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Abstract
Multi-armed restless bandit tasks are regularly applied in psychology and cognitive neuroscience to assess exploration and 
exploitation behavior in structured environments. These models are also readily applied to examine effects of (virtual) brain 
lesions on performance, and to infer neurocomputational mechanisms using neuroimaging or pharmacological approaches. 
However, to infer individual, psychologically meaningful parameters from such data, computational cognitive modeling is 
typically applied. Recent studies indicate that softmax (SM) decision rule models that include a representation of environ-
mental dynamics (e.g. the Kalman Filter) and additional parameters for modeling exploration and perseveration (Kalman 
SMEP) fit human bandit task data better than competing models. Parameter and model recovery are two central require-
ments for computational models: parameter recovery refers to the ability to recover true data-generating parameters; model 
recovery refers to the ability to correctly identify the true data generating model using model comparison techniques. Here 
we comprehensively examined parameter and model recovery of the Kalman SMEP model as well as nested model ver-
sions, i.e. models without the additional parameters, using simulation and Bayesian inference. Parameter recovery improved 
with increasing trial numbers, from around .8 for 100 trials to around .93 for 300 trials. Model recovery analyses likewise 
confirmed acceptable recovery of the Kalman SMEP model. Model recovery was lower for nested Kalman filter models as 
well as delta rule models with fixed learning rates. Exploratory analyses examined associations of model parameters with 
model-agnostic performance metrics. Random exploration, captured by the inverse softmax temperature, was associated with 
lower accuracy and more switches. For the exploration bonus parameter modeling directed exploration, we confirmed an 
inverse- U-shaped association with accuracy, such that both an excess and a lack of directed exploration reduced accuracy. 
Taken together, these analyses underline that the Kalman SMEP model fulfills two basic requirements of a cognitive model.

Keywords  Parameter recovery · Model recovery · Multi-armed bandit task · Kalman filter · Exploration-exploitation trade-
off

Introduction

The exploration–exploitation trade-off is the decision between 
a familiar option with a known reward value and an unfamiliar 
option with an unknown or uncertain reward value (Addicott 
et  al., 2017). Humans face the exploration–exploitation 

trade-off in the context of consumer and career decisions, in 
decisions about how and with whom to spend their social 
lives, voting decisions, just to name a few examples. An 
individuals’ decision strategy might constitute a combination 
of explorative and exploitative choices or choices which vary 
along a continuum between exploration and exploitation 
(Addicott et  al., 2017; Mehlhorn et  al., 2015). Striking 
some balance between exploration and exploitation is often 
considered to be beneficial. Predominantly exploitative 
decision strategies might be disadvantageous since they might 
lead to inflexible, rigid and/or habitual behavior, in particular 
in volatile environments. An excess of exploration, on the 
other hand, results in inefficient switching at the expense 
of reward accumulation, and a lack of expertise (Addicott 
et al., 2017). At least two main exploration strategies have 
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been discussed: random and directed exploration (Wilson 
et al., 2021). While random exploration entails randomly 
choosing unknown options, in directed exploration, the 
choices are (strategically) biased towards options that 
maximize information gain (reduce uncertainty). Random 
exploration has low computational costs but does not lead to 
optimal performance. Directed exploration is a more elaborate 
strategy involving more computational costs and leading 
to better performance (Meder et al., 2021; Wilson et al., 
2014). Another phenomenon occurring in explore-or-exploit 
situations is perseveration, i.e., reward-independent choice 
repetition (Chakroun, 2019; Payzan-Lenestour & Bossaerts, 
2012). Gershman (2020) proposes that perseveration occurs 
due to the trade-off between maximizing the reward and 
minimizing the complexity of the choice process.

To quantify behavior in the exploration–exploitation 
trade-off, structured environments must be created. These 
environments need to be structured with respect to the agent’s 
goal, the space of options, and the temporal dimension to 
ensure correct interpretations of results (Mehlhorn et al., 2015). 
There are several tasks providing a structured environment and 
enabling quantitative research on the exploration–exploitation 
trade-off. Among these tasks are the observe or bet task 
(Blanchard & Gershman, 2018; Tversky & Edwards, 1966), the 
patch foraging task (Constantino & Daw, 2015), the clock task 
(Badre et al., 2012), and multiple variants of the bandit task 
(Daw et al., 2006), a widely used testing bed for reinforcement 
learning algorithms modeled after simple slot machines with 
multiple arms yielding probabilistic rewards (Sutton & Barto, 
1998). Bandit tasks offer a realistic and widely applicable 
operationalization of the exploration–exploitation trade-off, 
for situations in which the properties of the environment are 
independent of the agent’s behavior. One task version widely 
used in cognitive neuroscience is the four-armed restless bandit 
task (Daw et al., 2006). Here, on each trial, participants select 
between four different colored options (“bandits”). Following 
selection, the number of points earned is drawn from a 
Gaussian distribution centered at the chosen bandit’s mean. 
Mean payouts of each bandit are determined by independent 
decaying Gaussian random walk processes.

Various models have been proposed for reinforcement 
learning (RL) problems such as multi-armed bandit tasks. 
These models generally consist of a learning rule and decision 
rule. The Delta rule is a model-free learning rule based on 
the Rescorla Wagner model (Rescorla & Wagner, 1972). 
Here, the chosen bandit is updated via the reward prediction 
error (RPE), i.e., the difference between the expected and 
the obtained reward, weighted by a fixed learning rate 
parameter (Sutton et al., 2018). Learning rates can be the 
same for positive and negative RPEs or differ for positive vs. 
negative RPEs. In what follows, the latter case is referred to 
as Diff Delta rule (Cazé & van der Meer, 2013). In contrast, 
the Kalman Filter model, also called a Bayesian Learner, is 

a model-based RL algorithm. In addition to tracking each 
bandit’s expected mean value, Kalman Filter models track the 
uncertainty of the expectations, and use trial-wise uncertainty-
dependent learning rates. Hence the restless bandit task, the 
rewards change following a decaying Gaussian random walk, 
these decaying Gaussian random walks are implemented 
into the Kalman Filter models as model of the environment: 
expected values of unchosen options decay asymptotically 
towards the mean. (Chakroun et al., 2020; Daw et al., 2006; 
Sutton et al., 2018). Among the decision rules discussed here 
are the ε-greedy choice rule, and various softmax rules. The 
ε-greedy rule is a heuristic strategy where the agent chooses 
a random action in a fixed proportion of trials and chooses 
greedily the highest expected value (exploitation) on all other 
trials. The softmax decision rule (SM) also implements a form 
of random sampling such that options with greater expected 
values are chosen with higher probability. The degree to 
which a decision depends on option values is formalized 
with the softmax temperature parameter � (Daw et al., 2006). 
While values of � near 0 increase random exploration (for 
� = 0, choices are random), higher values of � correspond 
to increased exploitation. Additional terms can be included 
in the SM rule to capture relevant choice characteristics. An 
additional exploration bonus parameter � can be implemented 
to grant an exploration bonus to highly uncertain and thus 
informative options. Higher values of � correspond to 
increases in directed exploration (Chakroun et al., 2020; 
Speekenbrink & Konstantinidis, 2015). A perseveration 
parameter �  which modulates the value of the previously 
chosen option can likewise be included. In principle, different 
learning rules can be combined with different decision 
rules, even though the implementation of the decision rule 
parameters might differ if used with different learning rules 
(Speekenbrink & Konstantinidis, 2015). Equations for the 
Delta rule, the Diff Delta rule, and the Kalman Filter, as well 
as the various versions of the SM decision rule are presented 
in more detail in the Methods section.

Behavioral measures in the bandit task, which do 
not require computational modeling (“model-agnostic” 
measures) include the total payout, the percentage of trials in 
which participants chose the best bandit (“accuracy”), and the 
mean rank of the chosen bandit. These measures are different 
indicators of performance and should increase as the balance 
between exploration and exploitation becomes more optimal. 
The percentage of trials in which the participants switch from 
one bandit to another, on the other hand, indexes both random 
and directed exploration (Chakroun et al., 2020).

Models that are capable of decomposing human 
choice behavior into meaningful latent components such 
as exploration or perseveration depict valuable tools for 
researchers and clinicians. They help to understand how 
humans solve such tasks and give insights into potential 
alterations in key characteristics of choice behavior in clinical 
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populations (Wiehler et al., 2021). Several studies used model 
comparison to examine reinforcement learning models in 
human bandit task performance: Daw et al. (2006) compared 
three Kalman Filter models with �-greedy, SM and SME 
decision rules. They found no evidence that a model with 
exploration bonus accounts better for their data. In their study 
the Kalman SM model outperformed the others. In line with 
this, Speekenbrink and Konstantinidis (2015) found the SM 
decision rule to outperform the SME and �-greedy decision 
rules. With respect to learning rules, they found mixed 
evidence: depending on the model comparison metric, the best 
model used either the Kalman Filter or the Delta rule. More 
recently, Chakroun et al. (2020) compared all combinations of 
the Kalman Filter and the Delta rule with the SM, SME, and 
SMEP choice rules in human bandit task data. The Kalman 
SMEP model accounted best for their data. We recently 
replicated this model comparison in a group of problem 
gambling participants and a group of healthy matched controls 
(Wiehler et al., 2021). Raja Beharelle et al. (2015) found that 
the Kalman SME model accounted better than the Kalman SM 
model for a modified three-armed bandit task, which aims at 
preventing perseveration behavior. In other modified bandit 
tasks, the Kalman Filter outperformed the Delta rule (Payzan-
Lenestour & Bossaerts, 2012) and modeling of uncertainty-
based exploration improved the fit of these models (Cogliati 
Dezza et al., 2017; Wilson et al., 2014). Taken together, those 
attempts which try to prevent or control perseveration behavior 
succeed in disentangling directed and random exploration.

Aim of the Study

Even though the Kalman SMEP model was found to 
account best for bandit task data (Chakroun et al., 2020; 
Wiehler et al., 2021) parameter and model recovery work 
has been somewhat neglected, both by us and by others. 
Wilson and Collins (2019) suggest several steps researchers 
should follow to ensure the reliability and interpretability 
of computational modeling studies. Two key aspects 
researchers should address are model recovery and 
parameter recovery analysis before data collection begins. 
Here we use simulations to examine parameter and model 
recovery of the Kalman SMEP model as well as several 
other candidate models for human bandit task data.

If the ground truth (i.e., the parameters that have pro-
duced the data) is known, it should be possible to recover 
these parameters using parameter estimation. This property 
of a model is referred to as parameter recovery. Non-deter-
ministic models do not recover the true underlying param-
eters perfectly. Therefore, one aim in computational mod-
eling is to ensure that parameter recovery is good enough for 
the parameters to be meaningful (Wilson & Collins, 2019). 
Parameter recovery is typically performed using simulated 
data where the true parameter values are known. Following 

model estimation, the true parameter values are compared 
to the recovered (fitted) parameter values. There is no gen-
eral standard for parameter recovery and no commonly 
applied cut-off value, since the desired accuracy depends 
on the type of model and the field of research. Parameter 
recovery can be graphically examined as the scatter plot 
of the true vs. recovered parameter values to examine the 
degree to which they are correlated, and whether there is 
a bias. Additionally, ranges of the true parameter values in 
which parameter recovery is better or worse can be identi-
fied. Validity of parameter estimation is dependent on the 
model’s architecture and the estimation method applied. In 
suboptimal scenarios this can lead to interdependencies in 
the fitted parameters. This can be examined by plotting the 
posterior means and broadness of the posteriors’ highest 
density intervals (HDI) of the different parameters against 
each other (Wilson & Collins, 2019).

We also examined how parameter recovery relates to 
the number of data points (trials): one consideration when 
administering a survey or test to participants is whether per-
formance is affected by fatigue (VandenBos, 2015). Mental 
fatigue can reduce behavioral flexibility and increase perse-
veration (van der Linden et al., 2003). Thus, mental fatigue 
might constitute a confounding variable in studies applying 
the bandit task, and hence, there should not be more tri-
als than necessary. However, too few trials might reduce 
the ability to estimate the true underlying parameter values. 
Examining parameter recovery for different numbers of trials 
can therefore guide researchers to find the optimal number 
of trials to use in their experiments.

In a second step, we examined how model-agnostic 
performance metrics relate to the data-generating parameter 
values. This can be helpful when evaluating psychological 
interpretations of model parameters. Following the conception 
of the exploration–exploitation trade-off (Addicott et al., 
2017), both an excess of exploration as well as an excess of 
exploitations should negatively impact performance metrics, 
i.e., decreased overall payoff, lower mean rank of the chosen 
bandit and lower percentage of trials in which the best bandit 
was chosen. Random and directed exploration (softmax 
temperature, exploration bonus) should lead to more switches. 
Random exploration and perseveration are constraints to 
the rational solution of the exploration–exploitation trade-
off (Gershman, 2020). They are therefore expected to be 
associated with lower performance. The exact forms of these 
associations are explored here.

Model recovery is given when in a set of possible 
models, the model underlying the data-generating process 
can be successfully identified using model comparison 
techniques. This can be examined by simulating data based 
on a set of different candidate models. Each simulated 
data set is then again fitted using the same set of candidate 
models. Successful model recovery then entails that the 
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true underlying model accounts for the data better than 
alternative models. Crucially, model recovery is conditional 
on the models compared to the model of interest such that 
a consideration of additional models in the model recovery 
analysis might yield different results. Therefore, analyses 
of model recovery should take a range of different models 
into account (Wilson & Collins, 2019). Model recovery 
also depends on the range of input parameters used in 
the simulations. It is possible that model comparison can 
successfully distinguish models in one range of input 
parameters, but not in another part of the parameter 
space. Omitting model recovery checks can lead to 
misinterpretations of model comparisons and might lead to 
the selection of models with poor generative and predictive 
performance (Palminteri et al., 2017). If model recovery 
fails in studies of simulated data, model comparisons of 
models fit to empirical data are suspect, such that inferences 
regarding latent processes underlying cognitive functions 
are not interpretable. Here we analyze model recovery 
of Kalman Filter and Delta rule models, using a range of 
different variants of the softmax choice rule.

Methods

Material

The simulations and the analyses were conducted using the 
software R, version 4.0. (R Core Team, 2021) and Stan, ver-
sion 2.21.2 (Stan Development Team, 2021). Stan is a free 

and open-source program that performs Bayesian inference 
or optimization for arbitrary user-specified models (Gelman 
et al., 2015). Model comparison was conducted using the R 
package loo (Vehtari et al., 2020). For the presentation of 
results, the R packages corx (Conigrave, 2020) and papaja 
(Aust & Barth, 2020) were used. Materials and models as 
well as analysis code are accessible on the website of the 
Open Science Foundation: https://​osf.​io/​2e69y/.

Underlying Payoff Structure

As input to the simulations of behavior in the four-armed 
bandit task, for each of the options, a decaying random walk 
was implemented, based on the procedure described in Daw 
et al. (2006). This process is specified by Eqs. (1) and (2):

Here, the reward obtained from bandit i on trial  (�post

i,t
 ) is 

sampled from a normal distribution with the previous reward 
�
pre

i,t
 as the mean and standard deviation �o . The decay of the 

random walk is specified in formula (2). Here, � is the decay 
parameter, � the center of the decay, � the diffusion noise and 
�D the standard deviation of the diffusion noise. The following 
values were used as input parameters: � = 0.9836, � = 50,�o 
= 4 and �D = 2.8 (Daw et al., 2006). We used two different 
instantiations of this random walk structure (Fig. 1). Analyses 

(1)μ
post

i,t
∼ N(μ

pre

i,t
, σo)

(2)μ
pre

i,t+1
= λ ⋅ μ

post

i,t
+ (1 − λ)ϑ + ν with ν ∼ N(0, σD)

Fig. 1   Gaussian random walks 
used for simulations. A: instan-
tiation of the decaying random 
walk that was used in the gen-
eral analysis of parameter and 
model recovery; B: instantiation 
of the random walk used to 
compare the parameter recovery 
of models with different num-
bers of trials. Lines reflect mean 
payoffs per option (bandit)
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used the instantiation in Fig. 1A, which included 300 trials. 
For investigating the effect of the number of trials on param-
eter recovery, we used the instantiation depicted in Fig. 1B, 
which included 500 trials.

Computational Models

To verify for model recovery, models must be compared 
to a set of competing candidate models (Wilson & Collins, 
2019). Here, the Kalman SM, Kalman SME, Delta SM 
and Diff Delta SM model were compared. We decided for 
this set of models to be able to compare between different 
learning rules, as well as between different decision rules 
when applying the same learning rule. The Delta SME and 
Delta SMEP model, as well as the corresponding Diff Delta 
models were not examined hence the implementation of 
directed exploration in these models, as they were used by 
Daw et al. (2006) and Chakroun et al. (2020) differs strongly 
from the implementation of directed exploration in Kalman 
filter models and was not supported empirically. The Kalman 
SMEP model accounts for model-based RL and decision 
processes. It consists of a learning rule, a decision rule, and 
a decay rule. The learning rule specifies the updating of 
for the mean and variance of the expected reward based on 
the prediction error and an uncertainty-dependent trial-wise 
learning rate (Kalman gain). It is depicted in formula (3) 
to (5).

The Kalman Filter assumes that agents model a distribution 
for each option which assorts a credibility to each possible 
reward, where the mean of this distribution resembles the 
value of reward which appears most credible to the agent. The 
variance of this distribution resembles the uncertainty of this 
expectation. In formula (3), �̂ct ,t

 is the mean expected value of 
the chosen option i = ct on a trial t, which is updated on each 
trial based on the prediction error �t and the Kalman gain Kt . 
Importantly, as it is formalized in (4), not only the expected 
value of the chosen option is updated, but also the uncertainty 
of that option, i.e., the expected variance of the expected value 
�̂2

ct ,t
 . Kalman gain depends on the variance of the chosen 

option and the observation variance �2

o
 , as it is shown in 

Eq. (5). Intuitively, learning increases ( Kt increases) with 
increasing option uncertainty.

The decision rule is outlined in Eq. (6):

(3)μ̂
post

ct ,t
= μ̂

pre

ct ,t
+ Kt ⋅ δt with δt = rt − μ̂

pre

ct ,t

(4)σ̂
2post

ct ,t
=
(

1 − Kt

)

⋅ σ̂
2pre

ct ,t

(5)Kt = σ̂
2pre

ct ,t
∕
(

σ̂
2pre

ct ,t
+ σ2

o

)

The agent chooses option i on trial t with the probability 
Pi,t . This probability is calculated via softmax function with 
the free parameters: � , � and � . � is the softmax temperature 
and is bounded to take only positive values (Daw et al., 2006), 
� and � model the exploration bonus and perseveration bonus, 
respectively, which are implemented as additive components to 
the mean expected value of each option. The parameter ranges 
of � and � are theoretically unrestricted. The exploration bonus 
is calculated as the product of � and the standard deviation ̂�pre

i,t
 

of each option i on trial t. The perseveration bonus is calcu-
lated as the product of � and an indicator function I that equals 
1 for the option that was chosen in the previous trial and 0 for 
all other options. The denominator of the softmax function 
contains the sum over all option values.

In terms of exploration/exploitation behavior, � reflects the 
degree to which an agent uses random exploration. Small val-
ues of � reflect increased random exploration, whereas high 
values of � reflect a greedy strategy, in which the option with 
the highest expected value plus additive components is chosen 
deterministically. Thus, � reflects the trade-off between random 
exploration and exploitation. The range of � was additionally 
restricted on the upper bound to a maximum value of �max = 3 . 
This was done to enhance the performance of the model during 
the sampling process. Empirically, ranges between 0.18 and 
0.26 of � were observed in human data (Chakroun et al., 2020). 
Thus, this restriction does not constrain the interpretability of 
the modeling results. � reflects the degree of uncertainty-based 
exploration an agent uses: higher values of � reflect higher 
levels of directed, uncertainty-based exploration, smaller val-
ues of � reflect reduced uncertainty-based exploration. Nega-
tive values of � reflect a strategy that gives an extra bonus 
to more certain options (Daw et al., 2006). � reflects choice 
“stickiness”, i.e., how much an agent tends to choose the same 
option as on the previous trial. High levels of � reflect a strat-
egy strongly based on perseveration, values near zero reflect a 
strategy independent of the last trial and negative values reflect 
a value independent switching bonus (Chakroun, 2019).

The Kalman Filter SMEP model contains decay rules for 
the updating of the expected values and variances of all options 
between trials, specified in formula (7) and (8):

Here, the decay of the expected value depends on� , which 
reflects the size of the steepness of the decay, while � reflects 
the decay center, i.e., the value towards which the expected 

(6)Pi,t =
exp(β ⋅

�

μ̂
pre

i,t
+ φ ⋅ σ̂

pre

i,t
+ ρ ⋅ Ict−1=i

�

)

∑

j exp(β ⋅
�

μ̂
pre

j,t
+ φ ⋅ σ̂

pre

j,t
+ ρ ⋅ Ict−1=j

�

)

(7)μ̂
pre

i,t+1
= λ ⋅ μ̂

post

i,t
+ (1 − λ) ⋅ ϑ

(8)σ̂
2pre

i,t+1
= λ2 ⋅ σ̂

2post

i,t
+ σ2

D
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values decay asymptotically. Similarly, the decay of the 
expected variance of all options depends on � and �D (Daw 
et al., 2006). The form of these decay functions implements 
that older information on the value of an option loses its valid-
ity, and the agent uses rather information about the general size 
of rewards of all options than rely on old information about a 
specific option. Uncertainty increases if there is no new infor-
mation but reaches an asymptotical ceiling. In all analyses con-
ducted on Kalman Filter models in this study, the parameters 
, �,�o and �D were fixed to the true values underlying the payoff 
structure of the simulations. Specifically, � = 0.9836, � = 50,�o 
= 4 and �D = 2.8, following the implementation of Daw et al. 
(2006) and Chakroun et al. (2020). Similarly, the initial values 
�j,1 and�j,1 , were fixed to their true values: �j,1 was set to 50 
and �j,1 was set to 4.

The Kalman SME and the Kalman SM Model rely on the 
same learning and decay rules as the Kalman SMEP model 
(see Eqs. 3–8). The decision rule of the Kalman SME model 
resembles the Kalman SMEP model without the persevera-
tion term. It contains the free parameters � and � . Its deci-
sion rule is specified in formula (9).

The Kalman SM Model, accordingly, resembles the 
Kalman SMEP model without exploration bonus and perse-
veration. Its only free parameter is the softmax parameter � . 
Its decision rule is specified in Eq. (10).

The Delta rule is a model-free learning rule, in which 
learning depends on the learning rate � . Each subject has 
a fixed learning rate that can take values between zero and 
one.

Here, vct ,t is the estimated value of the chosen arm c on 
a trial t , � the learning rate, � the prediction error and rt the 
obtained reward. The values of unchosen options are not 
updated (Sutton & Barto, 1998). The expected values are 
updated with the learning rate � , independent of whether 
the prediction error is positive or negative. Initial option 
values vj,1 were set to 50 for all options. Based on the learned 
expectations the agent chooses an option following the soft-
max decision rule.

(9)Pi,t =
exp(β ⋅

�

μ̂
pre

i,t
+ φ ⋅ σ̂

pre

i,t

�

)

∑

j exp(β ⋅
�

μ̂
pre

j,t
+ φ ⋅ σ̂

pre

j,t

�

)

(10)Pi,t =
exp(β ⋅ μ̂

pre

i,t
)

∑

j exp(β ⋅ μ̂
pre

j,t
)

(11)vct ,t+1 = vct ,t + α ⋅ δ with � = rt − vct ,t

(12)Pi,t =
exp(β ⋅ vi,t )

∑

j exp(β ⋅ vj,t )

Finally, the Diff Delta rule corresponds to the Delta rule, 
but allows for asymmetric updating when prediction errors 
are positive versus when prediction errors are negative (Cazé 
& van der Meer, 2013). Its learning rule is described in for-
mula (13).

Learning rates �+ and �− are used, depending on the 
sign of the prediction error. This differentiation takes into 
account, that humans perceive positive and negative values 
as distorted subjective utilities, and this distortion depends 
on whether the values are positive or negative (Cazé & van 
der Meer, 2013). The decision rule of the Diff Delta SM 
model is the same for the Delta SM model, see Eqs. 13. The 
expectations about unchosen options are, as in the Delta SM 
model, not updated. The Diff Delta SM model then contains 
three free parameters, �+ , �− , and � , and one fixed parameter 
vj,1 , which was set to 50. An overview of the set of models 
and their free parameters is provided in Table 1.

General Procedure of Simulation and Fitting

The process of simulation included, in each analysis, the 
specification of the used model, setting a range of input 
parameters, the specification of the underlying payoff struc-
ture and the definition of the numbers of trials and subjects 
to be simulated. For model estimation, the simulated data 
(choices, rewards) for each simulated subject and trial was 
entered into Stan. In Stan, the Hamiltonian Monte Carlo 
algorithm is used as a Markov Chain Monte Carlo method 

(13)vc,t+1 =

{

vct , t + α+ ⋅ δ if δ ≥ 0

vct , t + α− ⋅ δ if δ < 0

Table 1   Overview of the Examined Models and their Free and Fixed 
Parameters

Model Names: SM: softmax; E: exploration bonus; P: persevera-
tion, Diff Delta: Delta rule with differential learning rates for posi-
tive and negative prediction errors. Free Parameters: � is the softmax 
parameter; � is the exploration bonus parameter; � is the persevera-
tion parameter; � is the learning rate for all prediction errors; �+ is 
the learning rate that only accounts for positive prediction errors; �− 
is the learning rate that only accounts for negative prediction errors. 
Fixed Parameters: � is the decay parameter; � is the decay center; �2

o
 

is the estimated observation variance; �2

D
 is the estimated diffusion 

variance; �j,1 is the initial prior mean of the expected reward for all 
options; �2

j,1
 is the initial prior variance of the expected reward for all 

options; vj,1 is the initial expected reward value for all options

Model Free Parameters Fixed Parameters

Kalman SMEP β, �,� �, � , �2
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, �2

D
, �j,1, �2

j,1

Kalman SME β, � �, � , �2
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, �2

D
, �j,1, �2

j,1

Kalman SM β �, � , �2

o
, �2

D
, �j,1, �2

j,1

Delta SM β, � vj,1

Diff Delta SM β, �+, �− vj,1
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(MCMC). MCMC approximates the posterior distribution of 
the free parameters of the model. In contrast to frequentist 
approaches, where only maximum likelihood point estimates 
for the combination of model parameters accounting best for 
a certain observation are obtained, the Bayesian approach 
results in distributions which assort a likelihood to every 
value of a parameter. The width of a parameter’s posterior 
distribution then directly corresponds to the probability of 
different parameter values, given the prior and the data. The 
posterior distribution can also be used to estimate intervals 
which most likely contain the true parameters, so-called 
highest posterior density intervals.

We ran four chains. Chain convergence was assessed 
using the R̂ statistic, where we considered values of 
1 ≤ R̂ ≤ 1.01 acceptable. We additionally report the effec-
tive sample size, ÊSS , which estimates the quality of the 
fitting process (Kruschke, 2015). Since the first iterations in 
a MCMC are highly biased, a certain number of iterations 
in the beginning are discarded. This is called the warmup or 
burn in period. We used 1000 burn-in iterations and retained 
a further 1000 samples for analysis. No thinning was applied. 
For � , the prior was limited to the range 0 < 𝛽 < 3 ; for � and 
� , uninformed priors were used, i.e., a uniform distribution 
with range −∞ to +∞.

Model comparison was performed using the loo package 
in R, which uses a version of the loo estimate that was opti-
mized using Pareto smoothed importance sampling (PSIS) 
(Vehtari et al., 2017). loo estimates the out-of-sample pre-
dictive accuracy of the model, i.e., how well the entire data-
set without one data point predicts this excluded point.

Procedure for Parameter Recovery

To evaluate parameter recovery, a dataset with 125 subjects 
and 300 trials per subject was simulated. In the following, the 
number of subjects is referred to as nSubjects, and the 
number of trials as nTrials. Wilson and Collins (2019) 
propose to adjust the input values of simulations to empirical 
obtained behavioral results. Therefore, the input values for 
the Kalman Filter models as well as nTrials were adjusted to 
the empirical data obtained in the placebo condition by 
Chakroun et al. (2020). To obtain input values of � , � and � , 
for each of the parameters, 125 values were drawn randomly 
from normal distributions fitted after their results. The true 
values of these distributions are reported in Table 2. These 
values resemble the values Chakroun et al. (2020)obtained 
in the placebo condition of their study. Here, the distribution 
of � was truncated to 0.03 < 𝛽 < 3 , hence more extreme 
small values indicate an entirely random choice behavior, 
while bigger values than 3 indicate an entirely greedy 
strategy. Both strategies resemble extremes of behavior in the 
exploration–exploitation trade-off and do not allow further 
examination and differentiation between subjects applying 

this strategy. To check if the results of the parameter recovery 
of � generalize to different priors, the same data was fit once 
more using a gamma (2,4) distribution as a prior. Since �� in 
the placebo condition in Chakroun et al. (2020) was very 
small, likely due to a shrinkage effect due to the hierarchical 
estimation, we used the standard deviation of the individual-
subject posterior means in the placebo condition as �� . The 
random walk depicted in Fig.  1A  was included as the 
underlying payoff structure. The choices were simulated 
based on specific parameter combinations. To this end, on 
each trial, a choice was simulated using the softmax function 
with choice probabilities based on the input parameters 
�s,�s, �s and the current trial-level estimates of μ̂j,t and σ̂2

j,t
.

To test for parameter recovery, the correlations of the input 
values of �s,�s and �s and the means of the corresponding 
posterior distributions were estimated. Additionally, the 
correlations of the input values and the width of the HDIs 
of the parameters were calculated to check for changes of 
the quality of the fitting process throughout the parameter 
ranges. Posterior density was estimated using Silverman’s 
rule of thumb implemented in the R package “stats” (R Core 
Team, 2021) and the HDI was estimated using the R package 
“HDInterval” (Meredith & Kruschke, 2020). To check for 
independence of the different parameters, the correlations of 
the obtained values of all parameters with the posterior means 
and HDIs of both other parameters were calculated. These 
associations were graphically inspected.

Table 2   Input Values of the Simulations Used to Investigate Model 
Recovery

Model Names: SM: softmax; E: exploration bonus; P: persevera-
tion; Diff Delta means Delta rule with differential learning rates for 
positive and negative prediction errors. Parameters: � is the softmax 
parameter; � is the exploration bonus parameter; � is the persevera-
tion parameter; � is the learning rate for all prediction errors; �+ is 
the learning rate that only accounts for positive prediction errors; �− 
is the learning rate that only accounts for negative prediction errors; � 
is the input true mean of the distribution of input values; � is the true 
standard deviation of the input values; lb and ub are the lower and 
upper bound of the truncated normal distribution of input values

Model Parameters Distribution of Input values

Kalman SMEP β � = 0.23, � = 0.08, lb = 0.03;ub = 3

� � = 0.98, � = 0.70

� � = 5.84, � = 4.20

Kalman SME β � = 0.17, � = 0.05, lb = 0.03;ub = 3

� � = 0.15, � = 0.76

Kalman SM β � = 0.16, � = 0.06, lb = 0.03;ub = 3

Delta SM β � = 0.50, � = 0.50, lb = 0.03;ub = 2

� � = 0.50, � = 0.25, lb = 0.03;ub = 1

Diff Delta SM β � = 0.50, � = 0.50, lb = 0.03;ub = 2

�+ � = 0.50, � = 0.25, lb = 0.03;ub = 1

�− � = 0.50, � = 0.25, lb = 0.03;ub = 1
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To inspect the influence of the number of trials on the 
parameter recovery, a new set of simulations was created. 
Due to computational feasibility constraints, in this set, 
nSubjects in each simulation 64. The generation of input 
values of �s,�s and �s was conducted like it was depicted 
above. In a first step, four simulations were conducted with 
nTrials = 100, 200, 300 and 500. Correspondingly, the first 
100, 200, 300 and 500 trials of the random walks depicted 
in Fig. 1B were used. These simulations were fitted using 
1000 iterations in the warmup and 1000 iterations in the 
sampling per chain. In a second round, to examine the range 
between 100 and 300 parameters in greater detail, simula-
tions with nTrials = 150, 200, 250 and 300 were conducted. 
Hence in the first round some R̂ parameters were question-
able, the number of iterations was set to 1500 iterations in 
the warmup and 1500 iterations in the sampling per chain. 
In a third step, the simulation with nTrials = 100 was fitted 
again with 1500 iterations in the warmup and 1500 iterations 
in the sampling per chain and prior boundaries of -10 < 𝜑 < 
20 and -20 < 𝜌 < 40. In these analyses, the range of the dif-
ferent nTrials reflects the range which appears plausible as 
to be used in future human studies.

We next calculated model-agnostic behavioral metrics 
from all simulations, i.e., the percentage of switches, the 
total payout, the percentage of choices for the best option 
and the mean rank of the options. These model-agnostic 
behavioral results were correlated with the input values 
of �s,�s and �s and their associations were graphically 
inspected. Additionally, it was checked whether it is possible 
to distinguish � and � based on non-modeling analyses. For 
this, it was observed that repetitive choices after trials with 
small rewards relate differentially to � and � than repetitive 
choices after trials with big rewards.

Procedure of Model Recovery

The procedure of checking for model recovery included the 
simulation of five datasets. Each one of these was based 
on the Kalman SMEP model, the Kalman SME model, 
the Kalman SM model, the Delta SM Model, and the Diff 
Delta SM Model. Each of these simulations were fit by all 
other models. These fits were compared regarding their 
goodness-of-fit.

All five simulations used nSubjects = 64 and nTri-
als = 300. The true values of the distributions of input 
parameters are reported in Table 2. In line with the proposal 
of Wilson and Collins (2019), for the Delta Rule and Diff 
Delate rule modes, plausible and interpretable parameter 
ranges were used.

Taken together, 320 subjects, i.e., 64 subjects based on 
each of the five models, were simulated. Each simulated 
subject was fit using each of the five models. The result-
ing fits were compared regarding their goodness-of-fit. As a 

measure of goodness-of-fit, PSIS-loo was estimated (Vehtari 
et al., 2017). PSIS-loo is sensitive to overfitting, so neither 
more complex models nor simpler models should be pre-
ferred by the inference criterion. If more complex model-
based simulations are fit systematically better by simpler 
models this should be due to the implementation of non-
informative parameters, while if more complex models fit 
data generated by simpler models better, this indicates that 
the more complex model implements a parameter which 
systematically explains random noise. This would then 
indicate a problem of the model and not of the criterion of 
model comparison. Higher loo values indicate a better fit, 
and the best-fitting model was determined for each simu-
lated subject. Model recovery were then illustrated via con-
fusion and inverse confusion matrices (Wilson & Collins, 
2019). The confusion matrix quantifies the percentages of 
the subjects simulated based on a certain model i which are 
best fit by model j . Each cell contains the percentage speci-
fied in Eq. (14). The inverse confusion matrix quantifies the 
percentages of all subjects fitted best by a certain model j 
which were simulated based on a certain model i . Each cell 
contains the percentage specified in Eq. (15).

where sim = i indicates that the subject’s data was simulated 
based upon model i and bestfit = j indicates that model j was 
found to fit the subject’s data best. The rows of the confu-
sion matrix, which contain all subjects simulated using the 
same model, sum up to 100 percent, while the columns of 
the inverse confusion matrix, which contain all subjects fit-
ted best by the same model, sum up to 100 percent. High 
values along the diagonal indicate a good model recovery 
while high off-diagonal values indicate poor model recovery. 
Diagonal values for a model in the inverse confusion matrix 
indicate how reliable the result of a model comparison is, if 
the model comparison indicated this model to fit best for a 
dataset (Wilson & Collins, 2019).

Results

Parameter recovery

To perform parameter recovery for the Kalman SMEP 
model, a dataset with nSubjects = 125 and nTrials = 300 was 
simulated and fitted. The fitting process met the require-
ments of representativeness, accuracy, and efficiency. The 

(14)Celli,j ←
nsim=i, bestf it=j

nsim=i

⋅ 100

(15)Celli,j ←
nsim=i, bestf it=j

nbestf it=j
⋅ 100
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sampling parameters of all fits conducted in the analysis of 
parameter recovery are reported in Supplement A, Table S1.

The Pearson correlations of the true values, i.e., the input 
values to the simulation, and the obtained values, i.e., the 
means of the posterior distributions, were for � : r =0.91, for 
� : r =0.95 and for � : r =0.93. The scatterplots of these corre-
lations are depicted in Fig. 2: it is shown that the recovery of 
all parameters is generally good, while some, single values 
deviate from the true values. The 95% HDI is also generally 
rather small, indicating a concise estimation of the posterior 
distribution. For all parameters, the 95% HDIs include the 
true value. There is no apparent systematic bias. The fitting 
process did not introduce interdependencies. For details, see 
Fig. S1 in the supplements. This pattern was also robust 
when using a gamma (2,4) distribution as a prior of beta 
instead of the uniform prior 0 < 𝛽 < 3 , see supplement B, 
Fig. S1. To address the issue of robustness for noisier data, 
we selected the 25% of simulated datasets with the smallest 
values of beta, i.e., the highest levels of decision noise. We 
still obtained parameter recovery correlations Pearson cor-
relations were for � : r =0.94, for � : r =0.92 and for � : r =

0.89. These correlations indicate adequate parameter recov-
ery even for the highest levels of decision noise simulated in 
the present analysis.

To inspect the influence of the number of trials on param-
eter recovery, multiple simulations and fits were created. 
The results of the parameter recovery for different numbers 
of trials are summarized in Table 3: as expected, parameter 
recovery improves as the number of trials increases. How-
ever, even for n = 100 trials, parameter recovery was found 
to be acceptable.

Associations with Performance Metrics

Subsequently, we investigated how the free parameters 
of the Kalman SMEP model relate to the model-agnostic 
performance metrics (Table 4, Fig. 3, i.e., total payout, 
percentage of trials in which the best option was chosen, 
mean rank of the chosen bandit, percentage of switch tri-
als). The Pearson correlations of all measures and true 
parameters were calculated (see Table 4). In Fig. 3, the 
relationship of the free model parameters of the Kalman 

Fig. 2   A: parameter recovery 
of β (softmax parameter); 
B: parameter recovery of φ 
(exploration bonus parameter); 
C: parameter recovery of ρ 
(perseveration parameter); the 
scatterplots show the correlation 
of the true values, i.e., the input 
values to the simulation, and 
the recovered values obtained in 
the fitting process; the mean of 
the posterior values is depicted 
as dots; the whiskers show the 
range of the 95% HDI; the red 
lines are the actual linear regres-
sion lines; the green lines show 
the linear regression lines for a 
perfect parameter recovery
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SMEP model and the model-agnostic measures are exam-
ined more closely. Hence the three examined performance 
metrics, the payout, the percentage of best-option choices 
and the mean of rank of the chosen option are highly inter-
correlated, only the effects on the payout and the switches 
were analyzed. The following associations base on visual 
inspection. Higher values of � are associated with higher 
payouts and fewer switches (Fig. 3A). The payout and the 
number of switches reach an asymptotical level, see plots 
A and B. Regarding � , the payout obtained reaches a maxi-
mum for true values of � = 1.1. Both lower and higher 
values of � lead to a reduced payout (Fig. 3C), confirm-
ing the expected inverse-U-shaped relationship between 
directed exploration and performance. The percentage of 
switches increases approximately linearly with � , within 
the examined range of input values (Fig. 3D). Regarding 
the effect of � on the payout, there is a slight, approxi-
mately linear growth of the payout for higher values of � 
within the examined range, and a strong, approximately 
linear decrease of the percentage of switches for higher 
values of � within the examined range (Fig. 3E and F).

Simulated subjects with higher values of � tend to repeat 
choices after small rewards (< 50) in a similar extend as 
compared to after big rewards (> 50), while simulated sub-
jects with higher values of � tend to perseverate after big 
rewards, but not after small rewards, see Fig. 4.

Model Recovery

To check for model recovery, five datasets with nSub-
jects = 64 and nTrials = 300 each were simulated, based 
on the Kalman SMEP model, the Kalman SME model, 
the Kalman SM model, the Delta SM model, and the Diff 
Delta SM model. Each simulated subject was again fitted 
using all models and compared with respect to loo-based 
goodness-of-fit.

Figure 5  shows the confusion and inverse confusion 
matrices. 79.69% of subjects simulated based on the Kalman 
SMEP model were best fit by the Kalman SMEP model, i.e. 
showed successful model recovery. Some simulations were 
erroneously found to be fit best by the other Kalman Filter 
models (7.81% by Kalman SM, 10.94% by Kalman SME), 
whereas few were best recovered by the Delta Rule Mod-
els (1.56% by Diff Delta SM). Correspondingly, 83.61% of 
the simulated subjects best fit by the Kalman SMEP model 
were indeed simulated by the Kalman SMEP model. In some 
cases, the Kalman SMEP Model erroneously fitted Kalman 
SME simulations (13.11%) and Kalman SM simulations 
(3.28%). There were no cases in which the Kalman SMEP 
model falsely accounted for Delta Rule simulations.

In addition to these overall acceptable features of the 
Kalman SMEP model, the confusion and the inverse con-
fusion matrices indicate that Kalman Filter and Delta Rule 

Table 3   Pearson Correlations of 
True and Obtained Parameters, 
Dependent on the Number of 
Trials

� is the softmax parameter; � is the exploration bonus parameter; � is the perseveration parameter
a fitting required 1500 iterations in the warmup and 1500 iterations in the sampling, the priors were limited 
for � and � to -10 < 𝜑 < 20 and -20 < 𝜌 < 40
b fitting required 1500 iterations in the warmup and 1500 iterations in the sampling
c fitting required 1000 iterations in the warmup and 1000 iterations in the sampling

Parameter Number of Trials

100.a 150.b 200.b 250.b 300.b 500.c

� 0.87 0.87 0.92 0.88 0.94 0.96
� 0.82 0.87 0.89 0.94 0.92 0.94
� 0.87 0.92 0.87 0.92 0.92 0.95

Table 4   Bivariate Pearson 
Correlations of Model-Agnostic 
Measures and True Values

� is the softmax parameter; � is the exploration bonus parameter; � is the perseveration parameter; true val-
ues are the input values to the simulation

Measure 1 2 3 4 5 6 Mean Standard 
Deviation

1. True � - 0.23 0.08
2. True � 0.06 - 1.00 0.69
3. True � -0.09 0.09 - 5.84 4.36
4. Payout 0.65 0.12 0.17 - 17,971.78 331.16
5. Percentage of Best-Option Choices 0.56 0.25 0.12 0.94 - 65.38 6.67
6. Mean of Rank of Chosen Option 0.67 0.03 0.19 0.98 0.92 - 3.45 0.12
7. Percentage of Switches -0.52 0.34 -0.61 -0.60 -0.42 -0.67 28.94 16.02

556 Computational Brain & Behavior (2022) 5:547–563



1 3

models were well distinguishable from each other. In contrast, 
the Delta Rule SM model and the Diff Delta rule SM models 
are, given the range of input parameters applied, almost indis-
tinguishable. Also, the model recovery of the Kalman SME 
model is questionable: only 46.88% of the simulations based 
on the Kalman SME model were recovered successfully and 

only 71.43% of the simulations the Kalman SME fitted best 
were really based on it. In addition to estimating the confu-
sion matrices based on single subject’s loo values, the loo 
estimations of the entire datasets were compared. Based on 
the entire dataset, each of the simulations is fit best by the 
truly underlying model. See Table S2 of supplement.

Fig. 3   Relation of free 
parameters of the Kalman 
SMEP model and model-
agnostic behavioral measures: 
A and B: relation of β (softmax 
parameter) with payout and 
percentage of switches; C and 
D: relation of φ (exploration 
bonus parameter) with payout 
and percentage of switches; E 
and F: relation of ρ (perse-
veration parameter) payout and 
percentage of switches; true 
values are the input values to 
the simulation; payout refers to 
the total payout of one subject; 
percentage of switches refers to 
the percentage of trials in which 
another option was chosen than 
on the trial before; the linear 
regression lines and their 95% 
confidence interval are depicted 
in blue; in C, additionally the 
quadratic regression line and 
its 95% confidence interval are 
depicted in red
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Discussion

The current study examined parameter and model recovery 
of reinforcement learning models for restless bandit prob-
lems. We focused on the Kalman SMEP model that has 
been shown to account for human data better than a range of 
competing (Chakroun et al., 2020; Wiehler et al., 2021), but 
we also examined restricted versions of that model, as well 
as Delta rule models, for comparison. The Kalman SMEP 
model combines a Kalman Filter or Bayesian Learner learn-
ing rule with a softmax decision rule with additional terms 
for directed exploration (exploration bonus) and persevera-
tion. We show that the Kalman SMEP model exhibits good 
parameter and model recovery, even for as few as 100 trials 
per simulated subject. Parameters show the expected asso-
ciations with model free performance metric.

For parameter recovery, correlations between true and 
recovered values of the Kalman SMEP model were exam-
ined, with 300 simulated trials per subject. The correla-
tions of true and obtained values indicated a good param-
eter recovery (r′s > 0.9). The graphical inspection of the 

scatterplots indicated no systematic biases. Examining the 
influence of the number of trials of the bandit task on param-
eter recovery of the Kalman SMEP model, datasets were 
simulated with trial numbers between 100 and 500. Cor-
relations of true and estimated parameter values generally 
increased with the number of trials (100 trials: 0.82 – 0.87; 
500 trials: 0.94 – 0.96). The three examined performance 
metrics, the payout, the percentage of best-option choices 
and the mean of rank of the chosen option are highly inter-
correlated; therefore, mainly the effects on the payout were 
analyzed. Associations between true parameter values and 
model-agnostic performance metrics were observed based 
on visual inspection: it was confirmed that, for higher values 
of � , payout increased while switches decreased. For higher 
true values of � , the frequency of switches increases, and for 
higher values of � , the frequency of switches decreased. We 
also confirmed an inverted-U-shaped association between � 
and payout, such that both a lack and an excess of directed 
exploration led to performance decrements. Contrary to 
expectations, within the examined range of parameter 
values, higher values of � did not consistently result in a 

Fig. 4   Model-Agnostic Dif-
ferentiation between Persevera-
tion and Exploitation. � is the 
softmax parameter; � is the 
perseveration parameter; the 
number of repetitive choices is 
the absolute number of trials, 
in which the same option was 
chosen like in the trial before 
(t-1), if, for A and B, the reward 
in t-1 was bigger than 50 and, 
for C and D, if the reward in t-1 
was smaller than 50. 50 is the a 
priori expected mean of rewards 
in the environment
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reduced payout. We assume that this result is due to the 
specific volatility of the chosen environment and the range 
of �  simulated. We expect that higher volatile environments 
lead to harder punishment of perseveration behavior.

We examined model recovery for a set of candidate mod-
els, consisting of Kalman SMEP, SME and SM models, the 
Delta SM model, and the Diff Delta SM model. Examina-
tion of the confusion and inverse confusion matrices showed 
acceptable model recovery of the Kalman SMEP model: 
79.69% of simulations based on the Kalman SMEP model 
were recovered correctly, 83.61% of the fits accounted for 
best by the Kalman SMEP were in fact simulated based upon 
this model. Generally, model recovery performance of this 
model was better than for the simpler nested versions of the 

Kalman Filter and for the Delta rule models. The Kalman 
Filter and Delta rule models were well distinguishable from 
each other.

Implications for Empirical Research

Our simulations have implications for empirical research 
applications of these models. Research using model fitting 
to compare parameter values between populations or condi-
tions (Addicott et al., 2021; Chakroun et al., 2020; Wiehler 
et al., 2021; Zajkowski et al., 2017) can regard the correla-
tion of true and recovered parameter values as an indicator 
of statistical power. Small effects might not be detected, if 
the accuracy of parameter recovery is not sufficient (Wilson 

Fig. 5   Model Recovery: Confu-
sion Matrix and Inverse Confu-
sion Matrix: SM: softmax; E: 
exploration bonus; P: persevera-
tion, Diff Delta: Delta rule with 
differential learning rates for 
positive and negative predic-
tion errors; the goodness-of-fit 
was compared using Pareto 
smoothed importance sampling 
leave-one-out cross validation; 
A: confusion matrix of models: 
percentage of all subjects 
simulated based on a certain 
model that are fitted best by a 
certain model; B: inverse confu-
sion matrix: percentage of all 
subjects fitted best by a certain 
model that are simulated based 
on a certain model
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& Collins, 2019). Also, parameter recovery sets a limit to 
the reliability of a measurement, such that e.g. the test–retest 
reliability for a given model parameter cannot exceed the 
correlation of true vs. recovered parameter values, even 
if there was a perfect temporal stability of the trait that is 
measured by the respective parameter.

Hence, the correlation of true and recovered variables 
sets a limit to the accuracy of the measurement of individual 
parameters, and design decisions (such as the number of tri-
als) need to be adjusted accordingly. Even for only 100 trials, 
correlations of true and recovered parameter were still > 0.8. 
For studies with a large number of participants and other-
wise strong manipulations or covariates this might still 
be sufficient. In studies with fewer participants or weaker 
manipulations, larger numbers of trials might be necessary 
to ensure adequate power.

The model-agnostic measures of payout, the mean of the 
rank of the chosen option and the percentage of choices for 
the best option can be regarded as measures reflecting the 
balance of exploration and exploitation, while the number of 
switches only reflects overall exploration. Higher values of 
� , i.e., less random exploration, leads to a better performance 
(i.e. higher payout). This is in line with the conceptualization 
of random exploration as an inferior exploration strategy 
(Meder et al., 2021), which requires only little cognitive 
resources and is implemented in a simpler fashion into cog-
nitive and neural processes by using neural or environmental 
noise to randomize choice (Zajkowski et al., 2017). Directed 
exploration, on the other hand, as reflected in the exploration 
bonus parameter � , showed an inverted-U-shaped associa-
tion with task performance. This resembles the theoretically-
predicted inverted-U-shaped relation of exploration, exploi-
tation, and performance, as described e.g., by Addicott et al. 
(2017). The disadvantages of diminished as well as exces-
sive exploration can be observed in different psychiatric con-
ditions: While several substance use disorders and gambling 
disorder are associated with diminished exploration (Morris 
et al., 2016; Wiehler et al., 2021), attention deficit hyperac-
tivity syndrome and schizophrenia are associated with exces-
sive exploration. The finding that increasing perseveration 
behavior, captured as � , leads to enhanced or unchanged 
performance in the bandit task contrasts with the conception 
of perseveration as a bounded rational strategy that saves 
cognitive resources on costs of performance accuracy (Ger-
shman, 2020). Research mainly addressing perseveration 
behavior should consider this carefully. The relationship of 
the input parameters and the number of switches met the 
expectations and underlines the validity of the parameter’s 
implementation in the Kalman SMEP model: the percent-
age of switches decreases for higher values of � and � and 
increases for higher values of � . This means, both explora-
tion strategies lead to more switches, while perseveration 
leads to fewer switches. Perseveration and exploitation can 

be differentiated in a model-agnostic analysis, if the pro-
portion of repetitive choices after trials with high reward is 
compared to the proportion of repetitive choices after low 
reward.

The analysis of model recovery revealed that the Kalman 
SMEP model was distinguishable from the chosen set of 
candidate models. Model recovery of the Kalman SM, 
Kalman SME, Delta SM and Diff Delta SM model were 
also examined. The Delta SM and the Diff Delta SM model 
could be distinguished from the Kalman Filter models, 
whereas they were hardly distinguishable from each other. 
This could be a model feature, but it could also be due to 
the chosen range of input parameters. Still, empirical studies 
using model comparison to distinguish these models should 
be careful about the interpretation of their result.

Daw et al. (2006) used model comparison to distinguish 
the Kalman SME, Kalman SM and Kalman �-greedy model. 
The Kalman SM model accounted best for the behavior 
of the sample (n = 14). Regarding model recovery of the 
Kalman SME model, even if the Kalman SME model would 
have been the model accounting best for the underlying 
decision process, the chances of Daw et al. (2006) to find 
this would have been limited. Chakroun et al. (2020) com-
pared the estimates of � for their empirical data between the 
Kalman SMEP and the Kalman SME model and found that 
the estimates are significantly higher in the Kalman SMEP 
model. This is likely due to the fact that, without a perse-
veration term, perseveration in the SME model is accounted 
for by fitting an “uncertainty-avoiding” exploration bonus 
parameter (Chakroun et al., 2020). Thus, our model recovery 
results suggest that studies might benefit from preferentially 
using the Kalman SMEP model rather than the Kalman SME 
model, even in cases in which they do not explicitly investi-
gate perseveration behavior.

Limitations

The current study has a number of limitations that need to 
be acknowledged. First, the examined models and the rest-
less bandit task are tightly bound to each other. While we 
can assume that the Kalman SMEP model entails good 
parameter and model recovery for all situations in which 
payoff distributions follow a random walk, this study cannot 
proof the eligibility of Kalman Filter models in tasks with 
different payoff structures like leapfrog tasks (Knox et al., 
2011), stationary bandit tasks (Sutton & Barto, 1998), or 
reversal learning (Izquierdo et al., 2017), etc.). Still there is 
a broad applicability of the current analysis, hence restless 
environments are popular in clinical and non-clinical studies 
(Addicott et al., 2013, 2021; Wiehler et al., 2021) as well as 
in animal studies (Marshall & Kirkpatrick, 2017). Typically, 
Kalman Filter models implement the true structure of the 
bandits’ random reward walks with fixed parameters. Ideally, 
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these parameters also should be implemented as free param-
eters that are fitted during parameter estimation. Attempt-
ing to do so, models containing multiple subjects did not 
converge. Probably, the parameter recovery of the Kalman 
SMEP is affected when all parameters are fit.

Within the class of restless bandit tasks, there are some 
variations not explicitly addressed here: changing the volatil-
ity of the random walks in the payoff structure or the number 
of arms might lead to a slightly better or worse parameter 
and model recovery. Regarding the effect of the number of 
trials on parameter recovery, a larger range of different trial 
numbers of trials might have been informative. Due to com-
putational feasibility constraints, these additional simula-
tions and fits were not carried out. Finally, is not possible to 
compare exhaustive sets of models in model recovery analy-
ses (Wilson & Collins, 2019). Still, there are some short-
comings to the current analysis: The Kalman SMEP model 
was the most complex model of the Kalman Filter models 
examined. Thus, the ability to distinguish the Kalman SMEP 
model from Delta Rule models and more restricted Kalman 
Filter models was examined, while the ability to distinguish 
this model from other potentially more complex models 
was not further explored. Parameter and model recovery are 
dependent on the method used for the fitting. Thus, using dif-
ferent fitting methods like maximum likelihood might lead 
to different results than the here chosen MCMC approach. 
Empirical studies involving computational modeling often 
use hierarchical modeling to estimate individual parameters 
and group differences at once (Chakroun et al., 2020; Raja 
Beharelle et al., 2015; Wiehler et al., 2021).In this study, 
we focused on fitting single subject values. Adding a hier-
archical level to the model might influence the outcomes of 
parameter and model recovery on the subject level.

Conclusion

The present study examined the parameter and model 
recovery of the Kalman SMEP model for restless bandit 
problems. Parameter recover of the Kalman SMEP was 
excellent for 300 trials, and acceptable even for as few as 
100 trials per simulated subject. Model parameters of the 
Kalman SMEP model showed associations with model-
agnostic measures of performance and behavior, in line 
with their typical psychological interpretations. Model 
recovery confirmed that the Kalman SMEP model was 
distinguishable from simpler nested Kalman Filter models 
as well as Delta Rule models. Future empirical studies that 
utilize computational reinforcement learning models in the 
context of restless bandit problems may benefit from the 
simulation work reported here.
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