80;100]) . We can 

Fig. 10   Screenshot of the Mou-
selab paradigm for studying 
multi-alternative risky choice. 
Each trial of the paradigm 
consists of a series of options to 
choose from, a set of outcomes 
which can occur for each 
option, and their correspond-
ing probabilities of occurring. 
Participants can reveal the 
outcomes or their probabilities 
by clicking on the gray cells and 
paying a cost
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therefore represent any given payoff distribution by a list of 
10 numbers �e,1,⋯ ,�e,10 where �e,i is the probability that a 
payoff falls into the ith bin of that distribution. For instance, 
�e,1 is the probability that the payoff is between $ −100 and 
$ −80.

We assume that different risky choice environments differ 
in the payoff distribution ( �e ), the dispersion of the outcome 
probabilities ( �e ), and the cost of information ( �e ). We can 
therefore represent each multi-alternative risky choice envi-
ronment e by a triplet (�e, �e, �e).

Problem Formulation

The problem we set out to solve was to develop a machine 
learning method that can derive resource-rational strategies 
for multi-alternative risky choice from inaccurate descrip-
tions of payoff distribution. That is, we assume that the 
payoff distribution �e of the environment e is unknown and 
has to be estimated from expert testimony. Therefore, the 
strategy discovery method only has access to a usually inac-
curate description of the true environment that we will refer 
to as d = (�d, �d, �d) , where �d = (�d,1,⋯ ,�d,10) is a list 
of estimates of the corresponding probabilities of the true 
environment (i.e., �e,1,⋯ ,�e,10 ) and �d and �d are estimates 
of the dispersion of the even probabilities ( �e ) and the cost 
of information ( �e ). For simplicity, we assume that only the 
description of the payoff distribution ( �d ) can be inaccurate, 
whereas the other two components of the description are 
known to be accurate. To make this problem formulation 
more precise, we will now formulate a set of benchmark 
problems. Each benchmark problem will include a true pay-
off distribution and a human-generated description of that 
distribution. The following two sections specify the true pay-
off distributions and its descriptions, respectively.

Defining Realistic Payoff Distributions for the Risky Choice 
Problems

To investigate the importance of robustness for investment 
decisions in the real world, we chose to study decision prob-
lems whose payoff distributions mimic those of real-world 
investments in different kinds of stocks. Since the early 
1900s, it was widely believed that stock returns followed 
the normal distribution. Mandelbrot (1963) pioneered the 
re-examination of the return distribution in terms of non-
normal stable distributions3. Fama (1965) concluded that 
the distribution of monthly returns belonged to a non-normal 
member of the stable class of distributions. Various alter-
native classes of distributions have since been suggested. 

Examples include the Student’s t-distribution (Blattberg 
and Gonedes, 1974), the more general class of hyperbolic 
distributions (Eberlein and Keller, 1995) and the mixture of 
Gaussians (Kon, 1984). While there does not seem to be a 
fundamental theory that can suggest a distributional model 
of stock returns, it is now generally acknowledged that 
empirical return distributions are skewed and leptokurtic.

In this work, we mainly focus on heavy-tailed distribu-
tions because it is in these settings that people’s biases have 
the potential to be highly costly. We work with the class of 
stable distributions since they have been shown to be able 
to capture heavy tails and skewness. Additionally, they are 
supported by the generalized Central Limit Theorem, which 
states that stable laws are the only possible limit distributions 
for properly normalized and centered sums of independ-
ent, identically distributed random variables (Borak et al., 
2005). One argument that has often been levelled against 
their usage is that they have infinite variance. However, real 
data would never have that property since it is bounded. To 
combat this as well as to make the task of eliciting biases 
easier, we truncate the distribution between fixed values, 
that is we assume that stock returns are bounded between 
-100% and +100%. Concretely, we created 9 stable distri-
butions with varying riskiness and discretized them into 10 
bins as shown in Fig. 11. The skewness parameter � was kept 
negative to obtain thick left tails. The probability of each 
bin was set to be the difference in cumulative distribution 
functions of its upper and lower bounds except for the edge 
bins, which took the mass for the truncated tails as well. 
Therefore, each of these distributions can be represented 
by a list of 10 probabilities �e,1,⋯ ,�e,10 that sum to 1. We 
will use the nine different distributions to define 9 different 
types of environments that differ in their payoff distributions.

Eliciting Biased Descriptions of Payoff Distributions

To complete the specification of our benchmark problems, 
we complement the risky choice problems entailed by the 
9 payoff distributions shown in Fig. 11 by people’s descrip-
tions of those distributions. To obtain those descriptions, we 
conducted the online experiment described in the following 
paragraphs.

Participants We recruited 60 participants on Amazon 
Mechanical Turk (average age 38.0 years, range: 20–69 
years; 36 male, 23 female, 1 other). Participants were paid 
$1.50 plus a performance-dependent bonus (average bonus 
$0.96). The average duration of the experiment was 21.1 
min.

Procedure The experiment began with instructions 
about the task, followed by a quiz to test the participants’ 
understanding. They were then asked about how often they 
expected to see payoffs from each of the 10 bins for both 
the stocks before going through the 50 trials of the task (see 

3  In probability theory, a distribution is said to be stable if a linear 
combination of two independent random variables with this distribu-
tion has the same distribution, up to location and scale parameters.
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Fig. 11   Distributions used to capture biases about stock returns

Fig. 12   Screenshots from the online study used to collect people’s descriptions of investment decisions: a eliciting the prior, b choice, c feed-
back, and d eliciting the posterior
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Fig. 12a). In each trial, the participants had to choose one 
of the two stocks to invest in based on their name alone 
(see Fig. 12b). After choosing the stock, they were shown 
the payoffs from both stocks (that were sampled from their 
corresponding distributions) and were informed about their 
profit/loss in that trial ((see Fig. 12c). In all, they had to 
go through 50 such trials. On the conclusion of the task, 
we asked the participant to estimate how often each of the 
two stocks’ payoffs fell into each of the 10 equally spaced 
20%-intervals between -100% and +100% (see Fig. 12d). 
Thus, from each participant, we obtained their prior and pos-
terior expectations for two stocks. To ensure high data qual-
ity, we applied four predetermined exclusion criteria. We 
excluded 8.3% of participants who affirmed that they did not 
fill in their posterior expectations truthfully. Another 13.3% 
were excluded because they did not update their estimates 
after seeing the data. Another 5.0% were excluded because 
their posterior estimates for at least one stock were mono-
tonically increasing or monotonically decreasing. Finally, 
1.7% from the remaining participants were excluded because 
their posterior expectations for both stocks were identical.

Results The exclusion criteria allowed for inclusion of 
43 participants. After 50 trials of experiencing payoffs, each 
of them provided frequency estimates for two distributions. 
Converting those estimates from absolute frequencies into 
relative frequencies yielded 2 × 43 descriptions ( �d ) of the 
payoff distributions ( �e ) that were used to generate the trials 
a participant experienced.

Benchmarks
Building on the 86 descriptions of payoff distribu-

tions ( �d1 ,⋯ ,�d86 ), we defined four sets of 86 bench-
mark problems each. Each benchmark is defined by a 
pair (ei, di) of a true environment ei = (�ei , �ei , �ei ) and its 
description di = (�di , �di , �di) . Concretely, we defined one 
set of 86 benchmark problems for each combination of a 
low versus high dispersion of the outcome probabilities 
( �e = �d ∈ {0.15, 10} ) and a low versus high cost of infor-
mation ( �e = �d ∈ {1, 2}).4

Each ( ei, di)-pair specifies a multi-alternative risky 
choice benchmark were the true payoff distribu-
t i o n  i s  �ei (x) =

∑10

k=1
pei ,k ⋅ Uniform(x;[−100 + (k − 1) ⋅ 20; − 100 + k ⋅ 20]) 

a n d  t h e  d e s c r i b e d  p ayo f f  d i s t r i b u t i o n  i s 
�
di
(x) =

∑10

k=1
�
di ,k

⋅ Uniform(x;[−100 + (k − 1) ⋅ 20; − 100 + k ⋅ 20]) . 
By default, each benchmark problem is as assumed to be 
equally probable. We will use these benchmarks to assess the 
effectiveness of using robust strategy discovery to improve 
human decision-making in the experiment reported in 
Section 7.

Applying Bayesian Robust Strategy Discovery 
to Human‑Generated Descriptions of Risky Choice 
Problems

To apply our Bayesian robust strategy discovery approach to 
the benchmark problems described in Section 6.1, we first 
model the relationship between the true distributions of 
stock returns and people’s descriptions of those distributions 
by a likelihood function (Section 6.2.1). We then develop an 
approximate Bayesian inference method for sampling from 
the resulting posterior distribution over possible true return 
distributions (Section 6.2.2). We combine this method with 
the strategy discovery methods presented in Section 3.3, for-
malize the problem of discovering heuristics for risky choice 
as a metalevel MDP (Section 6.2.3), and adapt the BMPS 
method for this problem (Section 6.2.4).

Modelling Model Misspecification

To perform Bayesian inference on the true payoff distribu-
tions given people’s fallible descriptions, we first have to 
model the likelihood function p(d|e). To achieve this, we 
collected an independent data set of descriptions (akin to 
the one described in Section 6.1) and used it to model the 
relationship between people’s descriptions and what they 
had observed. Our Bayesian method uses this information to 
probabilistically invert the distortion that led from the true 
payoff distribution to the description provided by a person 
who observed outcomes from that distribution. That in turn 
allows our method to derive strategies that work well in the 
true environment.

Obtaining People’s Descriptions To obtain biased 
descriptions, we reran the benchmark creation experiment 
described in Section 6.1.4. We recruited 58 participants on 
Amazon Mechanical Turk (average age 37.7 years, range: 
21–71 years; 41 male, 17 female). Participants were paid 
$1.50 plus a performance-dependent bonus (average bonus 
$1.19). The average duration of the experiment was 21.0 
min. Our four pre-defined exclusion criteria described in 
Section 6.1.4 led to the exclusion of 6.9%, 6.9%, 5.2%, and 
0% participants respectively (19% in total).

Capturing People’s Biases We use the descriptions 
obtained from the above experiment to develop a model of 
people’s biases. We simultaneously observed overestimation 
of extreme outcomes and underestimation of rare events. To 
capture this, we model these phenomena as transformations 
of the true probabilities.

To model overestimation of extreme outcomes ( muws ), 
we use utility-weighted sampling (Lieder et  al., 2015). 
For a discrete payoff distribution defined by its values 
( � = [x1,… , x10] ) and their corresponding probabilities 
( � = [�1,… ,�10] ), utility-weighted sampling involves first 
computing the expected value of the distribution ( ̄x ), and 

4  The benchmark’s true payoff distributions and their descriptions 
can be found at https://​github.​com/​Ratio​nalit​yEnha​nceme​nt/​MCRL/​
tree/​master/​robust_​strat​egy_​disco​very/​src/​risky-​choice/​bias_​dists
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then weighting the values of the distribution in proportion to 
the product of the deviation of the value from the expected 
value. The procedure is described as follows:

In our case, x represents the midpoints of the bins for which 
data was collected in the experiment and � represents the 
true probability distribution according to which the values 
were sampled, where �i is the probability of bin i and xi is 
the midpoint of the ith bin.

Similarly, for a discrete distribution, we model the under-
estimation of rare events ( mrare ) using a weighted average 
exponentiated probabilities. The probabilities ( �j ) are expo-
nentiated by a scalar product of a constant (k) and the value 
(in our case, the midpoint of the bin) for which the prob-
ability corresponds to ( xj ). The description is as follows:

We assume that people have a bias that is a weighted average 
of the usage of the two biases described above. This can be 
represented by a mixture model ( mbias ) where the individual 
terms capture if one or both biases are present. In case of a 
participant having both the biases, it is assumed that under-
estimation of rare events happens first and then on these 
probabilities participants overestimate extreme outcomes. 
The final bias model is

Its free parameters w1,w2 ∈ [0, 1] and k ∈ [1,∞) are fitted 
individually to each participant’s data using Bayesian opti-
mization. By looking at the obtained distribution of these 
parameters across participants, we get information about 
how much people weight each bias.

Bayesian Inference on the True Payoff Distributions

To perform Bayesian inference and to get a posterior distri-
bution over the true distributions requires formalizing the 
prior distribution and the likelihood function. We formalize 
the prior using samples from a stable distribution, and the 

x̄ =

10�

i=1

𝜋i ⋅ xi

muws(𝜋i) =
∣ xi − x̄ ∣ ⋅𝜋i

∑10

j=1
∣ xj − x̄ ∣ ⋅𝜋j

therefore, muws(𝜋) =
�
muws(𝜋1),… ,muws(𝜋10)

�

mrare(�i) =
�
∣k⋅xi∣

i

∑10

j=1
�
∣k⋅xj∣

j

therefore, mrare(�) =
�
mrare(�1),… ,mrare(�10)

�

(9)

mbias(�;w1,w2, k) = (1 − w1) ⋅ (1 − w2) ⋅ � + w1 ⋅ (1 − w2) ⋅ mrare(�)

+ (1 − w1) ⋅ w2 ⋅ muws(�) + w1 ⋅ w2 ⋅ muws(mrare(�))

likelihood function as a function of the bias model of the 
participants obtained above.

We formalize the prior as a Dirichlet distribution with 10 
components (where each component represents one bin). We 
draw samples from a class of stable distributions with the 
stability parameter � ∈ [1.2, 1.8] and the skewness parameter 
� ∈ [−0.8,−0.3] . We then fit a 10-dimensional Dirichlet dis-
tribution on these samples using maximum likelihood esti-
mation. Stable distributions have been discussed in detail in 
Section. 6.1.3.

The likelihood model is formalized as a multinomial dis-
tribution over the output from the bias model in Eq. 9 as the 
likelihood given the model parameters:

where n is the number of draws. Since the participants were 
asked about the number of times they observed payoffs from 
each bin, n can be set to the number of trials (50) and their 
observations naturally become (x1, x2,… , xn) . Since, we 
obtain a distribution over the model parameters from the 
participants, we take the final likelihood value as the average 
of the likelihood function of individual likelihood values.

Given the form of the likelihood function, it is intractable 
to compute the posterior distribution analytically. To over-
come this, we make use of the Metropolis-Hastings algo-
rithm (Hastings, 1970) to directly obtain samples from the 
product of the prior distribution and the likelihood function, 
instead of fitting a distribution. These parameter estimates 
are then used by strategy discovery methods to learn strate-
gies that can be taught to participants using a tutor.

Modeling the Discovery of Risky Choice Strategies 
as a Metalevel MDP

We formalize this problem of choosing a gamble as a meta-
level MDP. The metalevel MDP can be formally represented 
by the four-tuple Mmeta,e =

(
B, C, Tmeta,e, rmeta

)
 that depends 

on the assumed environment e. Each belief state b ∈ B 
encodes information about the distribution over probabilities 
� and the distributions over payoffs {fk,g} for all the K out-
comes and G gambles. For each element vk,g of the payoff 
matrix V, there is one computation ck,g that inspects the pay-
off vk,g and updates the belief about the expected value of the 
inspected gamble. Additionally, for each outcome k, there is 
one computation ck that inspects the probability pk that the 
kth outcome will occur. All fk,g are initialized to continuous 
distributions as modeled in Section 6.1.3. All event proba-
bilities pk are initially assumed to be equal, i.e., 1

K
.

(10)l(�;w1,w2, k) =
n!

x1!… x10!

10∏

i=1

mbias(�i;w1,w2, k)
xi ,
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The metalevel transition function Tmeta,�e
 describes how 

computations update beliefs. Executing computation ck,g sets 
fk,g to a discrete delta distribution that puts all probability 
mass on xi with probability P(Vk,g = xi) = �e,i . Executing the 
computation that inspects and processes the probability of 
the kth outcome (i.e., ck ) updates pk and sets the remaining 

unobserved probabilities to 
1 −

∑
i∈Kobserved

pi

K − �Kobserved�
 where Kobserved 

is the set of outcomes whose probabilities have been 
observed. The terminal action ⟂ always transitions to a 
unique terminal state, b⟂.

Finally, the metalevel reward function rmeta describes the 
cost and benefits of computation. The cost of computation (i.e., 
clicking) is captured by setting rmeta(b, c) = −�e∀c ∈ C ⧵ {⟂} . 
The benefit of termination is given by the expected quality of 
the decision that is ultimately made,

where G is the set of gambles.

Adapting BMPS

The BMPS method described in Section 4.1.2 cannot be 
directly used for the risky choice task without adaptation 
because of the difference in the formulation of the metalevel 
MDP. For adapting BMPS to this paradigm, we need a pos-
terior distribution over the environments. Here, each envi-
ronment is defined by its payoff distribution. As described 
in Section 6.2.2, we sample potential payoff distributions 
𝜋̃ = (𝜋̃1,⋯ , 𝜋̃n) from the posterior distribution P(�e|�d) 
using the Metropolis-Hastings algorithm. To get an analyti-
cal form of the posterior distribution, we fit a Dirichlet dis-
tribution D(�1, �2,… , �n) using maximum likelihood estima-
tion, where n represents the number of bins the outcomes are 

(11)rmeta(b,⟂) = max
g∈G

K∑

k=1

pk ⋅ E
[
fk,g

]

drawn from. We then compute the posterior expectation of 
the value of a computation: EE|d,b

[
V̂OCE(b, c;�)

]
 for each 

computation. Since the posterior distribution is now continu-
ous, computing it is not analytically tractable. We instead 
approximate it by calculating V̂OC for the expected value of 
the distribution as follows:

That is, given the posterior distribution D(�1, �2,… , �n) , we 
calculate the expected probability of each bin (𝜋̂1, 𝜋̂2,… , 𝜋̂n) 
where

When a payoff x is observed the algorithm determines which 
of the n bins of the payoff distribution it falls into. The index 
of that bin (k(x)) is treated as a draw from a multinomial 
distribution:

Payoffs are observed one-by-one and the belief about the 
true environment of the trial is updated according to the 
value of the observed payoff. Since the index k follows a 
multinomial distribution and the prior D is a Dirichlet dis-
tribution, which is one of its conjugate distributions, the pos-
terior distribution is a Dirichlet distribution with the same 
parameters � except that the the alpha corresponding to the 
bin k(x) has been incremented by 1:

The procedure for the BMPS method is summarized in 
Algorithm 1.

EE|d,b

[
V̂OCE(b, c;�)

]
≈ V̂OCE[E|d,b](b, c;�)

𝜋̂i =
𝛽i∑n

j=1
𝛽j

k(x) ∼ M(�e,1,�e,2,… ,�e,n)

P(�e,1,�e,2,… ,�e,n) ∣ k(x)) = D(�1,⋯ , �k(x) + 1,⋯ , �n).
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Resource Rationality of the Discovered Decision 
Strategies

We tested how robust the different strategy discovery meth-
ods are to the empirically measured inaccuracies of people’s 
descriptions of payoff distributions. As Fig. 13 shows, BMPS 
with Bayesian inference on the true environment discovered 
better heuristics than all the other strategy discovery meth-
ods in the scenarios of high dispersion and high cost, high 
dispersion and low cost, and low dispersion and low cost (all 
p < .0001 ). The DRQN method with Bayesian inference on 
the true environment outperformed all the other methods 
in the case of low dispersion and high cost. Combining all 

cases, the addition of Bayesian inference on the true envi-
ronment significantly improved the robustness of BMPS 
from 13.67 ± 0.02 to 15.3 ± 0.02 ( t(2751998) = −68.35 , 
p < .001 ; effect size d = .082 ) and the DRQN method from 
6.70 ± 0.02 to 7.70 ± 0.02 ( t(2719998) = −39.57 , p < .001 ; 
effect size d = .048 ), whereas it decreased the robustness 
of the Meta-RL method from 5.35 ± 0.02 to 5.17 ± 0.02 
( t(2743998) = 6.77 , p < .001 ; effect size d = .008).

Figure 14 illustrates how the increased robustness of 
BMPS with Bayesian inference affects which kinds of deci-
sion strategies it discovers and how those strategies differ 
from those discovered by non-robust methods. In this exam-
ple, different outcomes had vastly different probabilities. The 

Fig. 13   Resource-rationality scores of the multi-alternative risky choice strategies discovered by different methods with versus without Bayesian 
inference across different scenarios of cost and dispersion
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non-robust method (DRQN without Bayesian inference) 
learned a strategy that ignores the outcome probabilities. 
In contrast, the robust method (BMPS with Bayesian infer-
ence) learned to inspect the outcome probabilities to find out 
which outcome is most likely and then applied Satisficing to 
that outcome. Intuitively, the click sequences of the strategy 
discovered by this robust method seem to illustrate the sim-
ple rule of thumb “First, find out which of the outcomes is 
most likely. Then, find an alternative that has a high payoff 
for that one outcome.”

Discussion

In this section, we have introduced a more realistic set of 
benchmark problems for robust strategy discovery. In these 
benchmarks, robust heuristics for risky choice have to be 
derived from people’s usually erroneous descriptions of how 
likely an investment is to yield different returns. Our formula-
tion of the risky choice problems themselves is more realistic 
than in previous work (Lieder et al., 2017; Gul et al., 2018; 
Krueger et al., 2022) in that the probabilities are not known in 
advance but have to be inspected. Corroborating our findings 
in the domain of planning, we found that Bayesian inference 
on the structure of the true environment significantly improves 
the robustness of the discovered strategies. As in the two pre-
vious domains, our robust BMPS method outperformed all 
other strategy discovery methods. These findings were con-
sistent across three different types of decision environments. 
The only exception was the environment where the cost of 
collecting information is high and none of the outcomes is 
particularly likely to occur. In that environment, the optimal 
strategy collects (almost) no information and robustness is not 
required to discover it. This illustrates a more general point: 
robustness to errors in the description of the environment 
is only required when the strategies that are optimal for the 

described environment perform poorly in the true environ-
ment. Some errors are inconsequential either because they 
have little implications for which strategy one should use or 
because the implied and the optimal strategy perform simi-
larly well. Taken together, our results suggests that our key 
findings generalize across different types of decision-making 
and different types of environments. Having demonstrated that 
our Bayesian approach to robust strategy discovery succeeds 
on the risky choice benchmarks, we next evaluate its capacity 
to improve human decision-making in an online experiment.

One limitation of the way in which we constructed the 
benchmarks is that only about 72% of the MTurk workers pro-
viding the descriptions that were used to construct the bench-
mark met our stringent quality criteria. Therefore, our method’s 
performance on our benchmark is not representative of its per-
formance on descriptions from randomly selected MTurk work-
ers. We chose these quality criteria to make our benchmarks 
more similar to the kinds of descriptions that motivated domain 
experts would provide. In that sense, our stringent quality crite-
ria made our findings more generalizable to potential real-world 
applications rather than less generalizable. Moreover, all of our 
quality criteria were objective, only aimed to exclude partici-
pants who did not perform the task, and were determined prior 
to applying our method to the resulting benchmarks.

Improving People’s Investment Decisions

The results presented in the preceding section suggest that 
it is possible to automatically discover clever heuristics 
that are robust to uncertainty and biased descriptions of 
the decisions to be made. Concretely, the previous section 
showed that our machine learning methods for discover-
ing resource-rational heuristics for multi-alternative risky 
choice are robust to inaccuracies in the description of the 

Fig. 14   Example demonstrations shown by the two tutors for the 
high-cost, high-dispersion environment. The numbers near the mouse 
pointers represent the order of clicks made by the demonstrated deci-

sion strategies. a Screenshot demonstrating the strategy discovered by 
the robust method. b Screenshot demonstrating the strategy discov-
ered by the non-robust method
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payoff distribution. In this section, we evaluate whether 
seeing demonstrations of the heuristics discovered by the 
methods described in the previous section can help people 
make better decisions in the unknown true environment 
whose payoff distribution may differ from the description. 
We first describe the intelligent tutors we created to teach 
people the automatically discovered strategies (Section 7.1). 
We then describe the experiment we conducted to evaluate 
the potential benefits of basing those tutors on robust strat-
egy discovery methods (Section 7.2) and its results (Sec-
tion 7.3). We close by discussing the implications of our 
findings (Section 7.4).

Tutors for Multi‑alternative Risky Choice

To teach people the multi-alternative risky-choice heu-
ristics discovered in Section 6, we programmed tutors 
that demonstrate which probabilities and which payoffs 
a given strategy would inspect for a given risky choice 
problem. We created one tutor that demonstrates the 
strategies discovered by the most robust method (BMPS 
with Bayesian inference) and a second tutor that demon-
strates the strategies discovered by the best-performing 
(non-robust) standard machine learning method (DRQN 
without Bayesian inference).5 In each demonstration, the 
participant is shown the series of clicks that the demon-
strated strategy would make in a difference instance of 
the corresponding environment. The tutor demonstrates 
its strategy one click at a time. After each click, the pay-
off of the clicked cells is revealed, and the subsequent 
clicks were informed by the observed value. Figure 14 
shows two screenshots comparing the strategies discov-
ered by the robust versus the non-robust methods in the 
environment with high information costs and a high dis-
persion of the outcome probabilities. The strategy dis-
covered by the robust method first identifies the most 
likely event before looking for a good outcome for that 
event. In contrast, the strategy discovered by the non-
robust method fails to recognize the importance of the 
event probabilities and can therefore suffer from cata-
strophic failures (as illustrated in Fig. 14).

Experimental Methods

We ran an experiment with two types of investment deci-
sions (environments): one with highly dispersed outcome 
probabilities and high cost of information, and the other 
with highly dispersed outcome probabilities and low cost of 

information. These two types of investment problems were 
selected because for these problems, the decision strategies 
discovered by the robust method behave substantially differ-
ently from those discovered by their non-robust equivalents 
(see Fig. 14).

Participants We recruited a total of 516 participants on 
Amazon Mechanical Turk (average age 39.3 years, range: 
20–74 years, 206 female), out of which 266 participants 
were assigned to the environment with low cost, and 250 
participants were assigned to the environment with high 
cost. Participants were paid $1.00 plus a performance-
dependent bonus (average bonus $1.82). The average dura-
tion of the experiment was 10.3 min. For both environments, 
participants were randomly assigned to one of three groups: 
a control group that received no tutoring, an experimental 
group that was shown demonstrations of the strategy by the 
robust method, and a second experimental group that was 
shown demonstrations of the strategy discovered by the non-
robust method. Thus, there were about 85 participants per 
condition for each environment. We will refer to the cogni-
tive tutor demonstrating the strategy discovered by the (non)
robust method as the (non)robust tutor. A total of 7.0% of 
the participants were excluded because they failed the com-
prehension check.

Procedure
We conducted a between-subjects experiment with three 

groups. For each participant, we first randomly selected one 
of the 86 benchmark problems described in Section 6.1.4. 
The participant was not shown the description of the payoff 
distribution itself. Instead, the usually inaccurate description 
of the selected benchmark was used to generate the payoffs 
in the practice trials that introduced the participant to the 
task and the payoffs in their training block. In contrast, the 
payoffs in the trials of the subsequent test block were gen-
erated according to the benchmark’s true payoff distribu-
tion. Critically, the tutors teaching the experimental group 
demonstrated the strategies that the corresponding strategy 
discovery method had derived from the inaccurate descrip-
tion of the payoff distribution.

All participants first went through instructions that 
introduced them to the paradigm. Then, they went through 
3 trials with uncovered rewards that were generated 
according to the description ( �d ). All participants then 
answered a series of six quiz questions in which they had 
to demonstrate their comprehension of the task. Each quiz 
question was accompanied by an image of a fully revealed 
payoff matrix that had been generated according to the 
description. Participants who made more than 3 incor-
rect attempts at answering any of the questions were not 
allowed to continue further, and were paid the base pay. 
Next, participants went through 3 practice trials with fully 
uncovered rewards that were generated according to the 
description. This was followed by 3 additional practice 

5  BMPS is not a standard machine learning algorithm but a precursor 
of robust BMPS that we designed to already have a certain degree of 
robustness (Krueger et al., 2022).
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trials in which all payoffs and outcome probabilities 
were initially occluded; those trials were also generated 
according to the description. The following training block 
comprised 5 additional practice trials in the control con-
dition without the cognitive tutor and 5 trials with dem-
onstrations by a cognitive tutor in the two experimental 
conditions, respectively. The practice trials of the control 
group were generated according to the description. The 
non-robust tutor showed its demonstrations on the envi-
ronment specified by the (typically incorrect) description. 
The robust tutor showed its demonstrations on environ-
ments sampled from the posterior distribution over the 
true environment given the description. A different sample 
from this posterior distribution was used in each round. 
The strategies demonstrated by both tutors were derived 
from the inaccurate descriptions. After the training block, 
participants went through 10 test trials like the one shown 
in Fig. 10 where all cells were initially concealed. The 
payoffs in these test trials were sampled from the payoff 
distribution of the true environment ( �e ). Participants had 
to pay a cost of $2 for uncovering a reward in the environ-
ments with high information cost and $1 in the environ-
ments with low information cost.

Results

As predicted by the comparison of the taught strategies 
shown in Fig. 14, the median number of clicks participants 
made to reveal the probabilities of outcomes was signifi-
cantly higher in the condition with the robust tutor than in 
the condition with the non-robust tutor (3 clicks/trial vs. 
2 clicks/trial, U = 1125672.5, p < .001 according to a one-
sided Mann-Whitney U-test). This shows that participants 

in the robust tutor condition paid more attention to aspects 
of the task that revealed the most information about which 
gamble to pick. Two-way ANOVAs confirmed that this dif-
ference in decision strategies affected participants’ scores 
(i.e., payoff minus information cost) in the predicted direc-
tion (see Fig. 15). We found that while participants taught by 
the robust tutor performed significantly better ( 16.25 ± 1.08 
points/trial) than the control group ( 13.60 ± 1.03 points/
trial, F(1, 4794) = 8.85 , p = .003 ), participants in the non-
robust tutor condition ( 14.26 ± 0.99 points/trial) did not 
( F(1, 4794) = 0.65 , p = .419 ). Moreover, the robust tutor 
group performed significantly better than the non-robust 
tutor group ( F(1, 3186) = 4.76 , p = .029 ). We found that 
there were no significant differences between the two envi-
ronments with regard to the benefit of being taught by the 
robust tutor ( F(1, 4794) = 0.92 , p = .337 ) or the non-robust 
tutor ( F(1, 4794) = 0.23 , p = .630 ) over being in the control 
condition. The environment also had no significant effect on 
the benefit that the robust tutor condition experienced over 
the non-robust tutor condition ( F(1, 3186) = 0.24 , p = .621).

Discussion

In this section, we applied our robust strategy discovery 
approach to a set of harder and more realistic benchmark 
problems in a new domain. Concretely, we tested if our 
approach can discover robust strategies for making invest-
ment decisions.

Paralleling our results in the domain of planning, we 
found that robust strategy discovery is a promising approach 
to helping people make better decisions under risk. Going 
beyond the work presented in Sections 4 and 5, we showed 
that our approach can be applied to human-generated descrip-
tions even when the ground truth is unknown. Given that the 
Mouselab paradigm captures the essential elements of many 
real-life decisions, such as online shopping and investment, 
our method’s success in this domain suggests that it could 
be used to improve people’s decisions in such contexts. The 
results shown in Fig. 13 suggest that most of the benefit of 
the robust tutor over the non-robust tutor should be attributed 
to BMPS being a better and more robust strategy method 
than off-the-shelf reinforcement learning algorithms. How-
ever, those results also suggest that the addition of Bayesian 
inference on the structure of the environment significantly 
improved the quality of the strategy taught by the robust 
tutor. Accurately measuring the relative contributions of 
these two factors to the quality of human decision-making 
would require a very large follow-up experiment. Regardless 
thereof, our results clearly show that participants who were 
trained by the robust tutor made significantly better decisions 
than participants who received no tutoring.

The main limitation of this experiment is that we made 
the simplifying assumption that the utility participants 

Fig. 15   Resource-rationality scores of participants in the risky choice 
experiment across conditions
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derived from the outcomes of their decisions was propor-
tional to the number of points they earned in our decision-
making game. This assumption is in conflict with the well-
known fact that the utility of money is a nonlinear function 
of the amount of money the participant gained or lost (Kah-
neman and Tversky, 1979). We discuss this limitation in 
more detail in the following section. Another limitation of 
this work is that the multi-alternative risky choice task we 
used to evaluate our robust strategy discovery method has 
a different structure from the investment task we used to 
estimate the biases in people’s descriptions. One important 
difference between these tasks is that investing is a dynamic 
decision-making problem, whereas multi-alternative risky 
choice is a one-shot decision. Another relevant difference 
between the two tasks is that the investment task reported 
the return as a percentage of the (presumably large) invested 
amount, whereas the multi-alternative risky choice task 
used small payoffs and reported them in absolute terms. It 
is conceivable that these differences enlarged the bias in the 
recorded descriptions; this seems plausible because losing 
100% of a large investment is much worse than losing $100 
on a gamble, and previous work suggested that people over-
estimate the frequency of more extreme events more strongly 
(Madan et al., 2014; Lieder et al., 2018).

Another limitation of our findings is that the effect of 
teaching people robust decision strategies was relatively 
small. Comparing the performance of the discovered strate-
gies (Fig. 13) to the performance of the participants who 
were taught those strategies (Fig. 15) reveals that this was 
primarily because participants in the non-robust tutor con-
dition and in the control condition performed substantially 
better than the strategies discovered by our non-robust meth-
ods. This suggests that in certain situations human learning 
and decision-making are already substantially more robust 
to errors in the descriptions of the decision-problem than 
standard machine learning methods. However, Experi-
ment 1 suggested that this is not always the case. Future 
research should therefore investigate in which scenarios 
human decision-makers could benefit the most from robust 
strategy discovery, and what distinguishes those scenarios 
from scenarios in which human decision-making is already 
sufficiently robust. More generally, more research is needed 
to elucidate how the benefits of teaching robust decision 
strategies depends on the nature of the decision problem.

General Discussion

Boosting people’s decision-making competence in the real 
world is very important (Hertwig and Grüne-Yanoff, 2017). 
Although decision scientists can derive clever heuristics for 
specific types of decisions and teach them to dozens of peo-
ple at a time, this solution does not scale well to improving 

the decisions of billions of people on thousands of different 
types of decisions. Recent work proposed that artificial intel-
ligence can provide a more scalable solution. The basic idea 
is to combine machine learning and educational software to 
automatically derive useful decision strategies from descrip-
tions of the decisions people have to make in the real world, 
and then teach them at scale (Callaway et al., 2022a; Consul 
et al., 2022; Skirzyński et al., 2021). The method introduced 
in this article addresses a crucial challenge for this approach, 
namely the standard methods’ sensitivity to the inevitable 
inaccuracies of our models of the real world.

Taken together, our findings suggest that the methods pre-
sented in this article are a step toward leveraging machine 
learning to discover robust heuristics that enable people to 
make better decisions in uncertain or ambiguous real-world 
settings. The robustness of the resulting heuristics is critical 
to their effectiveness because we generally cannot be certain 
about the structure of the decision problems people face in 
the real world. Therefore, it is critical that our strategy dis-
covery methods are robust to our ignorance, our biases, and 
our uncertainties. The methods we developed in this article 
make this possible. The developed methods are very general 
and can be applied to discover robust heuristics for planning 
and risky choice. Importantly, we found that teaching these 
automatically discovered strategies to people significantly 
improved their decision-making skills in the environments 
that the imperfect descriptions were derived from. This indi-
cates that combining robust strategy discovery with intelli-
gent cognitive tutors is a promising approach to improving 
human decision-making in the real world. Our approach 
stands on a solid theoretical and technical foundation in that 
it combines state-of-the-art methods for metalevel reinforce-
ment learning (Callaway, Gul et al., 2018) with Bayesian 
inference to compute the optimal heuristics defined by the 
theory of resource rationality (Lieder and Griffiths, 2020).

Relationship to Prior Work

The focus of this article was on making the best possible 
use of a given description of a decision problem. We did 
not address the question of how such descriptions should 
be obtained. Nor did we use the state-of-the-art methods for 
eliciting such descriptions from domain experts. Therefore, 
rather than simply asking domain experts to estimate the 
frequencies of different events directly, as we did in Sec-
tion 6.1.4, future applications of our method should combine 
it with the best existing methods for reducing the amount of 
bias in domain experts’ estimates (Garthwaite et al., 2005). 
These so-called elicitation methods are complementary to 
our computational method for using the elicited descrip-
tions to derive resource-rational decision strategies. If such a 
method led to significantly less bias, then it could be appro-
priate to reduce the amount of bias that our model assumed 
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to occur in the generation of people’s descriptions (see Sec-
tion 3.1). However, even if an elicitation method were able 
to elicit an expert’s true belief, that true belief would still be 
biased by the systematic errors that the expert made in form-
ing his or her beliefs and the incompleteness and potential 
unrepresentativeness of his or her experience.

The method we introduced in this article can be seen as 
a computational tool for robust decision-making (Lempert, 
2019). Robust decision-making is a family of methods for 
making decisions when one cannot have high confidence in 
any particular prediction about the future because the prob-
ability mass is spread out over many possible scenarios. The 
basic idea of robust decision-making is to identify decisions 
or policies that will fare reasonably well across a wide range 
of possible futures. One approach that is often used to aggre-
gate across multiple possible scenarios is Wald’s maximin 
rule (Wald, 1945). This decision rule chooses the decision 
whose worst possible outcome is the least bad. This princi-
ple has also been applied to robust planning with a poten-
tially inaccurate model of the environment (Nilim & Ghaoui, 
2003). The resulting algorithms compute the plan that per-
forms best in the worst-case scenario. Our method deviates 
from this approach in two ways. First, it generates a decision-
making strategy rather than a decision. Second, while Wald’s 
maximin rule chooses exclusively based on the performance 
in the worst case scenario, our method averages the strat-
egy’s performance across all possible scenarios, weighing 
each scenario according to its probability. As a consequence, 
the strategies identified by our method can be expected to 
perform better on average than the strategies that would have 
been selected by Wald’s method. On the other hand, con-
trary to Wald’s method, our method does not provide any 
guarantees on how well the selected strategy will perform 
in the worst case. Therefore, to ensure that our method has 
an appropriate level of risk sensitivity, it is important that 
its utility function puts an appropriate price tag on (large) 
negative outcomes. One advantage of Wald’s method is that 
it does not require estimates of how likely the different sce-
narios are. However, our method provides a principled way 
to obtain such estimates. In a real-world application, such as 
deciding who should receive a mortgage, obtaining experts’ 
estimates of the required probabilities could potentially cost 
thousands of dollars. However, the costs saved by averting 
even a few serious mistakes would be substantially higher.

Another related approach is risk-sensitive decision-
making (Howard & Matheson, 1972; van der Ploeg, 1984; 
Kimball, 1993). Risk-sensitive decision-making puts a 
surcharge on risky actions whose outcomes are uncertain. 
This is implemented by maximizing a risk-averse utility 
function rather than the expected value of the outcomes. 
This approach has also been applied to planning (Howard 
& Matheson, 1972; Chow et al., 2015). Interestingly, there 
is a mathematical connection between robust planning and 

risk-sensitive decision-making that makes it possible to 
transform robust planning/decision problems into risk-sen-
sitive planning/decision problems and vice versa (Osogami, 
2012). The fact that people’s choices in decisions from 
description follow a highly risk-averse utility function (Kah-
neman and Tversky, 1979) could therefore be interpreted as 
a form of robust decision-making. Moreover, the fact that 
people appear to mentally correct very low/high probabili-
ties towards a more moderate value (Kahneman and Tversky, 
1979) could be interpreted as a form of Bayesian inference 
that serves to make their decisions more robust to potential 
inaccuracies of the experimenter’s description of how likely 
different outcomes are to occur. It is therefore possible that 
the robustness of human decision-making relies on com-
putational principles that are similar to those of our robust 
strategy discovery methods (see Eq. 4).

In addition to strengthening the theoretical, methodo-
logical, and empirical foundations for improving human 
decision-making, the work presented in this article also con-
tributes to the debate about human rationality. Concretely, 
we have mathematically formalized the idea that rational 
decision strategies have to be robust to misconstruals of 
the situation the decision-maker is in. That is, they have 
to work reasonably well across multiple different situations 
and environments. This robustness is necessary for rational 
decision-making in the real world for at least two reasons. 
First, real-life situations are often ambiguous and only par-
tially observable. Therefore, even if the decision-maker 
knows a strategy that is optimal for the current situation, 
they might be unable to determine that or misconstrue the 
situation and select a different strategy instead. Second, the 
number of decision strategies in a bounded agent’s reper-
toire is limited not only by memory constraints but also 
by the cost of strategy selection (Milli et al., 2021). Our 
robust strategy discover method can be used to automatically 
derive resource-rational models of robust decision strategies 
(Lieder and Griffiths, 2020; Callaway et al., 2018b; Lewis 
et al., 2014). Such models could be an important step toward 
understanding why people use heuristics that appear to be 
sub-optimal for the specific environment in which they were 
tested. Concretely, these models might reveal that fast-and-
frugal heuristics, such as Take-The-Best (Gigerenzer & 
Todd, 1999) and Satisficing (Simon, 1956), are resource-
rational solutions to the problem of robust decision-making 
in partially unknown environments and ambiguous situa-
tions. More generally, we hope that the theory and methods 
developed in this article will help researchers understand 
the robustness of human decision-making and recreate it in 
machines. Moreover, our theory and methods could be used 
as a starting point for investigating and modeling how people 
discover robust heuristics for decision-making in the real 
world. This will be an important next step in our ongoing 
research on how people discover resource-rational heuristics 
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(He et al., 2021b; He et al., 2021a; Jain et al., 2019; Krueger 
et al., 2017).

Limitations

One weakness of the reported work is its simplifying assumption 
that the utility of gaining or losing a given amount of money is 
equal to that amount. This does not take into account the well-
known fact that the utility of money is highly nonlinear (Kah-
neman and Tversky, 1979). The rewards in our simulations and 
experiments should therefore be interpreted as utilities rather 
than money. While this slightly changes the interpretation of 
the environments, it does not affect our demonstration that our 
method is robust to errors in the description of those environ-
ments. Moreover, the range of rewards was relatively small, and 
the most significant non-linearities occur for larger amounts. 
Although assuming a linear utility function was sufficient for our 
proof-of-concept simulations, real-world applications involving 
financial decisions should use a more realistic utility function, 
such as the one proposed by prospect theory (Kahneman and 
Tversky, 1979). Importantly, our method can be applied with 
such more realistic utility functions just as easily. In fact, nothing 
about our method depends on the form of the utility function.

We have tested the effectiveness of discovering and teach-
ing robust decision strategies in the context of two related 
process-tracing paradigms (i.e., the Mouselab paradigm and 
the Mouselab-MDP paradigm). In these paradigms, partici-
pants cannot immediately see all the information at once. 
This limits their capacity to rely on automatic processes 
that rapidly integrate all the available information in paral-
lel (Glöckner and Betsch, 2008). This difference affects what 
kinds of strategies people are able to use and which strat-
egies are resource-rational. Therefore, we cannot assume 
that the strategies our methods discovered for our process-
tracing paradigms are also near-optimal for decision-making 
in the real-world. Efforts to apply our method to real-world 
decision-making should take these differences into account. 
Moreover, it is also possible that the availability of rapid 
automatic integration processes in the real-world reduces 
the potential improvements that can be achieved by teaching 
people slow and sequential deliberate decision strategies.

A limitation of our robust strategy discovery methods is 
that they cannot articulate the heuristic principles that the 
robust tutors demonstrate in natural language. In fact, the 
computational procedures that the robust tutors perform to 
generate the demonstrations are far more complex than the 
simple heuristics that their demonstrations seem to illustrate. 
This limitation could be overcome by combining our robust 
strategy discovery methods with our recently developed 
methods for generating human-interpretable descriptions 
of automatically discovered decision strategies (Skirzyński 
et al., 2021; Becker et al., 2022).

Future Directions

Regardless of the limitations, the progress reported in this 
article opens up several exciting avenues for future work. 
One line of future work is to apply robust strategy discovery 
methods to human-generated descriptions of decisions they 
face in the real world. To support this application, future 
work should develop probabilistic generative models of how 
people describe different types of decisions and the ways in 
which those descriptions tend to be incomplete or incorrect. 
The robust heuristics discovered by our method can then 
be conveyed to people by a cognitive tutor (Callaway et al., 
2022a; Lieder et al., 2019; Consul et al., 2022), a flowchart 
(Skirzyński et al., 2021), or a procedural description of the 
decision procedure in natural language (Becker et al., 2022). 
The latter two could be used as decision aids, whereas the 
former approach relies on helping people internalize effec-
tive decision strategies through training. To decide which of 
these approaches is the most promising, future work should 
investigate how well people are able to apply the decision 
strategies they were taught by an intelligent tutor in the 
real world. To design decision aids and generate interpret-
able descriptions, our robust BMPS method can be com-
bined with AI-Interpret (Skirzyński et al., 2021) to gener-
ate flowcharts that describe optimal decision procedures or 
procedural descriptions in natural language (Becker et al., 
2022). This approach might enable decision scientists to 
rapidly discover a large number of clever heuristics and 
useful principles for good decision-making. These dis-
coveries, the resulting decision aids, and the availability 
of intelligent tutors that can efficiently teach those strate-
gies to large numbers of people could give a significant 
boost to ongoing efforts to boost people’s decision compe-
tencies (Hertwig and Grüne-Yanoff, 2017; Hertwig et al., 
2019). Applications of this approach to problems such as 
purchasing, investment, business decisions, and admissions 
decisions may be feasible within a few years. But they are 
neither the only nor the most interesting applications that 
these methods might find. For instance, our method could 
also be extended to discover rational heuristics for strategic 
social interaction in economic games. The main difference 
would be that the available information would also include 
the behavior of the other player(s) and that the uncertain 
state of the environment would include the other player(s) 
strategy or strategies. In this way, the recent work by Spilio-
poulos and Hertwig (2020) could be extended from evalu-
ating the performance and robustness of known heuristics 
to potentially discovering new ones. Moreover, we foresee 
that this approach can also be applied to help people set 
better goals, plan their personal and professional projects, 
and make important life decisions, such as which career 
to pursue. These future applications will exploit scalable 
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strategy discovery methods that are currently being devel-
oped (Consul et al., 2022).

So far, we have talked about robustness to inaccurate 
assumptions about the situation in which the decision is 
made. This is subtly different from robustness to known dif-
ferences across different decision problems (Gigerenzer and 
Brighton, 2009; Spiliopoulos and Hertwig, 2020). Having a 
decision strategy that is robust to the many ways in which the 
decision problems within a given domain differ would allow 
a person to make good decisions without having to memo-
rize many specialized decision strategies and being able to 
adaptively select between them. Strategies that possess this 
form of robustness could be derived by maximizing the strat-
egy’s expected resource-rationality score with respect to the 
prior distribution over possible scenarios. This would require 
only minor modification of our method, namely sampling 
scenarios from the prior distribution instead of the posterior 
distribution. Evaluating how good the resulting strategies are 
depending on the size of the domain is an interesting direc-
tion for future research.

Appendix 1: Details of the Neural‑Network–
Based Strategy Discovery Methods

We trained the DRQN architecture using the algorithm 
described by (Hausknecht & Stone, 2015). The pseudo-code 
of that algorithm is shown as Algorithm 2.

Table 1 shows the hyperparameters we used when we 
applied the DRQN method to discover strategies for plan-
ning and risky choice respectively.

Table 1   Hyperparameters of the DQRN method as it was used for 
discovering planning strategies and risky choice strategies, respec-
tively

Name Value (planning) Value 
(risky 
choice)

Learning rate 0.00001 0.0001
Number of training 

episodes
20,000 80,000

bufferCapacity 4000 4000
startEpsilon 1 1
endEpsilon 0.15 0.02
� 0.99 0.99

Table 2   Hyperparameters of the meta-RL method as it was used for 
discovering planning strategies and risky choice strategies, respec-
tively

Name Value (planning) Value (risky choice)

Learning rate 0.00001 0.0002
Number of training episodes 80,000 100,000
� 0.90 0.9999
Episode length 9 33
Number of concurrent actors 3 1
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Table 2 shows the hyperparameters that we used with 
our meta-RL method to discover strategies for planning and 
risky choice respectively.

Appendix 2: Details of the Sampling Method 
Used for Discovering Planning Strategies

The standard way to sample from the posterior distribution 
over possible environment types e given a description d is 
to use a Monte Carlo algorithm, such as the Metropolis-
Hastings algorithm (Hastings, 1970). In this particular 
application of our method, we used a different approach. 
Concretely, we first applied the standard approach for 
learning the posterior distribution of a label given an 
image (Martinek, 2020). Concretely, we approximated the 
posterior distribution P(e|d) by training a neural network 
to predict the type of the true environment from a pro-
vided description. The output layer of the neural network 
contained one unit per environment type. The network’s 
approximation of the posterior probability was obtained 
by normalizing the output units’ activations using the soft-
max function. The network was trained by minimizing the 
cross-entry loss between a one-hot vector representing the 
true environment type and the model’s prediction of the 
posterior probabilities using gradient descent.

The training examples were generated by sampling pairs 
of environment types and their descriptions. The environ-
ment types were sampled from the prior distribution. The 
descriptions were probabilistically generated according to 
the likelihood function. To approximate sampling from the 
posterior distribution, we computed the approximate poste-
rior distribution using the trained neural network and then 
made the number of of training examples conforming to each 
potential environment type proportion to the outputted pos-
terior probability.

Appendix 3: Evaluation on the Web of Cash 
Task

To test the generality of our findings, we next evalu-
ated our approach on a different planning task called 
“Web of Cash.” (see Fig.  16). In this task, the player 
navigates a money-loving spider through a web of cash. 
Unlike, the network of airports used in the Flight Plan-
ning task, the web of cash has a tree structure and the first 
move determines which nodes can be reached later on. 
The values of the web’s nodes are independently drawn 
from a uniform distribution with diverse variances: low 
(L ∼ U({−4,−2, 2, 4} ), medium (M ∼ U({−8,−4, 4, 8}) ), 
and high (H ∼ U({−48,−24, 24, 48}) ). The environment 

structure we chose has variances that increase with depth. 
This is intuitive because long-term benefits generally 
outweigh the short-term rewards in real life. Hence, it is 
advantageous to look at the long-term benefits of the alter-
natives before taking a decision. Concretely, all nodes at 
level 1 have low variance, all nodes at level 2 have medium 
variance, and nodes at level 3 can have both medium and 
high variance. For simplicity, we assume that sibling nodes 
(i.e., nodes that share an immediate parent node) at level 
3 have the same variance and there is no preference of 
one variance type over the other. This leads to us having 
8 equally likely true environments, a number that corre-
sponds to the total number of branch-wise variance com-
binations at level 3.

Benchmarks

When the environment described above is combined with 
the model of model misspecification described below, then 
the set of possible descriptions d is identical to the set of 
possible true environments e which we call E. Each of the 
true environments in the Web of Cash task is equally likely 
to occur, that is P(e) = 1

|E| =
1

8
 , and each environment can 

give rise to any of the 8 possible descriptions. Therefore, 
there are 64 possible benchmarks in total. Thus, the set of 
possible benchmarks is {(e, d, 1

8
⋅ P(d|e)) ∶ e, d ∈ E} . The 

probability with which each possible environment gives rise 
to each possible description as depicted in Fig. 17.

Model of Model Misspecification  The cognitive bias that 
we modelled for this environment structure is a combina-
tion of imperfect memory and exaggerated expectation. 
Exaggerated expectation (Hilbert , 2012) is defined as “the 
tendency to expect or predict more extreme outcomes than 
those outcomes that actually happen.” While imperfect 
memory introduces stochasticity to the bias model, exag-
gerated expectation makes it more likely that this uncertainty 
will be resolved in favor of remembering the more extreme 
events (H).

Since there is only one possible variance type on the first 
two levels in this environment, we model the cognitive bias 
to occur at the third level only. For the purpose of perform-
ing simulations, we chose the following values for the con-
ditional probability distribution for each branch at level 3:

F o r  c o m p l e t e n e s s ,  w e  d e f i n e 
P(d = L | e = M) = P(d = L | e = H) = 0 since the person’s 
belief for variance L is a diminished expectation for the 
potential ground-truth variances M and H. Furthermore, we 

P(d = H | e = M) = 0.55 P(d = M | e = M) = 0.45

P(d = H | e = H) = 0.90 P(d = M | e = H) = 0.10
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specify P(d = X | e = L) as undefined for X ∈ {L, M, H} 
since P(e = L) = 0 at level 3 in the first place.

Simulation Results

Given this likelihood function, the posterior distributions for 
the true environment given an environment specification are 
computed. These probabilities are depicted in Fig. 18. For 
the purposes of performing simulations, we applied the bias 
model to 10,000 true environments (1250 per environment 
type).

Robust and Non‑robust Methods Discover Different Types of 
Strategies  Similar to the previous findings in Section 4.2.2, 
the behaviors of two strategies discovered by the most-robust 

Fig. 16   The Web of Cash Task is a three-step sequential decision-
making task–based on the Mouselab-MDP paradigm. The par-
ticipant’s task is to select one of the six paths leading from spider’s 
initial location in the center of the web to one of the six outermost 
nodes. The rewards of the nodes that can be reached in the first step 
(Level 1) are drawn from a distribution with low variance (L). The 
rewards of the nodes that can be reached in two steps (Level 2) are 

drawn from a distribution with moderate variance (M). The distribu-
tion of the rewards of nodes that can be reached in three steps (Level 
3) can differ between the left branch, the upper branch, and the right 
branch. Depending on the location and the benchmark problem, the 
variance of rewards at any given location at level 3 is either moderate 
(M) or high (H)

Fig. 17   Likelihood function 
P(d | e) for the Web of Cash 
task. The three-letter abbrevia-
tions denote the node variance 
at the 3rd level for each branch, 
respectively

Fig. 18   Posterior distribution P(E | d) for the Web of Cash task. The 
three-letter abbreviations denote the node variance at the 3rd level for 
each branch, respectively
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method (BMPS) versus the least-robust strategy discovery 
method (Meta-RL) were qualitatively different. Figure 19 
illustrates the learned planning strategies. In scenarios where 
the true environment matched the description, both strate-
gies used similar information (Fig. 19A). But in scenarios 
where the true environment differed from the description, 
only the strategy discovered by the robust method was able 
to correct its approach upon discovering that the environ-
ment differed from the description (Fig. 19B). This robust-
ness allowed it to always zoom in on the information that 
is most useful in the true environment. Concretely, in the 
example illustrated in Fig. 19B, the description of the envi-
ronment incorrectly stated that all of the large gains and 
losses are on the right. But in the true environment, two of 
the locations on the right harbored low rewards and two of 
the high rewards were located in the center. The strategies 
discovered by the non-robust methods were unable to adapt 
for this discrepancy and inflexibly continued to focus exclu-
sively on the nodes on the right.

The Robust Methods Performed Better  As shown in Fig. 20, 
we found that the BMPS method with Bayesian inference 
on the true environment achieved an almost perfect relative 
robustness score ( 𝜌rel > 0.98 , absolute score = 29.59 ± 0.50 ) 

and outperformed all the other methods. The second-best 
method was BMPS without Bayesian inference on the true 
environment ( 𝜌rel > 0.86 , absolute score = 27.95 ± 0.51 ). 
The addition of Bayesian inference on the true environment 
significantly improved the resource rationality of the decision 

Fig. 19   Comparison of the 
planning strategies discovered 
by a robust method (BMPS 
with Bayesian inference) versus 
a non-robust method (DRQN 
without Bayesian inference). 
“e” and “m” denote the true 
environment and model 
specifications of the sibling 
leaf nodes. The numbers near 
the mouse pointers represent 
the order of clicks made by the 
strategies. Row A illustrates the 
strategies in an environment that 
matches the description. Row 
B illustrates their behavior in a 
different environment that devi-
ates from the description
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strategies discovered by the meta-RL method ( 22.77 ± 0.52 
vs. 26.06 ± 0.49 , t(15972) = −11.03 , p < .0001 ), BMPS 
(  27.95 ± 0.51 v s .  29.59 ± 0.50  ,  t(15994) = −5.66  , 
p < .0001 ), and the DRQN method ( 26.44 ± 0.52 vs. 
27.14 ± 0.54 , t(15, 996) = −2.33 , p = .0198).
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