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Abstract
Bayes factors allow researchers to test the effects of experimental manipulations in within-subjects designs using mixed-
effects models. van Doorn et al. (2021) showed that such hypothesis tests can be performed by comparing different pairs of 
models which vary in the specification of the fixed- and random-effect structure for the within-subjects factor. To discuss 
the question of which model comparison is most appropriate, van Doorn et al. compared three corresponding Bayes fac-
tors using a case study. We argue that researchers should not only focus on pairwise comparisons of two nested models but 
rather use Bayesian model selection for the direct comparison of a larger set of mixed models reflecting different auxiliary 
assumptions regarding the heterogeneity of effect sizes across individuals. In a standard one-factorial, repeated measures 
design, the comparison should include four mixed-effects models: fixed-effects H0, fixed-effects H1, random-effects H0, and 
random-effects H1. Thereby, one can test both the average effect of condition and the heterogeneity of effect sizes across 
individuals. Bayesian model averaging provides an inclusion Bayes factor which quantifies the evidence for or against the 
presence of an average effect of condition while taking model selection uncertainty about the heterogeneity of individual 
effects into account. We present a simulation study showing that model averaging among a larger set of mixed models per-
forms well in recovering the true, data-generating model.

Keywords  Within-subjects design · Repeated measures ANOVA · Random-effects · Bayes factor · Multilevel models

Linear mixed-effects modeling has become a popular 
approach for analyzing within-subjects designs (Pinheiro & 
Bates, 2000; Singmann & Kellen, 2019). Besides many other 
advantages, mixed models offer researchers a lot of flexibil-
ity in modeling experimental data. When testing hypotheses 
via Bayes factors, the large number of possible model speci-
fications leads to the question of how to define a suitable 
pair of (nested or non-nested) mixed-effects models for com-
parison. van Doorn et al. (2021) (vDAHSW) presented three 
pairwise model comparisons for testing within-subjects fac-
tors in repeated measures designs. These comparisons differ 
in the specification of the random-effects structure, espe-
cially for the mixed-effects model under the null hypothesis.

Here, we argue that there is no general answer to the 
question of which pairwise model comparison is the most 
appropriate one. Instead of using the Bayes factor as a tool 
for comparing only two specific, nested models, Bayesian 

model averaging allows researchers to compare a larger set 
of theoretically interesting models at once. Moreover, the 
inclusion Bayes factor provides a means for quantifying the 
amount of evidence for or against the average effect of con-
dition in a repeated measures design while accounting for 
the uncertainty in model specification (Gronau et al., 2021; 
Hinne et al., 2020).

Mixed Models for Repeated Measures 
Designs

We follow vDAHSW in using a simple lexical decision task 
as a running example. In such a task, N participants have to 
decide as quickly and accurately as possible whether a letter 
string is a word or a non-word. Each participant runs through 
two conditions j = 1, 2. For half of the M presented letter 
strings, participants have to respond by using their index 
fingers to press the buttons, whereas they have to use their 
thumbs in the remaining trials. The experiment thus uses 
a one-factorial, within-subjects design with two conditions 
and response time as the dependent variable. The aim is to 
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test whether the two conditions differ with respect to the 
mean response time.

Specification of Mixed‑Effects Models

When using mixed models, it is necessary to choose an 
appropriate specification of the fixed- and random-effects 
structure (Pinheiro & Bates, 2000). What renders the situ-
ation difficult is that there is not a unique, “correct” way of 
specifying mixed-effects models (Barr et al., 2013; Bates 
et al., 2018). From a theoretical perspective, researchers 
have to commit to a range of specific auxiliary assumptions 
regarding the specification of a model in order to test the 
core theoretical question (Kellen, 2019; Suppes, 1966).

In a one-factorial repeated measures design, the fixed-
effects parameter ν is defined as half the difference between 
the means of the two conditions using sum-to-zero coding 
(cf. vDAHSW). Regarding the random effects, it is uncontro-
versial that random intercepts αi are required to model differ-
ences in the absolute level of mean response times between 
individuals. However, it is less clear whether it is necessary 
to specify random slopes θi, that is, individual differences 
in the effect of the within-subjects factor. Whether the effect 
is assumed to vary across individuals is not only a theoreti-
cal question (Davis-Stober & Regenwetter, 2019; Heck, in 
press; Rouder & Haaf, in press), but also a methodological 
one as statistical inference can be biased if the additional 
variance induced by random slopes is not accounted for by 
a mixed-effects model.

These considerations lead to six possible model specifi-
cations which differ with respect to the included fixed and 
random effects. The corresponding model equations for the 
ith individual, in the jth condition, and for the mth trial are:

M1 : yijm =μ +ϵim (Intercept-only model)
M2 : yijm =μ + νxj +ϵim (Fixed effect of condition)
M3 : yijm =μ +αi +ϵim (Random intercept)
M4 : yijm =μ +αi + νxj +ϵim (Random intercept and fixed 

effect)
M5 : yijm =μ +αi + θixj +ϵim (Random intercept and ran-

dom slope)
M6 : yijm =μ +αi + (ν + θi)xj +ϵim (Full model)

These six models already represent a subset of all 23 
= 8 possible models which are obtained by including or 
excluding the fixed effect ν, the random intercept αi, and 
the random slope θi. This selection of models is justified 
because each model version corresponds to a specific theo-
retical position (see vDAHSW, for a discussion). The list 
does not include mixed-effects models that can possibly be 
defined but are deemed to be highly implausible a priori. 
For instance, we do not define a model with random slopes 
but without random intercepts as this would require that 

variation in individual effects perfectly cancels out across 
conditions (Rouder, Engelhardt, et al., 2016).

When considering which of the six models actually pro-
vide a plausible account of the data-generating mechanism, 
the first two models M1 and M2 can also be criticized. Both 
of these models assume a complete absence of random 
intercepts and random slopes and, therefore, of any indi-
vidual differences. As this is clearly problematic, we follow 
vDAHSW in discarding the first two models from further 
discussion. The remaining (reduced) model space contains 
only the four models M3 to M6.

Hypothesis Testing via Pairwise Model Comparisons

In a repeated measures design, hypothesis testing focuses on 
the question whether the within-subjects factor has an effect 
on the dependent variable. Hence, the test-relevant param-
eter of interest is the fixed effect of condition (ν). This leads 
to the two substantive hypotheses H0 : ν = 0 (i.e., the means 
in the two conditions are identical) versus H1 : ν ≠ 0 (i.e., the 
means in the two conditions differ). The evidence for the null 
versus the alternative hypothesis is quantified by the Bayes 
factor BF01 (Kass & Raftery, 1995), with BF01≈1 indicating 
that the data are not informative for discriminating between 
the two models. The Bayes factor provides an ideal method 
for selecting between two competing models as it achieves 
an optimal trade-off between model fit and complexity 
(Myung & Pitt, 1997; Rouder et al., 2012). Before comput-
ing a Bayes factor, however, it is necessary to translate the 
null and the alternative hypotheses into specific mixed-effect 
models which assume ν = 0 and ν ≠ 0, respectively.

Considering the (reduced) model space, the alternative 
hypothesis H1 can be represented either by model M4 or M6. 
Model M4 makes the auxiliary assumption that by-subject 
random slopes are irrelevant from a theoretical point of view 
(i.e., θi = 0), which means that all individuals show exactly 
the same effect across experimental conditions. In contrast, 
model M6 assumes the maximal random-effects structure, 
meaning that the effect of condition is allowed to vary across 
individuals (i.e., θi ≠ 0).

Statistically, model M4 offers the benefit of being more 
parsimonious, thus leading to less overfitting, which is 
especially relevant if there are only few responses in each 
condition. However, model M6 is often recommended as a 
baseline model for (frequentist) tests of within-subject fac-
tors due to ensuring more robust results (Barr et al., 2013).

To represent the null hypothesis H0, we can again select 
between two candidate models from the (reduced) model 
space. Model M3 only includes the by-subject random 
intercept, whereas model M5 additionally includes random 
slopes. The latter model has been criticized as being implau-
sible because it assumes that the variability in individual 
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effects perfectly cancels out on average (i.e., ν = 0; Rouder, 
Engelhardt, et al., 2016).

To investigate the consequences of the flexibility in model 
specification, vDAHSW compared three pairwise Bayes fac-
tors that have been proposed in the literature for quantifying 
the evidence for the null versus the alternative hypothesis:

The superscript in BFM3
−M

4

01
 denotes that the Bayes fac-

tor is computed as the ratio of marginal likelihoods of the 
models M3 versus M4.

It is an open question which of the three pairwise com-
parisons should be preferred as each is based on different 
auxiliary assumptions and involves different drawbacks and 
advantages. For example, the comparison M3 vs. M4 ignores 
by-subject random slopes, in turn leading to inflated Bayes 
factors in favor of H1, or similarly, to increased Type-I error 
rates (Barr et al., 2013). The comparison M3 vs. M6 suffers 
from low diagnosticity as the alternative and the null hypoth-
esis differ with respect to the presence of two parameters 
simultaneously (i.e., the fixed effect ν and the by-subject ran-
dom slope θi). Hence, any evidence in favor of the alterna-
tive hypothesis might be due to the fixed effect of condition, 
the by-subject random slope, or both. While the comparison 
M5 vs. M6 does not suffer from this low diagnosticity, the 
theoretical underpinning of the null model might be ques-
tionable (Rouder, Engelhardt, et al., 2016). Moreover, as 
both models M5 and M6 only differ with respect to the mean 
ν of the distribution of random slopes (i.e., the average effect 
of condition either equals zero or differs from zero), a large 
sample size is required to discriminate between these two 
statistically complex models empirically (see simulation 
below).

Model Selection Among Larger Sets of Mixed 
Models

To account for the uncertainty of which of the three pair-
wise model comparisons should be preferred, we propose 
a simple solution. Bayesian model selection via Bayes 
factors does not only allow researchers to compare two 
nested models in a pairwise fashion, but also enables 
the comparison of a larger set of models. By comparing 
multiple models simultaneously, researchers can express 

(1)

RM ANOVA comparison ∶ BF
M3−M4

01
⟺

H0 ∶ v = 0 with �i = 0

H1 ∶ v ≠ 0 with �i = 0

(2)

Strict null comparison ∶ BF
M3−M6

01
⟺

H0 ∶ v = 0 with �i = 0

H1 ∶ v ≠ 0 with �i ≠ 0

(3)

Balanced null comparison ∶ BF
M5−M6

01
⟺

H0 ∶ v = 0 with �i ≠ 0

H1 ∶ v ≠ 0 with �i ≠ 0

uncertainty with respect to the auxiliary assumptions about 
the fixed- and random-effects structure (Kellen, 2019). The 
question of which comparison is most suitable can thus be 
answered empirically based on the data.

The possibility to compare multiple models does not 
release the researcher from the challenge to specify a set 
of candidate models. On the one hand, it may be prefer-
able to limit the potential model space by including only 
theoretically relevant model versions (Rouder, Engelhardt, 
et al., 2016). This strategy increases the chances of find-
ing substantial evidence for one of the models and may 
facilitate the substantive interpretation of the results. On 
the other hand, including a larger number of candidate 
models increases the chances that one of the models pro-
vides a satisfactory approximation of the data-generating 
process (Aho et al., 2014). Statistical model selection can 
be misleading if the set of models is too small because 
the results are conditional on the specific set of candi-
date models. It follows that limiting model selection to 
the comparison of only two model versions comes with 
the risk of overlooking that both models actually perform 
poorly. From this perspective, including a larger set of 
models in the comparison can be beneficial in order to 
prevent misspecification.

For the present scenario of a one-factorial repeated 
measures design, the comparison should include the 
maximal mixed-effects model M6 as a “catch-all” alterna-
tive. The inclusion of this model allows researchers to test 
whether more simple, constrained models actually provide 
a satisfactory fit to the data (Barr et al., 2013; Hilbig & 
Moshagen, 2014). If this is not the case, the more com-
plex, full model will be automatically preferred, thereby 
reducing the chances of selecting an overly simple, mis-
specified model. Moreover, models M3 and M5 should be 
included as alternative specifications for the null hypoth-
esis ν = 0 which differ merely with respect to the random 
slope specification. Note that model selection among these 
three models provides a direct comparison of all models 
that occur in the two pairwise comparisons that either use 
the balanced or the strict null model. Finally, model M4 
should also be included because it is often of interest to 
test whether the effect of condition varies across individu-
als or not (Davis-Stober & Regenwetter, 2019; Heck, in 
press).

An important requirement for performing model selec-
tion among a larger set of models is that each model is 
fitted to exactly the same data set. This implies that it is 
not possible to compare models fitted to the raw data at 
the trial level against models fitted to aggregated data 
at the participant level. Extending the set of candidate 
models thus allows us to combine the balanced and strict 
null comparisons within a single analysis, but we cannot 
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make a direct comparison to the RM-ANOVA analysis by 
vDAHSW based on aggregated data.1 In selecting among 
the four candidate models, the two models without random 
slopes (i.e., M3 and M4) are thus fitted at the trial level. 
We can then compare these models to those with random 
slopes (i.e., M5 and M6) to test whether there is any evi-
dence for the presence of individual differences in the 
effect of condition. Including all four mixed-effects mod-
els M3 to M6 shown in Fig. 1 renders the model selection 
problem diagnostic with respect to both the overall effect 
of condition and the heterogeneity of individual effects.

Bayesian Model Averaging

There are practical issues of model selection when using 
a larger set of models. When comparing M models, one 
obtains M(M − 1)/2 pairwise Bayes factors. The number 
of Bayes factors thus rapidly increases as more models are 
being assessed, which can be a hurdle for interpreting and 
communicating results. Moreover, when selecting only a 
single model that is preferred by the Bayes factor, posterior 
uncertainty on how much evidence the data provide for a 
specific model is ignored (Hinne et al., 2020; Hoeting et al., 
1999). For instance, it may be the case that all four models 
M3 to M6 are supported to a similar degree, in which case 

researchers should not be very confident in selecting one of 
the models at all. This gives rise to the question of how to 
account for model selection uncertainty in drawing substan-
tive conclusions.

As a remedy, we propose to focus on posterior model 
probabilities which allow researchers to communicate results 
more concisely and intuitively. Instead of reporting M(M 
− 1)/2 pairwise Bayes factors, it is sufficient to report M 
posterior model probabilities. For instance, the results of a 
repeated measures analysis may show that the two models 
representing the alternative hypothesis are only slightly more 
supported, P(M4| y) = .12 and P(M6| y) = .35, compared to 
the two models representing the null hypothesis, P(M3| y) = 
.07 and P(M5| y) = .46. Furthermore, presenting the model 
selection results by four posterior probabilities shows that 
the two models assuming random slopes for the effect of 
condition (M5 and M6) have slightly larger posterior prob-
abilities than those without random slopes (M3 and M4). 
However, the computation of posterior model probabilities 
requires researchers to make assumptions about prior model 
probabilities which is not the case when focusing on Bayes 
factors only.

As a default, one may assume uniform prior model prob-
abilities (e.g., P(Mi) = 1/4). In repeated measures designs 
involving multiple experimental factors, more advanced 
strategies might be applied to assign prior weights to all 
combinations of including or excluding specific model terms 
(e.g., fixed- and random-effects for the main effects and 
interactions, Scott & Berger, 2010, see Discussion).

Once posterior model probabilities have been computed, 
we are still faced with the issue of how to answer the core 
question of whether there is an effect of condition. Bayesian 
model averaging can be used to contrast one subset of (null) 

Fig. 1   Nested mixed-effects 
models included in Bayesian 
model averaging for a repeated 
measures design with one 
within-subjects factor

1  The use of aggregated data generally complicates the analysis with 
Bayes factors because the default prior distribution is specified on the 
scale of the standardized effect size. However, standardization is sen-
sitive to the scale of the error variance. Because aggregation results 
in a decrease of the error variance by a factor of 1∕

√

N , the scale of 
the default prior needs to be adjusted when using aggregated instead 
of raw data.
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models against the remaining set of (alternative) models. 
Figure 1 shows that the alternative hypothesis H1 is repre-
sented by the models M4 and M6 as both models include the 
fixed-effects parameter ν. Similarly, the null hypothesis H0 is 
represented by the two models not including this parameter 
(i.e., M3 and M5). These two subsets of models can be com-
pared by computing the sum of the corresponding posterior 
model probabilities. For instance, we can simply add up the 
posterior model probabilities for the two models correspond-
ing to the null hypothesis, P(M3| y) + P(M5| y). By consider-
ing the posterior probabilities of all four models, we fully 
take “into account model uncertainty with respect to choos-
ing a fixed-effect or random-effects model” (Gronau et al., 
2021, p. 13). This is in contrast to the common approach of 
merely selecting one of the competing models.

To answer the core hypothesis whether there is an effect 
of condition, we can compute the inclusion Bayes factor 
which compares all mixed-effects models representing H0: 
ν = 0 against all models representing H1: ν ≠ 0. First, it is 
necessary to sum the prior and posterior model probabilities 
for the two model sets as discussed above. Second, the inclu-
sion Bayes factor is obtained by dividing the posterior inclu-
sion odds by the prior inclusion odds (Gronau et al., 2021):

The inclusion Bayes factor can be interpreted as the factor 
by which the prior plausibility for the absence of an effect is 
updated in light of new data, while considering uncertainty 
whether random slopes should be included in the mixed-
effects models representing H0 and H1. Equation (4) shows 
that, in contrast to Bayes factors for pairs of models, the 
inclusion Bayes factor depends on the prior model prob-
abilities of all four models. When assuming uniform prior 
model probabilities, the prior inclusion odds in (4) will be 
one, meaning that the inclusion Bayes factor is thus identi-
cal to the ratio of the summed posterior model probabilities 
of the two subsets of models representing the null and the 
alternative hypothesis.

The simple definition of the inclusion Bayes factor in (4) 
allows us to draw direct conclusions about the mechanism 
of how evidence in the data informs the test of the null ver-
sus the alternative hypothesis. If Bayesian model selection 
clearly indicates that random slopes are necessary to account 
for the data (i.e., the posterior probabilities of M3 and M4 are 
very small), the inclusion Bayes factor will be very similar 
to that of the balanced null comparison of model M5 ver-
sus M6. Similarly, if the results indicate that random slopes 
are not necessary to account for the data (i.e., the posterior 
probabilities of M5 and M6 are very small), the inclusion 

(4)

BFinclusion
01

=
P(M3 ∣ y) + P(M5 ∣ y)

P(M4 ∣ y) + P(M6 ∣ y)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

posterior inclusion odds

/

P(M3) + P(M5)

P(M4) + P(M6)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
prior inclusion odds

.

Bayes factor will be very similar to that of the RM-ANOVA 
comparison of model M3 versus M4. This means that the 
inclusion Bayes factor can utilize benefits of both types of 
model comparisons depending on the evidence in the data 
regarding the presence of random slopes.

Monte Carlo Simulation

vDAHSW used a single, simulated data set to highlight 
qualitative differences in the results when using different 
models for comparison. We think that this approach is ben-
eficial for the purpose of illustration, but it is not sufficient 
for drawing strong conclusions about the general behavior 
of the Bayes factor for the selection of mixed-effects mod-
els. For instance, results may depend on the specifics of the 
parameters and the random noise used to generate a simu-
lated data set. Moreover, relying on a single case study can 
be especially critical for the Bayes factor as it can show a 
large variability across different data sets even if these were 
simulated using the same data-generating process (Tendeiro 
& Kiers, 2019).

As a remedy, we relied on a Monte Carlo simula-
tion to obtain more informative and robust patterns of 
results (see Linde & van Ravenzwaaij, 2021 for a similar 
approach). The simulation illustrates the behavior of the 
Bayes factor when including the four mixed-effects mod-
els in Fig. 1 in the comparison while varying the size of 
the fixed effect and the variance of the random effects. 
The R scripts of the simulation are available at the Open 
Science Framework (https://​osf.​io/​tavnf) and may also be 
useful for sample size planning and design optimization 
(e.g., Heck & Erdfelder, 2019).

Methods

We used the R scripts provided by vDAHSW to simulate 
data from a mixed-effect model for a one-factorial within-
subjects design with two conditions. Bayes factors were 
computed using the BayesFactor package (Morey & Rouder, 
2015) using default JZS priors with scale parameters rfixed 
= 0.5 and rrandom = 1. In the Appendix, we provide further 
simulation results for other prior scale settings. However, 
varying the prior scales does not change the conclusions 
substantially.

We chose true, data-generating parameters similar 
to vDAHSW and simulated 200 data sets within each 
cell of the factorial design. We varied the fixed effect 
of condition by generating raw differences of the two 
means of 2 · ν = 0, 0.2, 0.5, and 0.8. Furthermore, we 
varied the variance of the random slopes of condition 
on four levels, Var(θi) = 0, 0.25, 1, and 4. The variance 
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of the random intercepts was fixed to 0.5 while assum-
ing independence of random intercepts and random 
slopes. Concerning the number of observations, we var-
ied the number of items between 1, 5, 10, 15, 20, and 
25. Note, however, that the random slopes model with 
only one observation per condition is not identified (see 
vDAHSW). We also varied the number of individuals 
between 10, 20, 30, and 40 but only report the results for 

N = 20 individuals since the results were qualitatively 
similar for the other cases.2

Results: Posterior Model Probabilities

Instead of focusing on pairwise Bayes factors, we summarize 
the results of the simulation by focusing on the posterior prob-
abilities of the four candidate models when assuming equal 
prior model probabilities. Figure 2 shows the average posterior 
probability across 200 replications for N = 20 individuals with 
varying strengths of the fixed effect (column panels) and vary-
ing variances of the random slope (row panels).

Fixed Effect: 0 Fixed Effect: 0.2 Fixed Effect: 0.5 Fixed Effect: 0.8

R
andom

 Slope: 0
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Fig. 2   Average posterior model probabilities for  200 simulated data 
sets of N = 20 individuals. The data-generating model is highlighted 
by a bold line. The label “Random Slope” refers to the variance of the 

random slopes θi. The random intercept is included in all models and 
fixed to 0.5 in the data simulation

2  The supplementary material at https://​osf.​io/​tavnf provides all sim-
ulation results which can be plotted for N = 10, 20, 30, and 40 by 
adjusting the filters in the R script or via an R Shiny application.
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Across all panels, when there is only one item per 
condition, the average posterior model probabilities 
are often close to the prior probabilities P(Mi) = .25 
meaning that the data do not provide much evidence 
for distinguishing between the four models. Partly, this 
reflects the fact that the data are informative only for 
the overall effect of condition ν ≠ 0 (which determines 
only the sum of the posterior probabilities of M4 and 
M6), but not for detecting the presence of random slopes 
because the corresponding models M5 and M6 are not 
identified.

Despite having only a single observation, however, 
the sum of the posterior probabilities of M4 and M6 is 
not equal to .50 because the Bayes factor takes the com-
plexity of the four models into account while also con-
sidering the expected magnitude of the random effects 
as specified by the prior distributions. Note that the non-
informativeness of the model comparison for a single 
item leads to a “hump” in the pattern of posterior model 
probabilities in some of the panels in Fig. 2 (e.g., those 
in the second row).

In the first row of Fig. 2, it is assumed that the vari-
ance of random slopes is zero, meaning that the effect 
of condition is constant for all individuals. Reflecting 
the data-generating mechanism, the two models assum-
ing random slopes (M5 and M6) have a very small pos-
terior probability with as few as five items. If the null 
hypothesis holds (ν = 0), evidence for the correspond-
ing model M3 increases for larger numbers of items. 
If the alternative hypothesis holds and the effect size 
is medium to large (2 · ν = 0.5 and 2 · ν = 0.8),3 evi-
dence for model M4 increases with the number of items. 
Moreover, evidence in favor of the correct model M4 
shows a faster convergence compared to the conver-
gence in favor of model M3 if the null hypothesis holds 
(see panel 4 vs. panel 1, respectively, in the first row 
of Fig. 2). In the former case, the posterior probability 
also reaches a larger value almost equal to one com-
pared to the latter case. These differences in the rates 
of accumulating evidence ref lect a general behavior 
of the Bayes factor when testing a point null against 
an alternative hypothesis (Tendeiro & Kiers, 2019). 
Moreover, if the alternative hypothesis holds and the 
effect size is small (2 · ν = 0.2), the Bayes factor indi-
cates a slight preference for the more parsimonious 
model M3 with few items, but indicates evidence for 
the true, data-generating model M4 as the number of 
items increases.

Next, we consider the remaining rows of Fig. 2 across 
which the variance of the random slopes increases. Given 
a rather small variance of Var(θi) = 0.25 (second row), 
posterior model probabilities favor the random-effects 
models M5 and M6 only when there are 15 or more items 
per condition. Given less items, the Bayes factor prefers 
the fixed-effects models M3 and M4 as these are more 
parsimonious while still providing a satisfactory fit to 
the data. For larger random-effect variances of Var(θi) = 
1 and 4 (third and fourth row), the Bayes factor reliably 
detects that individual effects vary across individuals 
even with only five items per condition. If the random 
slope variance is large (forth row), the posterior model 
probabilities of the two random slope models M5 and 
M6 are similar or differ only by a rather small amount. 
In such cases, it is more difficult to provide evidence 
for the null versus the alternative hypothesis since the 
variability of the individual effects has to be considered. 
This resembles the well-known finding that, in frequen-
tist analyses, including random slopes in mixed-effects 
models reduce statistical power (Barr et  al., 2013). 
Whereas the amount of evidence for the two models is 
generally limited, the results show that M5 is preferred 
if the nullhypothesis is true, whereas M6 is preferred if 
there is a medium to large effect size of the fixed effect 
(2 · ν = 0.5 and 2 · ν = 0.8). However, if the effect size 
is only small (2 · ν = 0.2), Bayesian model selection 
provides evidence for the model M5 even though M6 was 
the data-generating model (e.g., second panel in the last 
row). Overall, the results show that substantial evidence 
for an average effect of condition can only be obtained 
if the fixed effect is relatively large compared to the ran-
dom slope variance (i.e., when the signal-to-noise ratio 
is high).

Results: Inclusion Bayes Factor

To assess the performance of Bayesian model averag-
ing, Fig. 3 compares the average Bayes factor based on 
the strict null comparison, the balanced null comparison, 
and the inclusion Bayes factor for N = 20 individuals. 
To facilitate the comparison for the varying scales of 
the Bayes factor on the y-axis across rows, Bayes factors 
of BF01 = 10 and BF01 = 1/10 are highlighted by dashed 
horizontal lines.

The panels in the first row of Fig. 3 highlight a par-
ticular feature of the strict null comparison (cf. case 
study by vDAHSW). In the presence of random slopes 
and for at least 10 items, the Bayes factor indicates over-
whelming evidence for the alternative model M6 relative 
to the null model M3 irrespective of whether the null 
hypothesis is actually true or not (i.e., for all values of 

3  In the mixed-effects model, the parameter ν refers to half the differ-
ence between the means of the two experimental conditions, whereas 
the figure refers to the difference in means (i.e., 2 · ν)
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the fixed effect on the x-axis). This is due to the limited 
diagnosticity of this model comparison because model 
M6 includes both the fixed effect ν and the random slope 
θi, whereas M3 includes neither of these terms. In this 
specific setting, the presence of the random effect out-
weighs the absence of a fixed effect. If the random slope 
variance is zero, the Bayes factor provides substantial 
evidence for the null hypothesis if it is true (i.e., if the 
fixed effect is zero) but also if the fixed effect is small 
(i.e., 2 · ν = 0.2).

The panels in the second row of Fig. 3 show that the 
balanced null comparison provides a better discrimination 
between the null and the alternative hypothesis. Across all 
numbers of items, the Bayes factor indicates stronger evi-
dence for the alternative hypothesis H1 as the size of the 
fixed effect of condition (x-axis) increases. This behavior 
is expected and desirable: the larger the effect of condi-
tion, the easier it will be to find evidence for the presence 
of the effect. If there is no effect of condition (i.e., ν = 0), 

the Bayes factor indicates evidence for the null model M5.
Moreover, the more items are included in the repeated meas-
ures design, the better the Bayes factor of the balanced null 
comparison discriminates between the two hypotheses. This 
can be concluded by the observation that the slope of the 
lines increases as the number of items across the column 
panels increases.

Figure 3 shows that the random slope variance has a 
pronounced effect on the size of the Bayes factor of the 
balanced null comparison. Discrimination between the 
null and the alternative hypothesis is highest when the 
random slope variance is zero, as indicated by the steep 
slope of the green line (marked with circles): If there is 
no effect of condition (ν = 0), the Bayes factor favors M5, 
the null hypothesis; if there is a large effect of condition 
(2 · ν = 0.8), the Bayes factor favors M6, the alterna-
tive hypothesis. As the random slope variance increases, 
it becomes more difficult to discriminate between both 
models. Often, the average value of the Bayes factor is 

Fig. 3   Average Bayes factors 
for 200 simulated data sets of 
N = 20 individuals. The limits 
of the y-axis differ for the first 
row. The solid horizontal line 
indicates absence of evidence 
(i.e., BF01 = 1), whereas the two 
dashed horizontal lines refer to 
evidence for and against the null 
hypothesis (i.e., BF01 = 10 and 
BF01 = 1/10, respectively)
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within the interval of 1/10 to 10, thus indicating that it 
is difficult to draw strong conclusions based on the 
balanced null comparison. Whereas this can be inter-
preted as robust and conservative behavior of the 
Bayes factor, it also has the drawback that the balanced 
null comparison has a low sensitivity of detecting the 
presence of a fixed effect of condition in the absence 
of random slopes. In this case, the Bayes factor pro-
vides only weak evidence for the null hypothesis if 
it is true, and it provides evidence for the alternative 
hypothesis only if the fixed effect of condition is suf-
ficiently large (i.e., 2 · ν = 0.5) but not if the effect 
is small (i.e., 2 · ν = 0.2). This is due to the fact that 
both models M5 and M6 assume random slopes which 
are not required to fit the data but still render model 
selection less efficient due to the increased statistical 
complexity of the models.

The inclusion Bayes factor provides a solution to the 
low sensitivity of the balanced null comparison while 
maintaining its robustness. If random slopes are not 
required to account for the data, the inclusion Bayes factor 
assigns a smaller weight to the two random slope models 
M5 and M6. In turn, the inclusion Bayes factor will have a 
higher sensitivity with respect to the presence of the fixed 
effect of condition as the comparison now mainly relies 
on the posterior probabilities of M3 and M4 (i.e., the RM-
ANOVA comparison). Figure 3 highlights a beneficial 
consequence of this mechanism. If the random slope vari-
ance is zero, the inclusion Bayes factor better discrimi-
nates between the null and the alternative hypothesis com-
pared to the balanced null comparison. This means that 
the inclusion Bayes factor indicates stronger evidence for 
H0 and for H1 depending on which model is true, and it 
indicates at least weak evidence for H1 even if the fixed 
effect is small (2·ν = 0.2, panels 3 and 4 in the third row 
of Fig. 3). If the random slope variance is larger than 
zero, the inclusion Bayes factor provides almost identical 
results as the balanced null comparison because the pos-
terior probabilities of the fixed-effects models M3 and M4 
rapidly drop towards zero (cf. Fig. 2). Overall, the results 
highlight a major benefit of model averaging: Depending 
on the information in the data, those mixed-effects models 
with the highest posterior probability inform the test of the 
null versus the alternative hypothesis. Thereby, we gain 
the robustness of the balanced null comparison if random 
slopes are required but retain the higher sensitivity of the 
RM-ANOVA comparison otherwise.

Across all panels, the results also show that the 
Bayes factor does in general provide stronger evidence 
for the alternative than for the null hypothesis irre-
spective of which type of model comparison is used. 

This is due to the well-known fact that, when testing 
a point null hypothesis, the Bayes factor has a faster 
rate of convergence towards H1 if an effect is present 
than towards H0 if there is no effect (van Ravenzwaaij 
& Wagenmakers, in press). This asymmetry in the 
rate of evidence accumulation is desirable and in line 
with common sense. In terms of plausible reasoning 
(Jaynes, 2003), the claim that something is absent is 
more difficult to support than the claim that something 
is present, at least when one is uncertain about the 
effect size of the assumed phenomenon. The asym-
metry of the amount of evidence in favor of H1 and H0 
in Fig. 3 can thus be attributed to a general feature of 
the Bayes factor and not to a specific shortcoming of 
the (inclusion) Bayes factor for mixed-effect modeling.

Discussion

vDAHSW raised the question of which pairwise test of 
mixed-effects models is most appropriate. Here, we high-
lighted the benefits of directly comparing a larger set of 
models against each other. For a repeated measures design 
with one within-subjects factor, the comparison of the four 
model versions M3 to M6 in Fig. 1 allows researchers to 
draw conclusions about both the average effect of condi-
tion and the presence of individual differences concern-
ing this effect. Both of these aspects can be addressed 
within a single analysis by focusing on the posterior model 
probabilities.

Bayesian model averaging provides an ideal solution 
for testing specific substantive hypotheses while tak-
ing uncertainty about the auxiliary assumptions into 
account. Given a possibly large model space, Bayes-
ian model averaging proceeds by bundling models into 
two non-overlapping subsets. Thereby, multiple mixed-
effects models can be used to represent the null and the 
alternative hypotheses which are of substantive interest. 
In a simple repeated measures design, we can test for 
the presence (models M4 and M6) or absence (models 
M3 and M5) of an effect of condition while considering 
the remaining uncertainty about individual differences 
(Gronau et al., 2021; Hinne et al., 2020). The inclusion 
of multiple candidate models in the analysis increases 
transparency regarding the auxiliary assumptions about 
the fixed- and random-effects structure (Rouder, Morey, 
& Wagenmakers, 2016). Based on the sum of the corre-
sponding posterior model probabilities, one obtains the 
inclusion Bayes factor in favor of one subset of models 
against another subset.
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Model Averaging for More Complex Factorial 
Designs

For more complex experimental designs, the model space 
grows exponentially with the number of predictor terms. 
For example, in a 2 × 2 within-subjects design, a model 
may include the two main effects A and B and the inter-
action A × B. Accordingly, there are 23 combinations of 
fixed effects and 23 combinations of random effects, lead-
ing to model space of 23 × 23 = 64 model versions in total. 
Besides the fact that working with such a large model space 
is computationally expensive, the plausibility and useful-
ness of particular model versions can be called into ques-
tion. To illustrate this, consider a model without any fixed 
effects but with random slopes for the interaction A × B. 
Such a model would require that the individual interac-
tion effects do not only cancel out with respect to A, B, 
and A × B on average, but also with respect to the random 
slopes for factors A and B within each individual. Often, 
these assumptions may neither be plausible nor represent 
any meaningful theoretical position (Rouder, Engelhardt, 
et al., 2016).

In higher factorial designs, there are two general 
approaches for dealing with the issue of selecting a set of 
appropriate mixed-effects models. One can either use the 
full model space irrespective of the plausibility of spe-
cific model versions or specify a reduced model space by 
selecting a subset of models a priori. The first approach 
emphasizes the core idea of Bayesian model averaging 
by considering the full uncertainty with respect to the 

auxiliary assumptions about model specification. How-
ever, when the model space consists of models that are 
implausible or difficult to interpret, it is not clear what 
can be learned if these models are supported by the 
data.

The second approach already rules out some models 
a priori, in which case it is important to select models 
according to a certain rationale. One possibility for reduc-
ing the model space is to adopt the principle of marginal-
ity which states that higher-order interactions should only 
be included in a model if the corresponding main effects 
are also included (Rouder, Engelhardt, et al., 2016). This 
principle also underlies the strict null comparison since 
random slopes can be interpreted as an interaction of the 
within-subjects factor with individuals (cf. vDAHSW). 
Table 1 shows the 14 possible model versions which are 
obtained by applying the principle of marginality to a 2 × 2 
within-subjects design. Essentially, random slopes are only 
added to a model if it also contains (1) the corresponding 
fixed effects and (2) the lower-order random slopes. For 
instance, a model with varying interaction effects across 
individuals (i.e., with the term A × B × id) must include 
(1) the three fixed effects A, B, and A × B as well as (2) the 
random slopes A × id and B × id. Hence, this results in the 
maximal model which includes all terms.

As discussed by vDAHSW, excluding some models a 
priori lead to a lack of diagnosticity since it is not pos-
sible to discriminate between the presence of an aver-
age effect at the group level and individual heterogeneity 
of the effect. The simulation results in Fig. 2 also show 

Table 1   Reduced model space 
when applying the principle of 
marginality to a 2 × 2 within-
subjects design

The model specification uses the label “id” to denote random effects with +id referring to the random inter-
cept (which is included in all models) and ×id referring to random slopes (e.g., B × id denotes random 
slopes for the main effect of B). 

Model Fixed effects Random slopes

1 (null) id
2 id + A
3 id + B
4 id + A + B
5 id + A + B + A × B
6 id + A + A × id
7 id + B + B × id
8 id + A + B + A × id
9 id + A + B + B × id
10 id + A + B + A × id + B × id
11 id + A + B + A × B + A × id
12 id + A + B + A × B + B × id
13 id + A + B + A × B + A × id + B × id
14 (maximal) id + A + B + A × B + A × id + B × id + A × B × id
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that models with random slopes but without the corre-
sponding fixed effect (i.e., model M5 in the one-factorial 
example) may often obtain a substantial posterior prob-
ability. Excluding such models a priori may thus lead to 
overconfidence with respect to testing the null versus the 
alternative hypothesis.

As an alternative strategy for selecting a subset of 
mixed-effects models, one may apply the principle of 
marginality separately for fixed effects and random 
slopes. The first five rows in Table 1 show all possible 
combinations of fixed-effects terms for a 2 × 2 design. 
When crossed with all five combinations of adding ran-
dom slopes, this results in 5 × 5 = 25 mixed-effects 
models. This alternative strategy thus provides a com-
promise between considering the complete model space 
(64 models) and applying the principle of marginality 
to fixed effects and random slopes jointly (14 models). 
However, it also comes with a lack of interpretability 
regarding some model versions (e.g., A + B × id). In 
sum, it remains a challenging question which models 
to include in the comparison for more complex experi-
mental designs.

Prior Model Probabilities

Ir respective of which models are included in the 
comparison a priori, model averaging and the inclu-
sion Bayes factor depend on the choice of the prior 
model probabilities (see Eq. (4)). As the set of models 
increases, specifying a prior also becomes more com-
plex. At first glance, the reliance on a uniform prior, 
as introduced above for the one-factorial, within-sub-
jects design, seems to be a straightforward and innocu-
ous solution. However, this choice can be problematic 
when the number of predictor terms increases as in 
complex factorial designs (Clyde, 2003; Montgomery 
& Nyhan, 2010; Zeugner et al., 2015). When assum-
ing a uniform prior for all possible models, most of 
the prior mass will be on the relatively large subset 
of models that include an average number of terms 
(e.g., in a 2 × 2 design, 20 out of 64 models include 
three of six possible terms). In comparison, the prior 
probability for the null and the maximal model will 
be relatively small (i.e., 1/64) which may result in a 
bias against these models. Moreover, a uniform prior 
implicitly assumes that the inclusion or exclusion of 
different terms is independent. However, this assump-
tion is violated when adding interaction effects in 
a factorial ANOVA. When applying the principle 

of marginality to exclude particular model versions 
a priori, the probability of including an interaction 
depends on the presence of the corresponding main 
effects which should be expressed in the prior belief 
of the respective models (Chipman et al., 2001).

Steel (2020) provides an overview about the ongoing 
debate regarding the specification of prior model probabili-
ties. In principle, either prior choice is acceptable as long 
as it reflects the prior assumptions of the researcher regard-
ing the plausibility of the different models. A prominent 
prior choice is the beta-binomial prior which accounts for 
all combinations of including or excluding specific parts 
of a model (Scott & Berger, 2010). This prior provides a 
correction for multiplicity by being less informative with 
respect to model size (i.e., the number of included terms). 
Alternatively, one may account for the dependence among 
predictor terms by using a heredity prior (Chipman et al., 
1997). Strong heredity requires that a model with an inter-
action also includes both main effects (thus resembling 
the principle of marginality), whereas weak heredity only 
requires that at least one of the main effects is included. 
Instead of excluding certain models a priori, Chipman 
et al. (1997) also proposed relaxed weak heredity priors 
which leave a small probability (e.g., .01) for implausible 
models to be included in the comparison. However, future 
research is required to adopt beta-binomial and heredity 
priors for mixed-effects models with complex random-
effects structures.

Conclusion

The paper by vDAHSW addresses many important 
issues regarding the use of Bayes factors for mixed-
effects modeling in factorial designs. Most impor-
tantly, the paper shows that researchers should be 
aware that auxiliary assumptions are required for 
translating substantive hypotheses to specific sta-
tistical models (Kellen, 2019; Suppes, 1966). While 
Bayesian model selection is ideally suited for testing 
substantive theories in psychology (Heck et al., 2021), 
Bayes factors for mixed models necessarily depend on 
details of the model specification such as the inclu-
sion of fixed and random effects and the prior distri-
butions. Bayesian model averaging allows researchers 
to make such researchers degrees of freedom transpar-
ent by considering multiple model versions at once, 
thereby accounting for the inherent uncertainty about 
auxiliary assumptions in mixed-effects modeling.

45Computational Brain & Behavior (2023) 6:35–49



1 3

Appendix. Different prior settings

Figure 4 and Fig. 5 show the simulation results for vary-
ing prior settings based on 200 simulated data sets for N 

= 20 individuals. The parameters rfixed and rrandom refer to 
the prior scales for the fixed effect and the random slope, 
respectively.
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Fig. 4   Average posterior model probabilities for varying prior settings. The label “Random Slope” refers to the variance of the random slopes θi. 
The random intercept is included in all models and fixed to 0.5 in the data simulation
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Fig. 5   Average Bayes factor for varying prior settings. The limits of 
the y-axis differ for the first row. The solid horizontal line indicates 
absence of evidence (i.e., BF01 = 1), whereas the two dashed hori-

zontal lines refer to evidence for and against the null hypothesis (i.e., 
BF01 = 10 and BF01 = 1/10, respectively)
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