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Abstract
The predictive processing account aspires to explain all of cognition using a single, unifying principle. Among the major
challenges is to explain how brains are able to infer the structure of their generative models. Recent attempts to further this
goal build on existing ideas and techniques from engineering fields, like Bayesian statistics and machine learning. While
apparently promising, these approaches make specious assumptions that effectively confuse structure learning with Bayesian
parameter estimation in a fixed state space. We illustrate how this leads to a set of theoretical problems for the predictive
processing account. These problems highlight a need for developing new formalisms specifically tailored to the theoretical
aims of scientific explanation. We lay the groundwork for a possible way forward.

Keywords Predictive processing · Structure learning · Bayesian inference · Model expansion

Introduction

The predictive processing account is a key theoretical
player in present-day cognitive neuroscience. The account
postulates that our brains make sense of the world through
a cycle of making predictions based on a hierarchical,
generative model and updating its internal states to reduce
prediction errors (Clark, 2013; Hohwy, 2013; Spratling,
2017; Walsh et al., 2020). While the account has been
steadily growing in its explanatory scope, it also has its
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critics. For instance, some have argued that predictive
processing presents old ideas under new labels (Cao, 2020),
is not as unifying as proponents like to claim (Litwin
& Miłkowski, 2020), or is difficult to falsify (Kogo &
Trengove, 2015). Even those sympathetic of the approach,
like ourselves, have posited substantive challenges. For
instance, it has been shown that structured representations—
needed to scale the account to higher-cognition (Griffiths
et al., 2010; Kwisthout et al., 2017)—render the postulated
(Bayesian) computations intractable and causes uncertainty
about how they could be realized by resource-bounded
wetware (Blokpoel et al., 2012; Kwisthout & van Rooij,
2020). Despite such critiques and challenges, proponents
remain set on making the predictive processing account live
up to its aspirations, i.e., to explain all of cognitive brain
functioning.

The account’s explanatory and modelling successes—
spanning domains like perception (Den Ouden et al.,
2012; Kok et al., 2013), action (Yon et al., 2018),
planning (Kaplan & Friston, 2018), communication (Friston
& Penny, 2011) and learning (Da Costa et al., 2020;
Friston et al., 2017; Smith et al., 2020)—seem to warrant
optimism. While we share some of this optimism and see
no reason in principle why predictive processing cannot
ultimately deliver on its promise,1 it may be premature
to take these local successes as directly foreshadowing

1At least, we do not think its challenges are that more insurmountable
than, or even fundamentally different from, those faced by other
approaches.
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ultimate, global success. All successes to date have been
limited to phenomena that can be mathematically cast as
Bayesian inference of parameters of structurally predefined
generative models. Even predictive processing proponents
have become increasingly aware of the need to build
explanations and mathematical models of how brains are
able to learn the structure of their generative models (Friston
et al., 2017; Smith et al., 2020; Da Costa et al., 2020).
Recent attempts, by these same authors, draw inspiration
from formalisms developed in engineering applications of
Bayesian statistics and machine learning. We believe that
when formalisms are adapted from one field to another in
this way, it is good practice to evaluate whether or not
the conceptual commitments that come along match the
commitments the researchers are ready to make (cf. Guest
& Martin 2021; van Rooij & Blokpoel 2020). Aspects of
formalisms that work well for engineering applications can
be inapplicable or misconceived for purposes of scientific
explanation (cf. van Rooij & Wareham 2008; van Rooij et al.
2012). In this paper, our focus is on scientific explanations
as opposed to engineering applications.

In this theoretical paper, we evaluate the commitments of
predictive processing models of (Bayesian) structure learning.
We observe that these models make the contentious assumption
that the generative model’s state space is fixed (i.e., pre-defined
and immutable).2 We show that this assumption generates
a theoretical problem for this account of structure learning:
agents that learn within the confines of a fixed state space
inevitably will get stuck in one of two cognitive states that
we refer to as cognitive blindness and category conflation,
respectively. The only way out of these states is to allow
for true structural changes to occur in generative models
that can, in principle, expand the state space. This route will
require the predictive processing account to tackle a set of
new open questions that we will highlight.

Overview

The remainder of this paper is organized as follows. We
first introduce formal concepts and notation from predictive
processing and explain a predictive processing view of
structure learning called model expansion. Next, we present
a proof argument that this model predicts that predictive
Bayesian brains inevitably get stuck in category conflation
or cognitive blindness. Lastly, we present a way out of
this conundrum by considering mathematical possibilities

2One may argue that most cognitive scientists do believe that human
generative models are flexible, adapting their structural properties
across time and circumstance. Whilst some predictive processing
theorists may agree, their generative models do not embody this view,
and instead make the contentious assumption that we noted (Smith
et al., 2020; Da Costa et al., 2020; Friston et al., 2017). We thank an
anonymous reviewer for raising this issue.

for structural changes in generative models, which we call
structure learning proper.

Formal Definition of Predictive Processing

Predictive processing proposes that human (and other)
brains make predictions about the world based on an
internal, hierarchical, generative model. This generative
model is taken to represent a person’s beliefs about
concepts, relations, and transitions in the world (Clark,
2013; Friston et al., 2010). A generative model is defined
as a hierarchy of prediction layers (see Fig. 1). Each such
layer consists of a set of hypotheses H (or hidden states)
with prior probability distribution P(H) and a distribution
P(E | H) that describes how these hypotheses relate to
the sensory input E. Between layers, the predicted P(E)

of a higher layer acts as the hypothesis distribution P(H)

for the layer below it. By explicitly modelling the causal
dynamics of the world, a generative model cannot only
make sense of observations, but also make predictions about
future observations.

According to predictive processing, predictions form
the basis of our interaction with the world. Due to the
complexity and random nature of the world we live in,
predictions made by a generative model are bound to
have some degree of uncertainty. This is called prediction
error (Den Ouden et al., 2012; Friston & Kiebel, 2009).
It is assumed that brains reduce the uncertainty of their
predictions as much as possible in order to reduce this
prediction error over time (Clark, 2013; Friston et al., 2017).
This prediction error reduction is important for a system to
persist over time (Friston et al., 2012).

Structure Learning in Predictive Processing

In the predictive processing literature, learning typically
refers to the process of optimizing the model parameters
via the application of Bayes’ theorem. Here, we consider
another form of learning referred to as structure learning.
This type of learning is not concerned with parameter
optimization but rather with learning the structure of the
generative model. More specifically, structure learning
pertains to learning the generative models’ variables and
their functional dependencies (Smith et al., 2020; Da Costa
et al., 2020).3 Recently, the first attempts have been made
towards a predictive processing formalization of structure
learning. Specifically, model reduction (Friston & Penny,
2011) and model expansion (Smith et al., 2020) have

3Our definition of structure learning differs from the more data-
scientific perspective on structure learning, which focuses more on
quantifying relations within data through algorithms. See, for example,
Madsen et al. (2017) or Pinto et al. (2009).
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Fig. 1 A hierarchical generative model. Prediction layers at level n of the model act as hypothesis layers level n− 1. Beliefs of previous timesteps
T − 1 influence the beliefs of future timesteps Tnow . Adapted with permission from Kwisthout et al. (2017)

been proposed as complementary methods for changing
the structure of a generative model. In this paper, we
will focus solely on model expansion. We will show how
this formalism leads to conceptual problems. We omit
discussion of model reduction as this method focusses
on reducing the size of the generative model, while the
conceptual problems we identify cannot be remedied by
reducing the size of a generative model.

In model expansion, generative models have two dis-
tinct types of hypotheses: latent hypotheses u = {u1,..., un}
(also referred to as “spare slots”) and explicit hypotheses
h = {h1,..., hm}. The full hypothesis space is the union
of the two types of hypotheses, i.e., H = u ∪ h. Prior to
learning all hypotheses are latent, i.e., h = ∅. Each hypoth-
esis h ∈ H has a likelihood function P(E | H = h). For
latent hypotheses, this likelihood function is a noisy uniform
distribution. For explicit hypotheses, the likelihood is devel-
oped over time based on observations as follows: when mak-
ing an observation o, the agent determines which hypothesis
h best explains that observation based on the posterior prob-
ability h = argmaxh′P(H = h′ | E = o). This posterior
probability is computed by applying Bayes’ rule:

P(H | E = o) = P(E = o | H) × P(H)

P (E = o)
(1)

Then, this most explanatory hypothesis is updated in two
ways. First, the parameters that define the likelihood func-
tion are updated according to Bayes’ rule. Secondly, the dis-
tribution over the hypotheses is updated such that the prior

probability P(H) of the next prediction cycle is set to the
posterior probability of the current: Pt+1(H) = Pt(H | o).4

If the best hypothesis h was in u prior to this update, it
is “moved” from u to h. It is this transition from a latent
hypothesis u to an explicit hypothesis h that is referred to
as “effectively expanding” the generative model. As such,
a latent hypothesis u ∈ u is made explicit when none
of the explicit hypotheses h ∈ h account better for the
observation o than u. Note that the transition from latent to
explicit is merely a verbal relabeling. Smith et al. (2020)
refer to this kind of state space expansion as “effective”
because the dimensions of the state space remain the same
throughout. The only thing that changes is the number
of explicit hypotheses used by the agent. Crucially, the
total number of hypotheses, latent plus explicit, cannot be
changed through learning. Consequently, the models that
make use of model expansion have a fixed state space. That
leaves one to wonder whether model expansion, or other
models that similarly assume a fixed state space, can truly
capture structure learning.

Problems Stemming from a Fixed State
Space

We now describe two problems that emerge from a fixed-
state space model of structure learning (such as model

4This dual updating is not a default choice. Sometimes, only the
likelihood functions are updated (Smith et al., 2020). Other times, both
are updated, and finally there are cases when neither is updated at all.
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expansion). We define the problems formally, then provide
a real-world example where the problem can occur. We
prove that under a plausible assumption (that there are more
categories in the world than hypotheses in a fixed state
space) either of these two problems will inevitably occur
(Fig. 2).

To explain the problems, we need to introduce some
definitions. We define the world as a set of categories O.
Each element in this set is a specific category O ∈ O.
Furthermore, each such category is a set of instances o ∈
O. Making an observation is defined as evidencing the
prediction variables with a particular instance of a category
o ∈ O, such that P(E = o) = 1.

We define what it means for a category O ∈ O to be
represented by a concept h ∈ H as follows:

R(O, h) ≡ ∀o∈O(argmaxh′P(H = h′ | o) = h) (2)

Thus, we say the hypothesis h represents a category O for
an agent if for each instance of that category o ∈ O, the
hypothesis h is the most probable given the evidence. That
is, h is the maximum a posteriori (MAP) hypothesis for
all o ∈ O. In real life, classification will never be this
perfect and will instead be error prone. However, for ease
of presentation we will work with this idealized error-free
scenario; i.e., we assume that if h represents the category O,
then h is the MAP hypothesis for all instances of category
O. As will become clear, our conclusions do not rely on this
assumption, even if it makes exposition easier.

Category Conflation

The first problem that we consider is category conflation.
Category conflation is the cognitive phenomenon where an
agent represents two distinct categories O1, O2 ∈ O in the
world by one and the same hypothesis h ∈ H . In addition,
there is no other hypothesis h′ �= h that represents either of
these categories. As such, the agent will classify instances
of both (distinct) categories O1 and O2 as instances of

h. In other words, for the agent the two categories are
indistinguishable.

Given the definition in Eq. 2, we can formally define
category conflation given hypotheses H and categories
O1, O2 ∈ O as follows:

Conf (O1, O2, H) ≡ O1 �= O2∧∃h∈H (R(O1, h)∧R(O2, h))

(3)

Let us illustrate the idea with a concrete example. Imagine
an agent observing ducks and geese. Imagine further that
due to the structure of its generative model, the agent
believes that ducks and geese are different instances of the
same category (we will call this combined category guck
as opposed to the excellent alternative deese). It is not
difficult to see how this situation may arise. Ducks and
geese are quite similar to one another, especially visually.
Furthermore, they can often be found in the same places,
such as public parks, within the same general “group” of
animals. Lastly, ducks and geese are strikingly different
from, say, the plants, trees and decorations that tend to be
near them. Whatever the exact reason for the confusion, the
agent now has a problem. Whenever a duck or goose is
seen, the agent infers that this is a guck. It has conflated
two categories (ducks and geese) into a single hypothesis
(gucks).

Cognitive Blindness

The second problem that we consider is cognitive blindness.
Cognitive blindness is the cognitive phenomenon where a
specific category O ∈ O in the world is not represented
by any hypothesis h ∈ H in the generative model of
the agent. Therefore, the agent is blind to the category O.
Using the definition of representation in Eq. 2, we formally
define cognitive blindness with hypothesis variables H and
a category O ∈ O as follows:

Blind(O, H) ≡ ¬∃h∈H R(O, h) (4)

Fig. 2 A visual representation of the two problems discussed in this
paper. Hypotheses are indicated with a letter h, categories with a letter
O, and dotted lines denote that a category is represented by a hypoth-
esis (R(O, h)). In the situation on the left, categories O2 and O3 are

both represented by h2. This is an example of category conflation.
In the situation on the left, category O3 is not represented by any
hypothesis. This is an example of cognitive blindness
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Let us again illustrate the idea with a concrete example.
Imagine that an agent has three hypotheses, representing
flamingos, geese and swans respectively. At some point, this
agent encounters an ostrich. Now, the agent is confused.
Because the ostrich shares some similarities with each of
the agent’s hypotheses (such as colour, “kind”—they are
all birds, and long shaped neck), it can be interpreted as
belonging to any of these hypotheses. Which bird the ostrich
is classified as will depend on the circumstances wherein
the agent sees the ostrich (How far away is the agent? How
clearly can be the colours be seen? Is only the neck visible?).
Because these circumstances will inevitably vary, ostriches
will sometimes be interpreted as a flamingo, sometimes
as a goose and sometimes as a swan. Any one of the
hypotheses that share enough features with the category
ostrich can therefore be deemed the most likely hypothesis
of an ostrich. As such, the agent is cognitively blind to the
concept ostrich.

Proof

We will now prove that a generative model with a fixed
state space will necessarily either conflate categories or
be blind to categories if there are more categories in the
world than the agent can represent in such a model. The
assumption may seem bold, but we should consider the
number of categories that we need to learn during our
lifetime. All the animals, plants, tools, words, songs, types
of food, faces, furniture and so much more need to be
represented by a “spare slot.” Furthermore, even if evolution
conveniently provided us with the right number of such
slots for a particular time, we would be missing a means of
representing all the new categories that are constantly being
developed and discovered around us (e.g., the notions of
a “neutrino,” “blockchain,” “tweet,” and “bitcoin” did not
exist prior to 1930, 1998, 2006, and 2009 respectively).

1. Let | O |>| H |
2. By tautology, we have that:

(∀O∈O∃h∈H R(O, h)) ∨ ¬(∀O∈O∃h∈H R(O, h))

3. For step 2, suppose that ¬(∀O∈O∃h∈H R(O, h))

4. From 3, it follows that ∃O∈O¬∃h∈H R(O, h)

5. Step 4 is equivalent to ∃O∈OBlind(O, H). Therefore,
supposing 3 under assumption 1 leads to cognitive
blindness.

6. For step 2, suppose that ∀O∈O∃h∈H R(O, h)

7. From 1 and 6, it follows by pigeonhole principle that
∃O1,O2∈O(O1 �= O2 ∧ ∃h∈H (R(O1, h) ∧ R(O2, h)))

8. Step 7 is equivalent to ∃O1,O2∈O(Conf (O1, O2, H))

Therefore, supposing 6 under assumption 1 leads to
category conflation.

9. Combining steps 1, 2, 3, 5, 6, and 8, we conclude
that every model must either suffer from category

conflation or cognitive blindness, given that there are
more categories in the world than there are concepts in
the model.

Human Generative Models are Not Fixed

Our proof shows that structure learning on a fixed state
space, as proposed by, e.g., model expansion (Smith et al.,
2020), inevitably will end up conflating categories or be
blind to categories in a world with ever-expanding number
of categories.

Arguably, humans may also conflate categories from
time to time, and they can at times be cognitively blind
to certain features in the world. Be that as it may, unlike
the fixed models adopted in the model expansion account
of structure learning, humans certainly do not appear to be
stuck indefinitely when these states arise. When humans
find themselves with conflated categories, or when they
come across something unfamiliar to them, they will often
readily introduce new concepts to try and explain (i.e.,
resolve) the problem. For instance, while a child may
indeed believe initially that ducks and geese are one and
the same species guck, they will learn at some point that
the animals are different species. Similarly, an explorer that
first sees an ostrich might consider all other bird hypotheses
to be insufficiently explanatory, and will introduce a new
hypothesis “ostrich” instead. New hypotheses added in
these situations are often wrong, perhaps most of the time
so, but regardless of the verity of the new concept, the
cognitive problem is actively being solved. In fact, humans
continually hone their skills in structure learning through
tools acquired through formal education, scientific training
and explicit feedback from other people. For examples of
successful structure learning, see the section below. So, if
the predictive processing account aims to explain how the
brain actually performs structure learning, we need to move
beyond fixed models.

AWay Forward: Structure Learning Proper

In the previous section, we have argued that current
attempts to model structure learning in predictive processing
run into problems due to their reliance on a fixed state
space. Therefore, predictive processing models will need to
incorporate operations that allow for changing the structure
of the generative models, if they want to avoid these
problems. We refer to these types of operations as structure
learning proper. We define structure learning proper as the
process of going from a generative model G to a generative
model G′ in a way that can not be explained by Bayesian
(parameter) updating alone. Table 1 presents an overview
of a number of changes that fall under structure learning
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(ĥ

)
←

P
(h

1
)

+
P

(h
2
)P

(E
|ĥ
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Fig. 3 Example of a Bayesian network. The bubbles represent
variables, and the arrows denote (causal) relations between those
variables. Here, the variable “Diet” influences “Restaurant”: what kind
of diet you are on limits the choice of restaurants you can go to. Both
“Diet” and “Exercise” influence “Physical Health”: A healthy diet and
more exercise lead to better physical health

proper. These changes are presented both verbally and
formally. The verbal description gives an intuitive name
for the type of change made to the generative model. In
addition, Table 1 also gives intuitive real-world examples for
each listed simple change. With these examples, we want to
illustrate that our proposed changes are not just theoretical
constructs, but also reflect aspects of human learning and
how humans make changes to their generative models. In
real life, some of these changes may occur simultaneously
and some may happen more often than others. For ease of
presentation, we illustrate the possible structural changes in
isolation and in a minimal form.

The formal description takes the verbal description and
translates it into a mathematical formalisation of the same
change. To allow for these formal translations, we define the
generative models postulated by the predictive processing
account as Bayesian networks (see Fig. 3).5 In the Bayesian
networks that we consider we designate two types of
variables: hypothesis variables H and prediction variables
E. Hypothesis variables are equivalent to hidden states
or concepts in predictive processing literature. Likewise,
prediction variables are equivalent to outcomes. The values
of a Bayesian variable X, which can either be a hypothesis
or a prediction variable, are denoted with val(X) =
{x1,..., xn}, and a single value as x. The structure of the
generative model is defined as a directed graph G = (V , A),
where V is the set of vertices in G, and A is the set of
arcs in G. Here, vertices are variables, and arcs indicate
dependencies between those variables.

5The Hidden Markov Models (HMM) commonly used in the
predictive processing literature are a special case of Bayesian
networks. For arguments for adopting the more general formalism see
Kwisthout et al. (2017).

Lastly, the table lists a conceivable precondition for each
simple change to occur (or for it to be justified to occur).
These preconditions serve as an inspiration and illustration,
and should not be interpreted as any definitive answer.
The reason why we only provide an example is that for
most of these changes these preconditions have not been
both formally defined and empirically investigated. What
the real preconditions are is therefore an open question.
This paper does not aim to give answers to these questions,
because each question would demand a research project
to address, if not a body of research. This then is the
challenge: In order for predictive processing to account for
structure learning proper, it must investigate the formal and
empirical underpinnings of the preconditions under which
our proposed changes occur in human structure learning.
We stress that the ultimate goal here is not to find statistical
or engineering solutions, but to formulate an explanatory
scientific account of structure learning proper at Marr’s
(1982) computational level.

A Note on Bayesian Non-parametrics

Before we close, we reflect on the relationship between
the challenge that we pose and an existing approach
in computational cognitive science that takes inspiration
from Bayesian non-parametrics. Readers familiar with that
approach may believe that that method already addresses the
challenge that we pose. Here, we briefly explain how and
why it does not.

Bayesian non-parametrics is a method firmly rooted in
Bayesian statistics that has found appreciation in modelling
cognition (Griffiths et al., 2006; Perfors et al., 2011; Chater
et al., 2010; Austerweil & Griffiths, 2013). A central tenet
of Bayesian non-parametrics is that generative models can
be defined without having to specify the number of values
within a variable, the amount of layers in a belief model and
other such parameters; hence the name “non-parametric”
(see Gershman & Blei 2012; Griffiths & Ghahramani 2011,
for reviews). In other words, this method allows modellers
to define a generative model that is not fixed, but can
flexibly expand and shrink. This property notwithstanding,
the approach has some limitations relevant to the challenge
that we pose.

The first limitation of Bayesian non-parametrics is that
it only captures a proper subset of the possible structural
changes listed in Table 1. Namely, to the best of our
knowledge Bayesian non-parametrics is not (yet) capable
of discovering new variables or establishing or removing
causal connections between variables. Of course, one might
argue that is it not necessary that our brains perform all
the changes listed in Table 1. We can agree with this
argument to some degree. However, the very structural
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changes missing in Bayesian non-parametrics are so central
to our cognition that any account of human learning that
cannot account for them is incomplete at best, and flawed at
worst. Given that Bayesian non-parametrics is missing the
capacity to enact some of the cognitively relevant structural
changes, there will necessarily be situations where Bayesian
non-parameterics predicts a structural change that does not
match the structural change that actually occurs in human
learning. Without a more complete account of structure
learning we have no way of predicting which situations
these could be.

The second, and arguably more important limitation
of Bayesian non-parametrics is that it commits to a very
particular stance of when and why values are changed
in a generative model. This view, if considered at Marr’s
computational level (Marr, 1982), postulates that generative
models change in order to optimize the likelihood of future
observations. This is indeed one possible precondition for
a structural change to a generative model. It is, in fact,
one formalisation of the precondition for adding a new
value that we gave in Table 1, row 7. However, we can
conceive of many other formalisations of “better explained”
(column 4, row 7), that will lead to (very) different
preconditions. Consider, for example, Kwisthout (2013),
who proposes that in judging the quality of an explanation
cognizers may weigh both informativeness and probability.
This idea conflicts with the metric of likelihood alone
used in Bayesian non-parametrics. Without knowing which
preconditions most accurately describe structural changes as
they apply to human learning, we should not treat Bayesian
non-parametrics as the only possible answer.

To summarize, while we appreciate the perspective that
Bayesian non-parametrics offers on a relevant subset of
the changes that make up structure learning proper, we
conclude that there are still important changes that are
unaccounted for. Furthermore, we argue that there are
other plausible preconditions possible that are not captured
by Bayesian non-parametrics. Our challenge to predictive
processing theorists, thus, remains to investigate which of
these preconditions best explains human structure learning.

Conclusion

Learning in predictive processing has mostly been concep-
tualized as parameter learning. Recently, several develop-
ments have been made that aim to tackle the problem of
structure learning. Structure learning is important as it can
help explain why generative models have the structure that
they do, as well as how this structure is learned over time.
However, despite the name structure learning, these new

developments in predictive processing are essentially a par-
ticular type of Bayesian parameter learning in a fixed state
space.

We showed that generative models with a fixed state space
will inevitably lead to at least one of the two conceptual
problems. These problems are category conflation, where
different categories in the world are interpreted as the same
concept, and cognitive blindness, where a category in the
world is not represented by any concept. Furthermore, we
argued that when humans run into these problems, they have
strategies that allow them to solve them. These strategies are
best understood as structural changes to a generative model.

We presented an exhaustive set of minimal changes that
can be made to a Bayesian generative model, defining
structure learning proper (see Table 1). The idea that such
changes are possible is not new: structure learning proper
has been studied in the past, with or without a cognitive
perspective (Tsamardinos et al., 2006; Piantadosi et al.,
2016; Piantadosi, 2021; Perfors, 2012; Chickering, 1996;
Chickering et al. 1994). Either this research has not provided
a formal account of all possible and cognitive relevant
structural changes or they have not explored the conditions
under which these might occur in human learning. Given
that we provide a formal characterisation of possible
structural changes in this paper, our proposed way forward
is to research cognitively plausible preconditions of when
each change occurs.

We take the position that current theories of structure
learning should integrate the proposed proper structural
changes into their explanatory toolbox. The importance of
structural changes, like the ones we suggest, cannot be
understated as a means to explain the richness of human
learning. If predictive processing wishes to live up to
its ambition to explain all of learning, it needs to make
the transition from its current formalisation of “effective”
structure learning to structure learning proper.
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