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Abstract
We discuss an important issue that is not directly related to the main theses of the van Doorn et al. (Computational Brain and
Behavior, 2021) paper, but which frequently comes up when using Bayesian linear mixed models: how to determine sample
size in advance of running a study when planning a Bayes factor analysis. We adapt a simulation-based method proposed
by Wang and Gelfand (Statistical Science 193–208, 2002) for a Bayes factor-based design analysis, and demonstrate how
relatively complex hierarchical models can be used to determine approximate sample sizes for planning experiments.
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Introduction

The papers that appear in this special issue are intended to
be a response to van Doorn et al. (2021). Our main goal
here is to address an important issue that is not directly
related to the van Doorn et al. (2021) paper but is very
relevant for researchers planning to use hierarchical models
and Bayes factors in their research. This issue is sample size
calculation when planning a Bayes factor-based study.

Before we turn to the main topic of our paper, we briefly
comment on the van Doorn et al. (2021) paper.

A Brief Comment on van Doorn et al. 2021

In van Doorn et al. (2021), the authors discuss how Bayes
factors can be computed using the BayesFactor package
(Morey et al., 2015). The authors address the important
question of what the appropriate models are that should
be compared in a Bayes factor-based analysis. Among the
different types of models that they consider, two models are

� Shravan Vasishth
vasishth@uni-potsdam.de

1 Department of Linguistics, University of Potsdam, Potsdam,
Germany

2 Department of Psychology, Health and Medical University,
Potsdam, Germany

3 Department of Cognitive Science and Artificial Intelligence,
Tilburg University, Tilburg, The Netherlands

of particular interest in psycholinguistics and psychology.
Taking a two-condition repeated-measures design as an
example, they compare (a) a model that includes varying
intercepts and varying slopes as well as a two-level predictor
as a fixed effect (their Model 6) with (b) a model with
the same random effects structure as in Model 6, but no
fixed effect for the predictor (their Model 5). This is a
nested model comparison: Model 5 is nested within Model
6. Nested model comparisons of this type are quite close to
the typical hypothesis testing approach needed in fields like
linguistics, psycholinguistics, and psychology.

There are several potentially important limitations in the
van Doorn et al. (2021) paper.

Issue 1: Ignoring item-level variability through aggregation
can be dangerous First, in psycholinguistics and related
areas, the typical repeated-measures design has not only
random effects for subjects but also crossed random effects
for items—this common situation is not considered in the
van Doorn et al. (2021) paper. There is a very important
reason for including items as a random effect: in a now-
classic article, Clark (1973) showed that items are an
important source of variance in the data (this point is
reiterated in Westfall et al., 2017), and must be modeled if
we want generalizability (Singmann et al., 2021; Yarkoni,
2020). The approach that van Doorn et al. (2021) take
in their paper is to aggregate the data over items; this
is potentially very dangerous because it will tend to hide
this crucial source of variance. In fact, one of the greatest
advantages of a hierarchical model is that it allows one to
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model different sources of variance simultaneously. Thus,
one important comment we have on the van Doorn et al.
(2021) paper is that aggregation should in general never be
done.

Issue 2: Effect sizes should generally not be standardized
Second, van Doorn et al. (2021) raise the following impor-
tant question: “How can we construct an effect size that
is meaningfully standardized? In other words, what vari-
ance should we standardize by?” This question is important
because the prior specification for the effect of interest is
affected by the standardization. However, this question pre-
supposes that effect sizes should be standardized at all—we
concur with another paper in this special issue (Singmann
et al., 2021) that standardizing may not be a good idea,
except in very specific situations (Baguley, 2009). Effect
sizes will generally have more meaningful and more inter-
pretable priors if they are defined on the scale of theoretical
interest. For example, in reading studies, meta-analyses
yield a range of effect size estimates on the millisecond
scale (Jäger et al., 2017; Vasishth et al., 2013). These
estimates—and crucially, the uncertainty of the estimates—
can form the basis for a prior distribution for a future
study. Another example is event related potentials; there,
the dependent measure is in microvolts. For specific experi-
ment designs, meta-analysis (Nicenboim et al., 2020) allows
us to define informative priors that can be used in planning
future experiments. An example is the registered report by
Stone et al. (2021) that uses informative priors developed in
(Nicenboim et al., 2020) for a planned ERP study. Focus-
ing on a standardized effect size as a point value will be
misleading, because one always has some uncertainty on
one’s prior beliefs (Baguley, 2009). At least for experiment
designs that one has some prior experience with (or quan-
titative theoretical predictions for), we see no compelling
reason to standardize the effect size.

Issue 3: Modeling varying intercept and varying slope
correlations can be important Third, although the authors
refer to their Model 6 as the “full model”, this is technically
not a full model (Barr et al., 2013, call it a “maximal”
model): it does not include correlations between the subject
random intercepts and random slopes. As they explain in
their paper, the reason that van Doorn et al. (2021) drop the
correlation term is that “The BayesFactor package. . . does
not explicitly model correlations between random slopes
and intercepts.” Although these two problems may not be
serious for many fields, for psycholinguistics they render
the van Doorn et al. (2021) paper less useful. This is
because the correlations can be of central interest when
studying individual differences (e.g., Yadav et al., 2021;
Pregla et al., 2021). It is therefore necessary to have
the capability to model these correlations. Unlike the

BayesFactor package, the probabilistic programming
language Stan (Carpenter et al., 2017) and the associated
front-end packages rstanarm (Goodrich et al., 2020)
and brms (Bürkner, 2017) make it easy to include these
correlations using the standard lme4 syntax.

Some of the limitations of the van Doorn et al. (2021)
paper stem from the limitations built into the BayesFactor
package. Today, there exist much more flexible probabilis-
tic programming environments such as Stan (Carpenter
et al., 2017), which can easily deal with the issues we
raise above. In previous work (Schad et al., 2020), we have
discussed models with a full variance-covariance structure
for subjects and for items; this work elaborates on our
three observations above about the van Doorn et al. (2021)
paper. In the Schad et al. (2020) paper, a detailed work-
flow is presented that begins with prior predictive checks
and ends with posterior predictive checks for relatively com-
plex hierarchical models. In a subsequent paper (Schad
et al., 2021), we expand on the sometimes extraordinary
difficulties associated with Bayes factors calculations in
hierarchical models of the type that are used in psycholin-
guistics. Perhaps the most important issue discussed in that
paper—which seems to be underemphasized in discussions
of Bayes factors—is that Bayes factors require careful sen-
sitivity analyses (a range of increasingly informative priors
on the target parameter). Such sensitivity analyses are typi-
cally not carried out. Instead, researchers routinely report a
single Bayes factor, usually under some “default prior” like
the Cauchy prior (for some recent examples, see Hammerly
et al., 2019; Montero-Melis et al., 2019). These kinds of
Bayes factors analyses using “default priors” (which, if we
understand it correctly, are baked into the BayesFactor
package) have the potential to be extremely misleading.
This kind of oversimplified reporting of Bayes factors
should be strongly discouraged.

The two papers by Schad and colleagues can be seen
as complementing the van Doorn et al. (2021) paper that
appears in this special issue, because they provide details
on (i) fitting complex hierarchical models that the authors
do not consider, and (ii) carrying out Bayes factor based
hypothesis testing with such complex models.

Although van Doorn et al. (2021) do not discuss this
issue, it is not obvious how one can plan sample sizes when
intending to use Bayesian hierarchical models. This is the
main topic of our paper, and we discuss this issue next.

Approaches to Sample Size Planning in Bayesian
Analyses

It may sound surprising to Bayesian modelers that sample
size planning is even something to plan for: One of the many
advantages of Bayesian modeling is that it is straightforward
to plan an experiment without necessarily specifying the
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sample size in advance (e.g., Spiegelhalter et al., 2004;
Schönbrodt and Wagenmakers, 2018). Indeed, in our own
research, running an experiment until some precision
criterion in the posterior distribution is reached (Freedman
et al., 1984; Spiegelhalter et al., 1994; Kruschke, 2014;
Kruschke & Liddell, 2018) is our method of choice
(Jäger et al., 2020; Vasishth et al., 2018; Stone et al.,
2021). This approach is possible to implement if one has
sufficient financial resources (and time) to keep running an
experiment till a particular precision criterion is reached.

However, even when planning a Bayesian analysis, there
can be situations where one needs to determine sample size
in advance. One important situation where this becomes
necessary is when one applies for research funding. In a
funding proposal, one obviously has to specify the sample
size in advance in order to ask for the necessary funds
for conducting the study. Other situations where sample
size planning is needed is in the design of clinical trials,
the design of replication trials, and when pre-registering
experiments and/or preparing registered reports.

There already exist good proposals on how to work out
sample sizes in advance, specifically in the case of Bayesian
analyses (e.g., Schönbrodt & Wagenmakers, 2018; Weiss,
1997). The proposal by Schönbrodt and Wagenmakers
(2018), which seems to be a simpler version of a much
earlier paper by Wang and Gelfand (2002), aims to ensure
that the researcher obtains strong evidence for the effect
being estimated. They consider three scenarios: a fixed-
n design, where the sample size is fixed in advance; an
open-ended sequential design, where the experiment is
run until strong evidence emerges either for or against an
effect; and a sequential design with an upper bound for
the sample size.

Although the Schönbrodt and Wagenmakers (2018)
proposals are appropriate for many settings, their example
case study is again a relatively simple design: a two-
sample t-test with a directional hypothesis. Although this
is pedagogically useful, this kind of design is almost never
used in areas like psycholinguistics. As a consequence, for
the newcomer from such a field, it is not obvious how one
can compute sample sizes for complex hierarchical models
that are the norm. A second problem with their proposal
is that they use a Cauchy prior for the target parameter
when carrying out Bayes factor calculations. Their approach
could be appropriate in the application areas that the authors
considered. However, in many psycholinguistic studies, the
effect size is rather small relative to the sources of variance
in the data (Jäger et al., 2017; Jäger et al., 2020; Nicenboim
et al., 2020; Nicenboim et al., 2018; Bürki et al., 2020;
Bürki et al., 2020), and in such studies a more informative
prior is almost always necessary when doing Bayes factors
analyses (Nicenboim & Vasishth, 2016; Schad et al., 2020;
Schad et al., 2021). Although Stefan et al. (2019) address

this issue using informative priors, they again use relatively
simple statistical models, so it is again not at all obvious to
the beginning Bayesian how these recommendations can be
scaled up for complex hierarchical models.

The present paper focuses on the question: how to plan
a sample size using Bayes factors for relatively com-
plex hierarchical models? We provide a simulation-based
approach for planning sample sizes for such situations. We
focus exclusively on experiment designs that require the
use of relatively complex hierarchical models that capture
multiple variance components simultaneously.

It is very surprising that the simulation-based approach of
Wang and Gelfand (2002) seems to have largely escaped the
attention of researchers (this work is mentioned in passing
in Kruschke, 2014, but it has largely been ignored in other
work in psychology).

In the present paper, we unpack the approach taken in
this important paper; the approach is important because it
provides an easy-to-implement workflow for doing sample
size calculations using complex hierarchical models of the
type we discuss here. Because the application of the Wang
and Gelfand (2002) simulation-based method will not be
completely obvious to beginning researchers, we provide a
complete example, with fully reproducible code.

Because there is no fixed convention in Bayesian statis-
tics that gives specific names to different types of priors, in
this paper, we follow the conventions that we use in Nicen-
boim et al. (2021). We use four broad categories of prior,
which are on a continuum and not hard categorical distinc-
tions: (a) flat, uninformative priors: these are priors that are
as uninformative as possible (examples: Cauchy or Uniform
priors); (b) regularizing priors: these priors downweight a
priori unlikely values (example: reading times can only be
positive); (c) principled priors: these encode all (or most of)
the theory-neutral information that we have for a research
problem (example: a Normal(6,0.6) prior for average read-
ing time at a word, assuming a log-normal likelihood); and
(d) informative priors: these incorporate prior knowledge
(example: the Normal(0.12,0.4) that we use below in our
example).

TheWang and Gelfand (2002) approach is as follows. We
have adapted the procedure outlined below slightly for our
purposes, but the essential ideas are due to these authors.

1. Decide on a distribution of effect sizes you wish to
detect.

2. Choose a criterion that counts as a threshold for a
decision. This can be a Bayes factor of, say, 10
(Jeffreys, 1939/1998).1

3. Then do the following for increasing sample sizes n:

1The Bayes factor is just one of many possible performance criteria;
see Wang and Gelfand (2002) for some other alternatives.
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(a) Simulate prior predictive data niter times (say,
niter = 100) for sample size n; use informative
priors (these are referred to as sampling priors in
Wang and Gelfand (2002)).

(b) Fit the model to the simulated data using uninfor-
mative priors (these are called fitting priors inWang
and Gelfand (2002)), and derive the posterior dis-
tribution each time, and compute the Bayes factor
using a null model that assumes a zero effect for the
parameter of interest.

(c) Display, in one plot, the niter posterior distribu-
tions and the Bayes factors. If the chosen decision
criterion is met reasonably well under repeated
sampling for a given sample size, choose that sam-
ple size.

Figure 1 shows a schematic summary of the Wang and
Gelfand procedure. For psychology and psycholinguistics,
this procedure is in principle easy to implement. However,
a crucial modification is necessary. Because the Bayes
factor is so sensitive to the prior specification (see Schad
et al., 2021, and the references cited there), it makes little
sense to follow the Wang and Gelfand suggestion to use

Fig. 1 A modified version of the workflow suggested by Wang
and Gelfand (2002). The box colored green (labeled “Fit model to
simulated data”) can be computationally very intensive. The box
labeled “Loop” indicates that the procedure has to be repeated for each
sample size chosen; this step will also be computationally intensive

uninformative priors as fitting priors. Instead, we propose
in this paper that the sampling priors and the fitting priors
both be informative. In the example we show below, we
keep the two types of prior identical because the informative
priors represent what we currently know about the research
question, and because we know from previous investigations
that they are not unduly influential in determining the
posterior distributions (Schad et al., 2021). Informative
sampling priors make sense for efficiency reasons: the
model will converge faster if the priors do not allow a
wide range of (implausible) values a priori. For Bayes
factors calculations, informative fitting priors are necessary
anyway because effects are a priori likely to be small, and
because using “default priors” such as a Cauchy prior will
heavily bias the Bayes factor in favor of the null (Kruschke
& Liddell, 2018; Schad et al., 2021; Nicenboim et al.,
2020). If only estimation is the goal, not Bayes factors,
then uninformative fitting priors can of course be used,
because the posterior distribution tends to not be sensitive
to the prior specification unless the data are very sparse
(Kruschke & Liddell, 2018). Indeed, it is because of this
prior sensitivity that Bayes factors analyses often include
a sensitivity analysis, which amounts to reporting Bayes
factor calculations under increasingly informative priors.

With the above discussion as background, in the rest
of this paper we provide a practical example of how the
Wang and Gelfand approach can be adapted for research in
psychology and psycholinguistics. We assume here that the
reader is familiar with the van Doorn et al. (2021), and more
generally with linear mixed modeling theory and practice, in
both the frequentist and Bayesian frameworks (Bates et al.,
2015; Vasishth et al., 2021; Nicenboim et al., 2021).

Example: a Two-Condition
Repeated-Measures Design

In this case study, we consider a classic question in psycholin-
guistics: the subject vs. object relative clause (RC) process-
ing difference in sentence processing. RCs are perhaps the
single most studied syntactic construction in psycholinguis-
tics. Examples of subject and object RCs are shown in (1).

(1) (a) Subject relative
The senator who met the journalist resigned.

(b) Object relative
The senator who the journalist met resigned.

The signature property of such relative clauses is that
a clause (starting with the word who) interrupts the main
clause of the sentence by modifying the subject of the
sentence (here, senator). This interruption of the main
clause leads to an increase in processing difficulty; in the
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above examples, it is generally more difficult to work out
who met whom in object relatives vs. subject relatives.
Thus, reading times at the word met are of theoretical
interest. As an aside, notice that the experiment design in
example (1) is confounded: the critical word met is not
only not in the same word position in the two sentences,
but the pre-critical region is different (who vs. journalist).
It is well-known that differences in the pre-critical region
(or even earlier regions) can cause differential amounts of
spillover onto the critical region (e.g., Vasishth and Lewis,
2003; Mitchell, 1984). These potential confounds make it
difficult to interpret reading time differences in the critical
region. Unfortunately, this issue has largely been ignored in
the psycholinguistics literature. Because our main point in
this paper does not depend on these potential confounds in
the design, we will ignore this issue, but we do acknowledge
that such designs are potentially fatally flawed.

Despite the above issues with the design, a robust
and uncontroversial finding for English is that, at the
word met, object relatives have longer reading times than
subject relatives. Various theoretical explanations have been
proposed for this processing difference (see Grodner &
Gibson, 2005, for a review of the theoretical proposals).

In this case study, we assume that we are planning a
future reading study on English RCs. We will base our
sample size planning on the original Grodner and Gibson
(2005) data; that study had 42 participants and 16 items
in a standard Latin-square repeated-measures design. We
know from previous meta-analyses and power analyses of
reading studies in psycholinguistics (Jäger et al., 2017) that
a sample size of 42 subjects for the Grodner and Gibson
(2005) design will lead to a hopelessly underpowered
design. A future experiment should therefore have a larger
sample size; the question is how much larger. We present
our adaptation of the Wang and Gelfand procedure for
answering this question.

Because the Grodner and Gibson (2005) data are avail-
able, we can use the parameter estimates from these data to
obtain some initial ballpark estimates for the different vari-
ance components and fixed effects. The standard frequentist
linear mixed models analysis using the lme4 package in R
(Bates et al., 2015) is the following. The variable n indexes
the nth row of the data frame; the dependent variable is
reading time (rt) in milliseconds at the critical word of inter-
est; and the variables subj and item refer to the subjects
and items, arranged in a Latin-square design. The variables
u and w are the adjustments by subjects and items to the
intercept α and the slope β. The predictor is a sum-coded
variable (so); object relatives are coded +1/2 and subject
relatives −1/2 (Schad et al., 2020). The slope therefore
gives us the effect size, in log ms, of the difference in means

between the object and subject relative. σ is the residual
standard deviation.

rtn ∼ LogNormal(α + usubj [n],1 + witem[n],1 + son ·
(β + usubj [n],2 + witem[n],2), σ ) (1)

The varying intercepts and varying slopes are represented
by the variables u and w, assuming that i indexes subjects
and j indexes items (in the Grodner and Gibson (2005) data,
i = 1, . . . , 42, j = 1, . . . , 16). The corresponding variance-
covariance matrices are shown below. The variables τu1 , τu2

are the standard deviations of the subject random effects,
and τw1 , τw2 the standard deviations of the item random
effects.(

ui,1

ui,2

)
∼ N

((
0
0

)
, �u

)
where i = 1, . . . , 42 (2)

�u =
(

τ 2u1 ρuτu1τu2

ρuτu1τu2 τ 2u2

)
(3)

(
wj,1

wj,2

)
∼ N

((
0
0

)
, �w

)
where j = 1, . . . , 16 (4)

�w =
(

τ 2w1
ρwτw1τw2

ρuτw1τw2 τ 2w2

)
(5)

Although this is a relatively simple two-condition design,
the Bayesian hierarchical model is already quite complex,
with 9 parameters for the fixed effects and the variance
components, and an additional 42×2 parameters for the by-
subject adjustments, ui,1 and ui,2, and 16×2 parameters for
the by-item adjustments, wj,1 and wj,2. That’s a total of 125
parameters.2

Fitting the model using the lme4 package assuming a
log-normal likelihood yields the following estimates:
Random effects:

Groups Name Variance Std.Dev. Corr

subj (Intercept) 0.101050 0.31788

cond 0.049104 0.22160 0.58

item (Intercept) 0.001719 0.04145

cond 0.007850 0.08860 1.00

Residual 0.129841 0.36033

Number of obs: 672, groups: subj, 42; item,

16

Fixed effects:

Estimate Std. Error t value

(Intercept) 5.88306 0.05202 113.082

so 0.12403 0.04932 2.515

2Unlike in Bayesian hierarchical models, in frequentist linear mixed
models the varying intercepts and varying slopes, u and w, are
integrated out and are referred to as conditional modes (Bates et al.,
2015). That is, in frequentist linear mixed models, the individual u and
w values are not parameters; rather, only the standard deviations and
correlations associated with u and w are parameters.
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An immediate problem that we notice here is that the
correlation between the varying intercepts and varying
slopes by items cannot be estimated: the model returns
a correlation of 1, which means that we have an ill-
conditioned variance-covariance matrix. This suggests that
the model may be overparameterized (Pinheiro & Bates,
2000, p. 156). This failure to estimate the correlation is
due to the relatively low number of items (16); this kind
of overparameterization is a common issue in linear mixed
models (Bates et al., 2015).

Usually, the Bayesian hierarchical model will not experi-
ence this failure to produce a sensible posterior distribution
for a parameter; this is because of the regularizing priors that
are generally used in Bayesian models (Nicenboim et al.,
2021). Of course, it can happen that Bayesian hierarchi-
cal models can also end up being overparameterized; such
problems usually lead to convergence warnings.

The first step in fitting a Bayesian model is deciding on
the priors; we address this point next and demonstrate how
we came up with informative priors for the target parameter
and for the variance components. The priors that we develop
here are not intended to be generally applicable, but have
been developed for the broad class of psycholinguistic
reading studies exemplified by the Grodner and Gibson
(2005) design.

Eliciting Priors for the OR-SR Difference

First, we explain how one can come up with an informative
prior specification for the effect of relative clause type on
reading time; this is the slope β in the model in Eq. 1.
Theory suggests (see Grodner & Gibson, 2005) that subject
relatives in English should be easier to process than object
relatives, at the relative clause verb. This means that a
priori, we expect the difference between object and subject
relatives to be positive in sign. What would be a reasonable
mean (and a plausible range of variation) for this effect?
We can look at previous research to obtain some ballpark
estimates. For example, Just and Carpenter (1992) carried
out a self-paced reading study on English subject and
object relatives, and their Figure 2 (p. 130) shows that
the difference between the two relative clause types at the
relative clause verb ranges from about 10 ms to 100 ms
(depending on working memory capacity differences in
different groups of subjects). This is already a good starting
point, but we can look at some other published data to gain
more confidence about the approximate difference between
the conditions. For example, Reali and Christiansen (2007)
investigated subject and object relatives in four self-paced
reading studies; in their design, the noun phrase inside the
relative clause was always a pronoun, and they carried out
analyses on the verb plus pronoun, not just the verb as in
Grodner and Gibson (2005). We can take into account the

estimates from this study for developing out prior because
including a pronoun like “I”, “you”, or “they” in a verb
region is not going to increase reading times dramatically
(short words are usually read quickly). The hypothesis
for Reali and Christiansen (2007) was that because object
relatives containing a pronoun occur more frequently in
corpora than subject relatives containing a pronoun, the
relative clause verb should be processed faster in object
relatives than subject relatives. This is the opposite of
the prediction for the reading times at the relative clause
verb discussed in Grodner and Gibson (2005). The authors
report comparisons for the pronoun and relative clause verb
taken together (i.e., pronoun+verb in object relatives and
verb+pronoun in subject relatives). In experiment 1, they
report a −57 ms difference between object and subject
relatives, with a 95% confidence interval ranging from
−104 to −10 ms. In a second experiment, they report a
difference of −53.5 ms with a 95% confidence interval
ranging from −79 to −28 ms; in a third experiment,
the difference was −32 ms [−48, −16]; and in a fourth
experiment,−43 ms [−84, −2]. Thus, given these data from
English, if we were investigating the effect of pronouns in
relative clauses, we would want to allow the prior values to
range from −100 ms to approximately 0 ms. Although the
sign of the effect is the opposite to the one we expect, the
absolute range of variation is still within 10 and 100 ms.

Another study involved English relative clauses is by
Fedorenko et al. (2006). In this self-paced reading study,
Fedorenko and colleagues compared reading times within
the entire relative clause phrase (the relative pronoun and
the determiner+noun+verb sequence inside the relative
clause—four words). Their data show that object relatives
are harder to process than subject relatives; the difference
in means is 460 ms, with a confidence interval [299, 621]
ms. This difference is much larger than in the other studies
mentioned above, but this is because of the long region of
interest considered—it is well-known that the longer the
reading/reaction time, the larger the standard deviation and
therefore the larger the potential difference between means
(Wagenmakers & Brown, 2007). Obviously, we cannot take
this larger range into account in developing our prior, but
it is still useful to know the summed up reading time over
four words will be approximately 460 ms, which is 115 ms
per word.

This previous data from English relative clause studies
gives us some empirical basis for assuming that the object
minus subject relative clause difference in the Grodner and
Gibson (2005) design on English could range from 10 to
100 ms or so. If the reading time were recorded for the
entire relative clause region, as in Fedorenko et al. (2006),
obviously the prior would have to be different.

There is further supporting evidence from the literature
that designs such as the current one will have a relatively
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small effect size on the millisecond scale. In a recent
investigation (Jäger et al., 2017), we established this in a
meta-analysis of one broad class of phenomena: similarity-
based interference in sentence comprehension. Interference
here refers to the difficulty experienced by the comprehen-
der during sentence comprehension (e.g., in reading studies)
when they need to retrieve a particular word from their
working memory but other words with similar features hin-
der retrieval. The meta-analysis reported in Jäger et al.
(2017), which is based on published data from more than
80 studies, suggests that the effect sizes for interference
effects range from at most −50 to 50 ms, depending on the
phenomenon (some kinds of interference cause speed-ups,
others cause slow-downs; see the discussion in Engelmann
et al., 2020, 12). In reading studies, whenever papers report
unusually large effects for interference or related phenom-
ena, these are usually what Gelman and Carlin (2014) call
Type M errors (for real-life examples, see Jäger et al.,
2020; Nicenboim et al., 2018; Vasishth et al., 2018). Given
that the Grodner and Gibson (2005) design falls within the
broader class of interference effects (Lewis & Vasishth,
2005; Vasishth et al., 2019; Vasishth & Engelmann, 2022),
it is reasonable to choose informative priors that reflect this
observed range of interference effects in the literature. Of
course, when analyzing actual data, one must investigate
the effect using a range of priors on the target parameter to
interpret the Bayes factor analysis (Schad et al., 2021).

Now, because the Grodner and Gibson (2005) data is
being analyzed with a log-normal likelihood, the prior for
the slope parameter has to be on the log scale. Therefore,
for the present purposes, we will define an informative
prior on the log scale for the slope parameter: Normal(0.12,
0.04). Assuming a mean reading time of 6 log ms, this prior
roughly corresponds to an effect size on the millisecond
scale that has a 95 credible interval ranging from 16 ms to
81 ms.

Deciding on Principled Priors for the Other
Parameters in theModel

In a repeated-measures two-condition design with reading
time in milliseconds as a dependent measure, and crossed
subjects and items (this is usually a Latin-square design),
the likelihood usually chosen is a log-normal. In the log-
normal likelihood, the parameters are on the log scale, and
so if we set truncated Normal(μ = 0, σ = 1) priors
(truncated so that the values can be only positive) on the
variance components, these will generate unrealistic prior
predictive data (Schad et al., 2021). Simulations show that a
principled prior on the random effects variance components
(the components τ ) would be Normal(0, 0.1) and for the
residual standard deviation, Normal(0, 0.5); see Schad
et al. (2020) and Schad et al. (2021) for details. Instead of

principled priors, one could certainly use informative priors
for the variance components if one has previous data on
the research topic. Similarly, for the intercept, we choose a
principled prior of Normal(6,0.6) on the log ms scale; our
investigations show that this choice of prior for the intercept
generates realistic mean reading time data (Schad et al.,
2021). For the correlation matrices in the random effects,
we use a regularizing LKJ(2) prior; this prior downweights
±1 as possible values for the correlations and therefore
prevents the ill-conditioned variance-covariance matrix we
saw earlier with the lme4 model fit. The LKJ prior
(Lewandowski et al., 2009) is available in Stan (Carpenter
et al., 2017) and brms (Bürkner, 2017).

Graphically Investigating the Prior Predictive Data
to Evaluate the Priors

Figure 2 shows the impact of the principled priors on the
intercept and variance components, and the informative
prior on the slope parameter, both on the log millisecond
scale and the millisecond scale. This figure shows that the
priors for the intercept (Normal(6,0.6)) and slope (Nor-
mal(0.12,0.04)) parameters are reasonable, as they generate
realistic distributions on the ms scale. Notice that one
impact of the variance components is to create a little extra
uncertainty on the effect size of the relative clause effect.

With the above discussion as background, we present
an implementation of the modification to the Wang and
Gelfand (2002) approach.

Bayes Factor Analysis for Sample Size Calculation:
a Modification of theWang and Gelfand 2002
Approach

The Bayes factor-based approach to sample size calculation
has the property that it takes into account all sources of
variance in the parameters. This includes the uncertainty on
the parameter of interest, the slope parameter in the linear
mixed model shown in Eq. 1 above. The priors we derived
above are shown below.

α ∼ Normal(6, 0.6)

β ∼ Normal(0.12, 0.04)

u1 ∼ Normal(0, τu1)

u2 ∼ Normal(0, τu2)

w1 ∼ Normal(0, τw1)

w2 ∼ Normal(0, τw2)

τu1 ∼ Normal+(0, 0.1)

τu2 ∼ Normal+(0, 0.1)

τw1 ∼ Normal+(0, 0.1)

τw2 ∼ Normal+(0, 0.1)
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Fig. 2 Prior distribution in log-
space and in ms space for a toy
example of a linear regression.
Panel a displays the prior
distribution of the intercept in
log-space. Panel b displays the
prior distribution of the intercept
in ms space. Panel c displays the
prior distribution of the effect
size in log-space, marginalizing
over the intercept. Panel d
displays the prior distribution of
the effect size in ms space
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ρu, ρw ∼ LKJ(2)

σ ∼ Normal+(0, 0.5)
(6)

To keep the computation tractable for this paper, we
will simulate 100 datasets for each of the sample sizes 42,
42 × 5 = 210, and 42 × 9 = 378 subjects. Then, we fit
the data using 10,000 iterations per chain (the warmup is
2000 iterations). In the Appendix, we show that even larger
subject sample sizes, 42 × 13 = 546, 42 × 17 = 714,
42 × 21 = 882, and 42 × 25 = 1050 lead to computational
problems in estimating Bayes factors using the bridge
sampling procedure that we use (Gronau et al., 2017). For
such large sample sizes, 50,000 iterations would be needed
per chain (Bürkner, 2017), which is computationally costly.

The approach we take is the following:

1. Define informative priors (Schad et al., 2020) for this
particular design and method (as discussed above).

2. Generate prior predictive data using the informative
priors (the sampling priors).

3. Then fit the model repeatedly, again using the informa-
tive priors as fitting priors (this deviates from the Wang
and Gelfand recommendation).

In the simulations below, one could have varied the items
as well; but for simplicity we keep the number of items
constant in this example.

Computing Hardware and Approximate Computing Times

We used a server with 40 physical cores and 80 logical cores.
(There were 2 sockets, 20 physical cores per socket, and 2
threads per core, which make a total of 80 logical cores).

A typical Stan model with four Markov chains requires
four cores to parallelize the sampling. We want to fit models
on 100 simulated datasets for each sample. We first fit
Bayesian models with 4 chains (consuming 4 cores) on 20
simulated datasets at a time (as this would use all 20 × 4
cores). This process is repeated five times to get Bayes
factors on all 100 simulated datasets for each sample size.

The recorded completion times for each sample are as
follows:

• 42 subjects: approximately 1 h.
• 210 subjects: approximately 8 h.
• 378 subjects: approximately 31 h.
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Results

Figure 3 shows the posterior distributions and Bayes factors
for each of the three sample sizes (42, 210, 378); the
Bayes factors are truncated at 1 × 1020 to make it easier
to view the credible intervals (only six data points are
elided due to the truncation, for sample size 378). The
figure shows that, as expected, the proportion of Bayes
factors greater than 10 increases with increasing sample
size. The figure also reveals that the 95% credible intervals
of the posterior distributions in all three sample sizes
either land within or overlap with the prior 95% credible
interval of the effect (the horizontal broken lines). It is
only in the small sample size (42 subjects) that we get one
posterior distribution that lands entirely outside the range
specified a priori. Because our prior range of effect sizes
is relatively large (Normal(0.12,0.04)), using the region
of practical equivalence (ROPE) approach for hypothesis
testing (Freedman et al., 1984; Spiegelhalter et al., 1994;

Kruschke, 2014) will be of only limited use; the ROPE
approach will be more useful if the prior predicted range of
effects is relatively narrow.

The second interesting observation is that the amount
of variability in the Bayes factor under repeated sampling
increases with sample size. This becomes clearer visually
in Fig. 4, which shows the distributions of the log Bayes
factors for the three sample sizes; the ridge plots have to be
displayed on the log scale in order to be able to show the
spread.

In sum, given the simulations shown above, we would
plan for approximately 300 subjects when planning a study.

Discussion

We have presented an adapted version of the Wang and
Gelfand (2002) approach to planning sample size when
using linear mixed models and Bayes factors. We used an
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Fig. 3 The y-axis has posterior means and 95% credible intervals
of the effect of interest (object minus subject relative clause reading
times), and the x-axis has Bayes factors truncated at 1e+20 to make
it easier to see the distribution of Bayes factors. The three plots show

the distributions for the three sample sizes. Also shown for each sam-
ple size is the probability of Bayes factor being greater than 10 under
hypothetical repeated sampling
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Fig. 4 The distributions of log Bayes factors under repeated sampling,
for the three subject sample sizes. The vertical line show the log Bayes
factor corresponding to log(10) in favor of the alternative

example from a reading experiment design that has been
widely used in psycholinguistics, the subject vs. object
relative clause difference.

In the Bayes factor-based analysis, the main deviation
we made from the Wang and Gelfand method was to use
the same informative priors in both the sampling and fitting
stages of the modeling. Wang and Gelfand had proposed
using informative priors as fitting priors, and uninformative
priors as fitting priors.

The motivation for this deviation in our approach is
that, at least in psycholinguistics and related areas, it rarely
makes sense to compute Bayes factors using (only) unin-
formative priors, especially on the target parameter. If one
does use uninformative priors, this tends to heavily bias the
Bayes factor in favor of the null (Schad et al., 2021). This
bias has the consequence that the originalWang and Gelfand
approach would lead to misleading conclusions (a tendency
to evidence for a null effect, even when the null is very likely
to be false).

In contrast to the Bayesian analysis, a conventional
power analysis would be a lot less informative for the
range of effect sizes we assume here. We demonstrate this
point in the Appendix. The key issue with the frequentist
power analysis is that once one takes the uncertainty of the
estimate into account, the estimate of the power becomes so
uncertain that, for planning purposes, it is all but useless.

A frequent objection that we encounter to the type
of Bayesian analyses we have presented here and in
other papers is that the workflow is very time-consuming
compared to a frequentist analysis. This complaint about
the speed with which one can complete an analysis is
very important to address because this kind of attitude can
completely derail a scientific research program.

Bayesian analyses using hierarchical models are gen-
erally always more time-consuming than frequentist ones.

In the current context, our simulations took some 40 h,
and this was with a computer with 40 physical cores and
80 logical cores. By contrast, the frequentist power anal-
ysis in the Appendix takes a mere 20 minutes on an
M1 chip Macbook Pro without any special paralleliza-
tion procedure—the Bayesian analysis is 120 times slower.
Reacting to such radical differences in timing, many psy-
chologists and psycholinguists have become increasingly
unhappy. A remarkable expression of this sentiment was a
tweet from a prominent and influential psycholinguist. The
author of the tweet is a former editor-in-chief of one of the
most important journals in psycholinguistics, the Journal
of Memory and Language, and is therefore in a very influ-
ential position in the field. The tweet stated that statistical
data analysis should be like going to the toilet. The essential
point was that data analysis should be quick, and one should
not become obsessed with it. A related point that one often
hears is that one should not need to acquire much statistical
knowledge either.3

The general sentiment expressed in comments like these
is very common; the first author of the present paper
has encountered many psycholinguists, psychologists, and
linguists who think that (for example) hierarchical modeling
is over-rated because of its excessive complexity; their
proposed alternative is simpler paired t-tests and repeated-
measures ANOVA (which, ironically, are also hierarchical
models).

These kinds of demands for speed and easy analyses
come with a cost. If one truly believes that statistics data
analysis should be like going to the toilet, one should not
be surprised if the end result of the analysis turns out to be
crap. What actually lies behind the demand for speed and
simplicity is the mistaken understanding that all one needs
to look at in a data analysis is the p-value. Such a single-
minded focus on the p-value is driven by a semantic drift
away in psychology and other areas from the real goals
of statistical data analysis. As statisticians have repeatedly
pointed out (e.g., Wasserstein & Lazar, 2016; McShane
et al., 2019), the goal certainly should not be quick binary
conclusions based on oversimplified models. Uncertainty
quantification is key to understanding data (Vasishth &
Gelman, 2021), and as the van Doorn et al. (2021) article
also suggests, hierarchical models are a very important tool
for achieving this goal.

We turn next to the sentiment that, because time is
limited, a scientist should not have the responsibility to
master statistics sufficiently to be able to interpret and ana-
lyze their data. This kind of attitude has been encouraged
through the cursory education in statistics that is the norm

3For more details, see the blog post by Phillip Alday, which responds
to this tweet: https://phillipalday.com/blog/2020/12/22/statistics-is-
not-shit/.
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in cognitive science disciplines, and through the creation of
apparently easy-to-use software, which conveniently makes
some default assumptions that are kept hidden from the
user. If a scientist is using a particular technical tool (here,
statistics) to study a research question, they do in fact have
to invest time into understanding the tool they are rely-
ing on to make statistical inferences. As Singmann et al.
(2021) eloquently put it: “For statistical modeling to serve
the goals of science, models cannot be based on default
assumptions, but should instead be based on an understand-
ing of their coordination function and on how they represent
causal mechanisms that may be expected to generalize to
other related scenarios.” To go beyond defaults, one can-
not avoid taking the time to engage deeply with statistical
theory.4

In closing, we hope that this paper, along with our two
other companion papers (Schad et al., 2020; Schad et al.,
2021), provides a useful starting point for researchers who
wish to use complex Bayesian hierarchical models and plan
sample sizes in advance using such models.

Appendix

Frequentist power analysis

For comparison with the Bayes factors analysis in the main
text, we provide a comparable frequentist power analysis.
One important conclusion here is that the power analysis
will be essentially useless once one takes the uncertainty of
the effect size into account.

In psycholinguistics, it is still extremely uncommon
to do power analyses before running an experiment. A
more common approach is to monitor the experiment until
significance is reached; in such sequential testing scenarios,
the adjustment to Type I error probability that is necessary
(Pocock, 2013) is always ignored in all the psycholinguistic

4Phillip Alday’s keynote lecture at the Fifth Summer School on
Statistical Methods in Linguistics and Psychology (SMLP) articulates
this point in more detail: https://youtu.be/4E-XTvJuaaY.

research we are aware of. However, power analyses have
started emerging in the psycholinguistic literature (e.g.,
Stack et al., 2018), and could even become standard practice
in the coming years.

As a quick reminder of the terminology for the reader,
in the discussion below, we use the following terms: (a)
effect size: this is defined as the estimate of the difference
between the means in the two conditions of interest on the
scale of interest (i.e., not standardized); (b) power: The
probability of correctly detecting an effect δ assuming that
the null hypothesis that δ = 0 is false with some particular
value δ′ �= 0; (c) power curve: since power is a function
of the effect size, standard deviation, and sample size, it is
standard to plot the power function with respect to one or
more of these variables; (d) power analysis: this refers to an
estimate of the power, either using analytical calculations,
or using simulation.

The standard simulation-based approach to computing
frequentist power functions is as follows:

1. Obtain estimates for the parameters in the model, e.g.,
from a previous study.

2. Given a subject sample sample size n (and some
sample size for items), generate simulated data based
on previously obtained estimates of parameters.

3. For each sample size, repeatedly fit linear mixed
models to these simulated datasets, and determine the
proportion of cases where a significant effect is found.
This gives the estimated power for each sample size n.

4. Plot the power curves: the power estimates against
sample size, given specific values of the effect size. We
will display not just one power curve but three curves,
for the mean and the lower and upper confidence
intervals of the effect size.

Step 1 Estimate parameters from the Grodner and Gibson
(2005) data:

Step 2 Simulate data for frequentist power analysis:
There are two ways to simulate data.
Method 1: Write a data-generation process from scratch.
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Method 2: Use a built-in function from the designr
package (Rabe et al., 2021). The advantage here is
compactness of code, but the disadvantage is that the code
conceals the underlying generative process. Below, we show
how a single simulated dataset can be generated using
designr.

115Computational Brain & Behavior  (2023) 6:102–126



1 3

116 Computational Brain & Behavior  (2023) 6:102–126



1 3

Step 3 Compute frequentist power as a function of subject and item sample size:

Step 4 Compute power for 42, 42 × 2, and 42 × 3 subjects (and 16 items), with a given effect size and its uncertainty
estimates (in log ms):

117Computational Brain & Behavior  (2023) 6:102–126



1 3

Figure 5 shows the result of the frequentist power anal-
ysis. From this power analysis, we would conclude that a
sample size of 100 to 150 subjects would probably suf-
fice if we want to achieve 80% power. This conclusion is
of course conditional on the assumed effect size of 0.12
log ms (48 ms), and a Type I error probability of 0.05.
In fact, as our Bayesian analysis will suggest, this power
estimate is quite an optimistic one for psycholinguistic phe-
nomena such as the English relative clause construction (see
Jäger et al., 2017; Nicenboim et al., 2018; Vasishth et al.,
2018; Jäger et al., 2020; Nicenboim et al., 2020, for exten-
sive discussion). This becomes clear if one considers the
uncertainty on the effect size: if one looks at the power
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Fig. 5 The results of a frequentist power analysis; shown are differ-
ent simulation-based power estimates for increasing subject sample
sizes in the Grodner and Gibson (2005) experiment design. The solid
line shows the power estimates for an effect size of 0.12 on the log

ms scale (48 ms), and the broken lines show the power estimates for
0.04 and 0.20 log ms respectively (corresponding to 16 ms and 81 ms,
respectively)

estimates using the lower and upper bounds of the 95%
confidence interval of the effect as possible alternative
effect sizes, the power function shows a huge amount of
uncertainty, so much so that the power analysis itself is not
much use for planning purposes. Thus, it is highly problem-
atic to compute power (as is normally done in psychology
and psycholinguistics) using only a point estimate of the
effect size, ignoring the uncertainty on that estimate.

Bayes factor-based analysis (an adaptation
of theWang and Gelfand approach)

Step 1 Define informative priors:
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Step 2 Generate prior predictive data:
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Step 3 Compute Bayes factors and posteriors of the effect
for the simulated data (for use with multicore machines):
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Step 4 Plot the results; see Figs. 3 and 4 in the main text.

Stability issues in computing Bayes factors for larger
sample sizes

The following precomputed data has repeated calculations
of Bayes factors for 546 subjects, using 10,000 or 50,000

simulations. Also stored in this data frame are the mean and
95% credible intervals for the target parameter (the fixed
effect slope in the linear mixed model).

Figure 6 shows the result of nine simulations; shown are
the distribution of log Bayes factors for 10,000 vs. 50,000
iterations when the Bayes factor was repeatedly calculated.
It is clear from the figure that the (log) Bayes factor is
very unstable for 10,000 iterations per chain, compared to
50,000 iterations. The implication is that for such large

sample sizes, many more iterations per chain are needed
than 10,000; repeated sampling to compute Bayes factors
would be very time-consuming. Figure 7 shows a different
visualization of the instability of the (log) Bayes factor for
10,000 vs. 50,000 iterations.
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Fig. 6 The distribution of repeatedly computed (log) Bayes factors for nine simulated datasets, using either 10,000 or 50,000 iterations per chain,
with subject sample size 546
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Fig. 7 The stability of
repeatedly computed (log)
Bayes factors for nine simulated
datasets, using either 10,000 or
50,000 iterations per chain, with
subject sample size 546
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