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Abstract
The “marginality principle” for linear regression models states that when a higher order term is included, its constituent terms 
must also be included. The target article relies on this principle for the fixed-effects part of linear mixed models of ANOVA 
designs and considers the implication that if extended to combined fixed-and-random-effects models, model selection tests 
specific to some fixed-effects ANOVA terms are not possible. We review the basis for this principle for fixed-effects models 
and delineate its limits. We then consider its extension to combined fixed-and-random-effects models. We conclude that 
we have been unable to find in the literature, including the target article, and have ourselves been unable to construct any 
satisfactory argument against the use of incomplete ANOVA models. The only basis we could find requires one to assume 
that it is not possible to test point-null hypotheses, something we disagree with, and which we believe is incompatible with 
the Bayesian model-selection methods that are the basis of the target article.
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In their paper, van Doorn et al., (2021; hereafter vDAHSW) 
discuss how to conduct model selection with linear mixed 
models for ANOVA designs using Bayes Factors (Jeffreys, 
1961; Kass & Raftery, 1995; Rouder et al., 2012). In this 
comment, we examine their suggestion that the idea of “mar-
ginality” might be used to rule out some models a priori. The 
exclusion only allows models with an interaction or interac-
tions when they also include all of the components of the 
interaction(s). Following the earliest paper, we know of on 
this topic (Bernhardt & Jung, 1979), we will call the allowed 
models “complete”.1 vDAHSW make this restriction on the 
fixed-effects part of a mixed model, based on a fixed-effects 
example provided by Wagenmakers et al. (2018) and refer-
ences cited therein. They also consider generalizing it to the 
combined fixed-and-random-effects model, citing Rouder 
et al. (2016), which was the original source of the fixed-
effects example (reproduced also in Rouder et al., 2017).

We will first address the fixed-effects argument, tracing 
the detailed history of this issue in the statistical literature. 

This literature addresses only the case of regression mod-
els with continuous predictors (i.e., independent variables), 
making arguments that rely on the ratio-scale properties of 
those predictors. vDAHSW cite much of this literature and 
appear to use it to support a generalization to ANOVA analy-
ses, yet such analyses do not rely on independent variables 
having a ratio-scale property, or even refer to this property 
in any way. We believe that our detailed review of the con-
tinuous case shows that its relevance to vDAHSW’s ANO-
VAs is far from obvious, so needs to be justified. We then 
turn to Rouder et al’s. (2016) fixed-effects example, show-
ing that if it is treated as a continuous regression problem, 
it is in fact a case where incomplete models are explicitly 
sanctioned as acceptable in the statistical literature. We 
then show that the specific argument based on this example 
made by Rouder et al. against incomplete models is unre-
lated to the issues raised in the statistical literature, and it is 
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1  vDAHSW’s Model 6 is an example of a complete model, and their 
Model 5 an example of an incomplete model. The terms “well-formu-
lated” (Peixoto, 1987, 1990) and “well-formed” (Nelder, 1998) have 
also been used for completeness, but we avoid these because of the 
potential implication of a value judgement which we will argue that 
best applies to a restricted set of models with particular sorts of con-
tinuous independent variables. The usage “marginality” appears to 
be based on Nelder’s (2000) use of “functional marginality,” which 
is again restricted to these particular sorts of independent variables 
in the context of a particular type of continuous regression analysis, 
response-surface modeling, which we discuss in more detail later.

/ Published online: 22 September 2021

Computational Brain & Behavior (2023) 6:28–34

http://orcid.org/0000-0003-4324-5537
http://crossmark.crossref.org/dialog/?doi=10.1007/s42113-021-00120-3&domain=pdf


1 3

tantamount to asserting that a point-null hypothesis cannot 
be proved, something that goes against one of the most often 
cited advantages of the Bayesian model-selection approach 
endorsed by vDAHSW. We finish by discussing a key ques-
tion for vDAHSW: Under what circumstances (if any) is 
it valid to entertain a combined fixed-and-random-effects 
model that is incomplete? If completeness is required for 
such mixed effects, then model selection cannot be used to 
test for the absence of a particular fixed effect while allow-
ing for the presence of an interaction of that fixed effect 
with a random effect, severely limiting the specificity of 
allowable tests. We conclude that we do not know of any 
rigorous justification for this restriction for the case they 
address, with a random participant effect, or indeed for other 
common cases such as random item effects. We hope that 
this comment will, therefore, prompt vDAHSW to provide 
a more detailed justification for their position with respect to 
both incomplete fixed-effects models and incomplete mixed-
effects models.

Completeness in Regression Models 
with Continuous Predictors

The issue of completeness was raised in the statistical lit-
erature in the context of regression models with continuous 
predictors that are not on a ratio scale. The critical property 
of a ratio-scaled predictor in this context is that it has a zero 
point. Using an example after Nelder (1998), consider the 
regression equation2:

If Y is not ratio scaled, we might, with equal validity, use 
W = m + Y as a predictor for some arbitrarily chosen m on the 
real line, and hence the regression equation becomes

where a’ = a – bm. It makes no sense to select between a 
model with and without an intercept term, or in any other 
way test the intercept term, because the presence or absence 
of an intercept depends entirely on our arbitrary choice of m. 
That is, the estimated intercept is not interpretable because 
the arbitrary nature of the zero point of an interval scale 
makes the intercept’s estimated value arbitrary. Similarly, 
selection between a model with and without an estimated 
intercept is not interpretable because the difference between 
these two models is arbitrary (i.e., if m = a/b then Z = bW, 

(1)Z = a + bY

(2)Z = a
�

+ bW,

and so the intercept disappears). This is the reason that stat-
isticians often caution against the use of models without an 
intercept, and against model selection or other tests involv-
ing the intercept term. Importantly, however, models with-
out an intercept are entirely interpretable when using ratio-
scaled predictors unless their natural scale is not respected 
(e.g., they are centered or standardized).

Bernhardt and Jung (1979) first addressed issues related 
to completeness from a more general perspective, for both a 
regression with two predictors that interact, and for a single 
predictor in a polynomial regression. We will focus on the 
former case, as it is most germane to vDAHSW. Consider 
the regression:

And an inhomogeneous scaling transformation 
F = m + nC. An example of the latter is converting from the 
Celsius scale to the Fahrenheit scale for a temperature pre-
dictor, in which case m = 32 and n = 9/5 (Griepentrog et al., 
1982). As before, m is on the real line, and n is positive (a 
necessary condition for this transformation to be a proper 
scaling). Note that none of the completeness issues raised 
next arise if we enforce m = 0 (in which case the transforma-
tion is described as “homogenous”), or if the regression does 
not contain the interaction term or terms above linear in the 
polynomial case (except of course with respect to dropping 
the intercept as already discussed). It then follows that

where a’ = a – (m/n)c, b’ = b – (m/n)d, c’ = c/n, and d’ = d/n. 
Once again, it is meaningless to specify a model without 
an intercept (as we can always make the intercept zero by 
choosing m/n = a/c), and now it is also meaningless to spec-
ify a model without a term that is linear in X (as we can 
always make that term disappear by choosing m/n = b/d). 
The same argument can be made with respect to the term 
that is linear in C if X is not ratio scaled.

Table 1 gives two numerical examples of these algebraic 
facts, providing regression coefficients on the Fahrenheit 
scale that produce identical values of the dependent variable 
(Z) to the regression coefficients given for the regression 
on the Celsius scale. In both Examples 1 and 2, a non-zero 
intercept on the Celsius scale (corresponding to Eq. (3)) 
becomes a zero on the Fahrenheit scale (corresponding to 
Eq. (4)). These examples illustrate why it can be mislead-
ing to compare models with and without an intercept: On 
the Celsius scale, the model with the intercept would be 
selected, whereas on the Fahrenheit scale, the model with no 
intercept would be selected. In Example 2, the scale trans-
formation causes the non-zero coefficient b in (3) to become 
zero in (4) (i.e., b’ = 0), and hence any effect of X to also 

(3)Z = a + bX + cC + dXC

(4)Z = a
�

+ b
�

X + c
�

F + d
�

XF,

2  As noted by McCullagh and Nelder (1989), these issues apply to 
any generalized linear model, so Z can be discrete or continuous. For 
brevity, we will suppress mention of the random part when discussing 
the regression setting.
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disappear. This illustrates that comparing models with and 
without the X effect can also be meaningless.

If X and C (and any number of additional predictors) are 
continuous and not on their natural ratio scale, only complete 
regression models make sense as the constituents of higher 
order terms (called by Peixoto, 1990, “inferior” terms), and 
incomplete models in general, are not interpretable. Peixoto 
(1990) illustrates the lack of interpretability in an exam-
ple where two automatic variable selection algorithms not 
respecting completeness produced a puzzling inconsistency 
when one required a predictor to be centered for numerical 
stability (see Peixoto, 1987, for a variable selection method 
in polynomial regression models that addresses these prob-
lems by considering only complete models). However, it 
is important to note that these problems of interpretation 
do not apply to continuous predictors that are ratio scaled: 
“There is nothing wrong with the use of polynomials with 
missing inferior terms to describe exact laws of, for example, 
physics and chemistry” (Peixoto, 1990, p. 29–30).

We would disagree with Peixoto (1990) only in the gener-
ality of the example, as ratio-scaled predictors are certainly 
not the sole domain of the hard sciences. Indeed, we will 
shortly turn to Rouder et al.’s (2016) psychological example 
where the predictors are ratio scaled. Before doing so, we 
note a refinement of the forgoing arguments with respect to 
regressions involving multiplicative terms in response-sur-
face models (i.e., a regression model that predicts a depend-
ent variable’s value at all points within a region defined with 
respect to the predictors). Nelder (1998) showed that some 
incomplete models can make sense when there is a “special 
point” on (say) predictor X where predictor C has no effect. 
The example given was a slope-ratio assay, where X is the 
dose of a drug and C is a synergist (i.e., a catalyst) that lin-
early enhances the effect of X. At the “special point” X = 0, 
the synergist C has nothing to act on, and so the response 
(Z) will be independent of C (although not necessarily zero). 
Hence, the incomplete model Z = a + bX + dXC remains 

sensible and so is admissible for consideration. The reverse 
is not true (i.e., Z = a + cC + dXC is not interpretable), but if 
both X and C have such special points, then Z = a + dXC is 
interpretable.

Completeness in ANOVA Models

At this point, we admit to being puzzled as to why vDAHSW 
cited some of the literature just reviewed (with the Rouder 
et al., 2017, and Wagenmakers et al., 2018, papers they ref-
erence citing the remainder) when their topic is ANOVA 
designs. Our puzzlement stems from the fact that ANOVA 
models do not rely on the ratio scaling of independent vari-
ables. At most, polynomial coding relies on interval scaling, 
and all other coding schemes such as dummy (i.e., treatment) 
or sum coding do not even require that. A reviewer wondered 
whether the use of dummy coding (i.e., the use of 0 and 1 
values to convey level membership) is relevant here. In this 
coding, the level with all zero values, or with all -1 values 
in sum coding, can be thought of as providing a reference 
relative to which the effects of other levels are compared. 
However, the idea of zero point and the idea of a refer-
ence point seem to us quite different, and in these coding 
schemes, nothing about the scale values of any factor level 
is used in the ANOVA computation (unlike the issues raised 
in the statistical literature, where scale values are integral 
to the regression computation), so our puzzlement remains.

vDAHSW also cited the example first given by Rouder 
et al. (2016) as a basis for considering only complete fixed-
effects models, and as a basis for expressing doubts about 
combined fixed-and-random-effects models that are incom-
plete (i.e., Model 5 in their Table 1). However, this exam-
ple raises a quite separate potential problem from those just 
discussed, the issue of “perfect balance.” The example is 
reproduced in Fig. 1, with predictors X = sugar content, 
Y = fat content (here we change our notation from C used in 
(3) and (4) to be appropriate to the Cartesian coordinates in 
Fig. 1), and the dependent variable is Z = the price offered 
for icecream. Figure 1a represents Z as a response surface 
(i.e., a contour plot of Z as a function of X and Y). Fig-
ure 1b shows the results of an experiment measuring just 
four points on the surface with low vs. high sugar and fat 
content factors that produces a perfect crossover interaction. 
This pattern corresponds to an incomplete ANOVA model 
with an interaction but no main effects, which vDAHSW 
characterize as “only plausible when the exact levels of each 
factor are picked such that the true main effects perfectly 
cancel, which in most practical applications seems implau-
sible” (p. 10).

This example relies on three parts: (1) an underlying 
response-surface defined on continuous predictors; (2) 
choosing particular values of these predictors to construct 

Table 1   Numerical examples of how regression coefficients change 
when rescaling the variable C in regression Eq.  (3). The examples 
concern rescaling to Fahrenheit = 32 + 9/5 × Celsius (i.e., m = 32, 
n = 9/5), where the intercept for the regression using the Fahr-
enheit scale is zero (i.e., a′ = 0) for any values of a and c such that 
a/c = m/n = 160/9, and for any values whatsoever of b and d. For 
numerical simplicity, we use a = 160 and c = 9. The examples use two 
pairs of values for b and d, both of which remove the intercept, and 
the second of which removes X as well (as m/n = b/d)

Scale Intercept X Tempera-
ture

Interaction

Example 1 Celsius a = 160 b = 161 c = 9 d = 9
Fahrenheit a’ = 0 b’ = 1 c’ = 5 d’ = 5

Example 2 Celsius a = 160 b = 160 c = 9 d = 9
Fahrenheit a’ = 0 b’ = 0 c’ = 5 d’ = 5
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an ANOVA design constituted of factors with discrete levels; 
(3) and those choices resulting in perfect balance. In order 
not to confuse these parts, we first address the analysis of 
the underlying continuous response-surface model and then 
next the ANOVA analysis and perfect balance parts. First, 
because X and Y are ratio scaled—X = 0 (no sugar) and Y = 0 
(no fat) are not arbitrary—it is an example where there is 
no dispute that an incomplete response-surface model is 
admissible. A reviewer pointed out that the mapping from 
objective fat and sugar content to the corresponding subjec-
tive quantities that presumably mediate taste preference, and 
in turn determine the amount paid, may not have known 
zero points. We agree that caution must be exercised with 
respect to inferences about subjective quantities based on 
analyses of objective quantities. If there is a basis to assume 
that the objective and subjective mappings only differ in 
their zero points, then ruling out incomplete models may 
be helpful. However, other plausible potential issues, such 
as the mapping being nonlinear, may still be problematic, 
potentially requiring either explicit cognitive models (e.g., 
van Ravenzwaaij et al., 2020) or in some cases specialized 
non-parametric analyses that rely on relatively weak assump-
tions such as monotonicity (e.g., state-trace analysis; Bam-
ber, 1979; Prince et al., 2012). However, this issue strikes us 
as a much broader one than is being addressed here, and it 
does not change the fact that inferences about the effects on 
behavior of directly observable ratio-scaled quantities can 
be based on incomplete regression models with continuous 
ratio-scaled predictors.

With respect to the second part, constructing an ANOVA 
model, we certainly agree that measuring a response sur-
face with four points is unwise and can easily lead to spuri-
ous conclusions. However, we do not see how such unwise 
design choices have any relationship to the status of incom-
plete ANOVA models. A potential clue is afforded by 
Venables (2000), which was cited by Wagenmakers et al. 

(2018) in support of the a priori exclusion of incomplete 
ANOVA models. Venables (2000) shares Nelder’s (2000) 
“functional marginality” nomenclature, and although it deals 
with polynomial regression, it does address concepts shared 
with ANOVA models, as the following quote illustrates: 
“the intercept and linear terms are marginal to the quadratic 
term, a concept guaranteed to generate controversy like no 
other in this area. Marginality is also at the crux of another 
thorny issue in linear models, namely that of Type III sums 
of squares” (p. 9). Indeed, Venables draws a conclusion that 
one could certainly be forgiven in thinking generalizes to 
ANOVA models: “… testing main effects in the presence of 
an interaction is a violation of the marginality principle. This 
is not a totally rigid principle, but in all common practical 
situations the sensible thing is to respect it” (p. 13). Wagen-
makers et al. appear to assume that Venables’ conclusion 
about polynomial regression generalizes to ANOVA models, 
making the following statement (immediately followed by 
a list of all of the papers that we have now reviewed, i.e., 
papers that only deal with continuous predictors): “Consist-
ent with the principle of marginality, JASP does not include 
interactions in the absence of the component main effects; 
for instance, the interaction-only model “Gender × Pitch” 
may not be entertained without also adding the two main 
effects” (p. 69). However, in contrast to polynomial regres-
sion, there is nothing about any continuous values that might 
be associated with the levels of the gender or pitch factors 
that in any way enter into the calculation of the ANOVA, and 
so we are unable to understand the relevance of the “margin-
ality principle” to such ANOVA models.

The third part is summarized by both Rouder et al. (2016) 
and Rouder et al. (2017) using identical words: “the lack 
of main effects reflects an implausibly fortuitous choice of 
levels” (p. 1782 and p. 314, respectively). We agree that this 
example reflects a poor choice in unnecessarily dichotomiz-
ing continuous predictors. However, we wonder how this 

Fig. 1   Rouder et al’s. (2016) 
icecream example. In (a), lower 
values of price offered for 
the outer equal-value ellipses 
change to higher values for 
the inner ellipses. (b) plots the 
height of the four points marked 
by dots in (a)

31Computational Brain & Behavior  (2023) 6:28–34



1 3

example justifies the conclusion, to repurpose Venable’s 
(2000) words, that in all common practical situations, the 
sensible thing is to respect the principle of using only com-
plete fixed-effects ANOVA models. Unfortunately, we have 
been unable to generate such a justification. To illustrate our 
problem in doing so, we give our own example, which also 
provides a basis for later considering the issue of interactions 
between fixed effects and  random-participant effects.

Consider an experiment in which males and females (fac-
tor “gender” or G) are measured on their reaction to the pres-
ence or absence of a particular stimulus or the presence of 
one or other of a pair of stimuli that differ in some nominal 
way (e.g., having a convex vs. concave shape, factor “stimu-
lus” or S). Consider selection of a complete model, one with 
only a stimulus main effect where (say) the response (Z) is 
greater for the second level of S than the first level of S by 
some amount s, denoted3 by Z ~ S. This selection asserts two 
point-null effects or “invariances” related to gender, both 
in the overall level of Z and in a gender difference in the 
magnitude of the stimulus effect. We assume this selection 
to be uncontroversial, at least in the present context where 
Bayes factors can be used to support these two point-null 
statements. If one were to visualize this model, it would 
look like Fig. 1a with stimulus on the x-axis and gender dif-
ferentiating the lines, but with the order of the points on the 
x-axis flipped for the low-sugar line (i.e., so that both lines 
lie on top of each other).

Now consider an incomplete interaction-only model: 
Z ~ G:S. For example, the stimulus effect for males could 
be reversed, with a greater response for the first level of S 
than the second by an amount s. We cannot see why this 
model is so much less plausible than the S main-effect-only 
model that it can be ruled out a priori. Both models assert 
two point-null effects of the overall gender effects, and for 
the interaction-only model sensitivity to the stimulus effect 
(i.e., its absolute magnitude). They differ only in the sign of 
the stimulus effect for males. Given there appears to be no 
interpretability issue associated with measurement scales 
in this example, and particularly as opposite effect direc-
tions between the genders (or indeed any other fixed effects) 
are potentially sensible, it seems to us that to a priori rule 
out this model because it is incomplete, results in an infer-
ential framework incapable of discovering psychologically 
interesting findings. Put another way, given Rouder et al’s. 
(2016) view that model selection based on Bayes factors 
offers “a richer, more insightful view of the structure in 
data” (p. 1782) when it identifies a point-null main effect in 

the absence of an interaction, we do not see why it cannot 
provide those rich insights in identifying two point-null main 
effects when an interaction is present. In summary, Rouder 
et al’s (2016) “perfect-balance assumption” (p. 1784) is cer-
tainly implausible in the specific context of the poor design 
illustrated in Fig. 1. However, more generally, invariance is 
a scientifically plausible, if not essential, concept (Rouder 
et al., 2009), and hence we do not think this example pro-
vides general grounds for rejecting incomplete fixed-effects 
ANOVA models.

Completeness in Combined 
Fixed‑and‑Random‑Effects Models

What are the implications of the foregoing discussion for 
vDAHSW’s dilemma about incomplete combined fixed-and-
random-effects models? Ruling out such models precludes 
following Barr et al’s. (2013) adjuration to use maximal 
random-effects models. Although we prefer Matuschek 
et al’s. (2017) approach—using model selection to identify 
the best supported random-effects model—even in the lat-
ter approach, rejecting incomplete models a priori makes it 
impossible to specifically test a fixed effect whose interac-
tion with a random effect (e.g., participants) is included in 
the random-effects model. That is, because completeness 
requires dropping both together, one cannot tell which is 
responsible for any change in the Bayes factor, something 
that vDAHSW illustrate to be potentially consequential. As 
with fixed-effects models, however, we think that this restric-
tion, although necessary in cases where interpretability has 
been definitively shown to be an issue (i.e., the continuous 
fixed-effects cases detailed above), is not general. Indeed, we 
suspect that it is likely not the most common case in practice 
given that random effects are typically nominal (e.g., partici-
pants or items) and so there are no scaling issues.

To be specific, suppose we identify a random participants 
effect with our gender factor in the example in the last sec-
tion (but with potentially more levels) and the fixed effect 
of stimulus is as before. All that is required for an incom-
plete model with no main effect of stimulus, Z ~ P + S:P 
(where P is the random participants effect), is that the aver-
age response over participants for each level of the fixed 
effect is the same (so there is no main effect of S), while 
the response of individual participants do differ, and differ 
over the levels of S. This might occur by having two equal 
sub-groups differing in the direction of the S effect with the 
same sensitivity or, more plausibly, in more continuously 
distributed sensitives to S if they balance out. To state an 
example of the latter case in terms of a generative model, 
suppose that, for a given participant, performance on the 
ith trial with the first type of stimulus (z1,i) and the jth trial 
with the second type of stimulus (z2,j) equal the sum of four 

3  We use Wilkinson and Rogers’ (1973) nomenclature for linear 
models with the intercept implicit and discrete factors dummy coded 
in some manner, including using the “:” operator to indicate an inter-
action.
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random draws from normal distributions, one, N(µD, �D
2), 

determining the difference in performance between the two 
levels of the stimulus factor for all trials (d), a second, N(µp, 
�P

2), determining their overall performance for all trials (m), 
and two draws from a third, N(0,�2) corresponding to inde-
pendent measurement noise effects for the two types of tri-
als, ni and nj. Hence, z1,i = m + d/2 + ni and z2,j = m – d/2 + nj. 
A random effect (P) must be included in the ANOVA model 
when �P > 0 and a fixed-by-random effect interaction (S:P) 
when �D > 0, and the model has no main effect of stimulus 
(and hence is incomplete) if µD = 0. The latter assumption 
is analogous to “perfect-balance” in Rouder et al’s. (2016) 
fixed-effect example. Rejecting a model that is incomplete 
with respect to mixed fixed and random effects on such 
grounds is again tantamount to not allowing a point-null 
hypothesis (i.e., µD = 0). If instead one is willing to accept 
the possibility of testing a point null, specific tests of fixed 
effects unconfounded by random effects are possible.

Conclusions

Our review of the statistical literature makes it clear that 
incomplete continuous fixed-effects models are fine to use 
when the predictors are ratio scaled, but that they should not 
be used with interval-scaled predictors, or with arbitrarily 
translated ratio-scale predictors, with the specific excep-
tion of the sort of “special-point” cases discussed by Nelder 
(1998). This conclusion has a transparent basis in arguments 
based on the simple algebraic properties of linear predictor 
equations. However, we were unable to find in the literature, 
or to ourselves generate, a rationale for generalizing these 
arguments to ANOVA models. We hope that this comment 
will provide grounds for vDAHSW to fill this gap by pro-
viding the explicit mathematical basis for rejecting incom-
plete ANOVA models that exists for continuous regression 
models. Further, the separate “perfect-balance” argument 
against incomplete ANOVA models first put forward by 
Rouder et al. (2016), and repeated by vDAHSW, seems to 
us to rely on finding point-null hypotheses corresponding to 
complete models to be meaningful but point-null hypoth-
esis corresponding to incomplete models to be meaningless. 
Again, we hope that in replying to this comment, vDAHSW 
can provide an explicit basis for why one is acceptable, and 
the other is not. Until then, we know of no general basis for 
recommending against using incomplete ANOVA models 
either with respect to fixed-effects only or with respect to 
mixed fixed-and random effects.
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