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Abstract
Humans often face sequential decision-making problems, in which information about the environmental reward structure
is detached from rewards for a subset of actions. In the current exploratory study, we introduce an information-selective
symmetric reversal bandit task to model such situations and obtained choice data on this task from 24 participants.
To arbitrate between different decision-making strategies that participants may use on this task, we developed a set of
probabilistic agent-based behavioral models, including exploitative and explorative Bayesian agents, as well as heuristic
control agents. Upon validating the model and parameter recovery properties of our model set and summarizing the
participants’ choice data in a descriptive way, we used a maximum likelihood approach to evaluate the participants’ choice
data from the perspective of our model set. In brief, we provide quantitative evidence that participants employ a belief
state-based hybrid explorative-exploitative strategy on the information-selective symmetric reversal bandit task, lending
further support to the finding that humans are guided by their subjective uncertainty when solving exploration-exploitation
dilemmas.

Keywords Bandit problem · Agent-based behavioral modeling · Exploration · Exploitation

Introduction

Uncertainty is an inherent part of real-life sequential
decision-making. Humans often face new and changing
situations without being able to directly observe the
statistical regularities of the environmental reward structure.
Consequently, in their quest to maximize their cumulative

� Dirk Ostwald
dirk.ostwald@ovgu.de

1 Computational Cognitive Neuroscience, Freie Universität
Berlin, Berlin, Germany

2 Center for Biomedical Imaging and Neuromodulation, Nathan
Kline Institute, Orangeburg, NY, USA

3 Department of Biomedical Engineering, New Jersey Institute
of Technology, Newark, NJ, USA

4 Computational Neuroscience, Max Planck Institute for Bio-
logical Cybernetics, Tübingen, Germany
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rewards, humans have to alternate between exploration and
exploitation. Exploration refers to decisions that maximize
information gain and thus reduce the uncertainty about
the statistical regularities of the environment. Exploitation
refers to decisions that maximize reward gain by harnessing
the accumulated knowledge.

A standard behavioral test bed to study sequential
decision-making under uncertainty is the bandit paradigm
(e.g., Robbins 1952; Brand et al. 1956; Brand & Woods
1957; Berry & Fristedt 1985; Cohen et al. 2007; Even-
Dar et al. 2006; Dayan & Daw 2008; Bubeck et al. 2009;
Gabillon et al., 2012). Two variants of the bandit paradigm
have been widely adopted to model real-life sequential
decision-making under uncertainty. We here refer to these
variants as the classical bandit paradigm (by some also
referred to as partial-feedback paradigm (c.f. Hertwig 2012;
Wulff et al. 2018) and the pure exploration paradigm
(by some also referred to as sampling paradigm, ibid.).
In both variants, on each trial, the deciding agent has to
choose among a finite set of actions with different expected
reward values and subsequently observes a reward with
probability specific to the chosen action. While the actions’
expected rewards are not directly observable, the agent
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can estimate them by integrating information over multiple
reward observations. The difference between the classical
bandit paradigm and the pure exploration paradigm stems
from the respective challenges they pose for the deciding
agent. In the classical bandit paradigm, the agent’s task is
to maximize the cumulative reward across all trials, while
the reward observation confers both information and reward
on each trial. The classical bandit paradigm thus raises the
problem of how to strike a balance between exploration and
exploitation on each trial. In contrast, in the pure exploration
paradigm, the aim is to maximize the reward obtained on
a single final trial. Here, reward observations on preceding
trials only confer information, but not reward. The number
of trials preceding this final trial is self-determined by
the agent. The pure exploration paradigm thus raises the
problem of how to strike a balance between the exploration
costs preceding the final trial and the potential final trial
reward (Ostwald et al., 2015).

While a large variety of real-life decision-making
problems can be modelled with the classical bandit and
the pure exploration paradigms, neither variant is suited
to model a class of decision-making problems, in which
each available action yields positive or negative reward,
while only some actions also yield information about
the problem’s reward structure. Consider for example the
situation of a patient who exhibits COVID-19 symptoms
during the global pandemic. Assuming that reliable and
medically administered COVID-19 tests are available, while
self-administered COVID-19 tests are not (as has been the
case in many countries in the first year of the pandemic),
the patient faces the following decision dilemma: on
the one hand, the patient may home-quarantine, thereby
minimizing the risk for virus transmission, but at the
price of not obtaining information about their own state
of infection. Alternatively, the patient may use public
transport to undergo a medically administered COVID-19
test, thereby incurring the risk of further transmitting the
virus, but obtaining reliable information about their personal
infectious state. Situations of this type are similar to the ones
modelled with the classical bandit paradigm as each action
has a positively or negatively rewarded consequence (which
in the example is of societal nature). Importantly, however,
in this situation, reward-relevant information is detached
from reward for one of the actions (home-quarantining),
akin to the pure exploration paradigm. Consequently,
such a decision situation poses a more pronounced
exploration-exploitation dilemma than both classical bandit
paradigms and the pure exploration paradigm, because
the decision-maker is forced to explicitly evaluate the
benefit of information gain against the benefit of reward
gain. The aim of the current study is to computationally
characterize human sequential decision-making in such
problems.

To this end, we introduce an information-selective sym-
metric reversal bandit task, which shares key characteristics
with the classical symmetric two-armed reversal bandit task
(e.g., Bartolo & Averbeck 2020; Costa et al. 2016; Gläscher
et al. 2009; Hauser et al. 2014), but in which information
is randomly withheld for either the action with the high or
the low expected reward value. To arbitrate between differ-
ent sequential decision-making strategies that humans may
employ on this task, we formulate a set of agent-based
behavioral models. We here follow up on recent results
showing that one way humans balance between exploration
and exploitation is to add an “information bonus” to the
value estimate of an action, which reflects the associated
uncertainty (e.g., Gershman 2018; Gershman 2019; Lee
et al. 2011; Wilson et al. 2014; Wu et al. 2018). More specif-
ically, we formulate Bayesian agents that represent subjec-
tive uncertainty about the structure of the environment in the
form of a belief state. The Bayesian agents use the belief
state to make either exploitative (i.e., value estimate max-
imizing actions), explorative (i.e., information bonus max-
imizing actions), or hybrid explorative-exploitative (i.e.,
combined value estimate and information bonus maxi-
mizing) actions. Notably, we adopt a Bayesian treatment
of exploration and quantify the information bonus as the
expected Bayesian surprise (Itti & Baldi, 2009; Sun et al.,
2011; Ostwald et al., 2012). In addition to the Bayesian
agents, we also formulate belief state-free agents that imple-
ment simple strategies, such as a cognitive null model and
the win-stay-lose-switch heuristic (Robbins, 1952). Upon
validating our modeling initiative, we provide evidence for
a belief state-based hybrid explorative-exploitative strategy
based on choice data from 24 participants. In summary, we
show that in a scenario where every decision has an eco-
nomic consequence, but only some decisions are informa-
tive about the statistical reward structure of the environment,
humans are guided by their subjective uncertainty when
resolving the exploration-exploitation dilemma.

Experimental Methods

Participants Young adults were recruited from the Nathan
Kline Institute Rockland Sample (NKI-RS), a community-
ascertained and comprehensively characterized participant
sample of more than 1000 individuals between 6 and 85
years of age (Nooner et al., 2012). We initially intended
to enroll individuals from the lower and upper ends of the
attention deficit hyperactivity disorder (ADHD) spectrum
because we were interested in the relationship between
ADHD symptoms and behavioral strategies in our task. Yet,
the final sample of 24 individuals (12 female, 23 right-
handed, age range: 18–35 years, mean age: 24.5 years,
standard deviation age: 5.5 years) represented the mid-range
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of the ADHD spectrum. Moreover, individuals were only
invited if they had no lifetime history of severe neurological
or psychiatric disorder. We therefore treated the group
of participants as a healthy sample and did not conduct
analyses to relate ADHD symptoms to task behavior.
For additional details about the recruitment and sample
characteristics, please refer to “S.1: Sample characteristics”.

Procedure The study consisted of a one-time visit of 3.5
h to the Nathan Kline Institute for Psychiatric Research
(Orangeburg, NY, US). After providing written informed
consent, participants were first requested to fill out a
series of questionnaires measuring symptoms of ADHD
and other mental disorders. Next, participants received
detailed written instructions about the information-selective
symmetric reversal bandit task and were encouraged to
ask any clarification questions. For the detailed instructions
provided to the participants, please refer to “S.2: Participant
instructions.” To familiarize participants with the task, they
next completed a test run of the task on a desktop computer.
Finally, participants completed two experimental task runs
in a magnetic resonance imaging (MRI) scanner, while
behavioral, eye tracking, and functional MRI data were
acquired. Note that in the current work, we only report
results from the analysis of the behavioral data acquired
during MR scanning. The visit ended with the participants
receiving a reimbursement of $100 (see below for details).

Experimental design We developed a symmetric two-
armed reversal bandit task, in which the available actions
were not only associated with varying expected reward
values but also with varying information gains (information-
selective symmetric reversal bandit task, Fig. 1a). More
specifically, on each task trial, participants could decide
between the actions of choosing a square on the right of
the computer screen vs. choosing a triangle on the left of
the screen, or between the actions of choosing a square on
the left vs. choosing a triangle on the right of the screen.
Depending on the shape chosen, the action was either
lucrative and returned a reward of +1 with a probability
of 0.85 and a reward of −1 with a probability of 0.15, or
detrimental and returned a reward of +1 with a probability
of 0.15 and a reward of −1 with a probability of 0.85.
Depending on the side of the shape chosen, the action
was also either informative and the returned reward was
revealed to the participant, or it was non-informative and
the returned reward was not revealed to the participant.
Specifically, following an informative action either an
image of a moneybag was displayed to signal a positive
reward of +1, or an image of a crossed-out moneybag was
displayed to signal the negative reward of −1. In contrast,
following a non-informative action, an image of a question
mark moneybag was displayed for both the rewards of

+1 and −1. Importantly, while the actions’ lucrativeness
was not directly observable and could only be inferred
from the revealed rewards, the actions’ informativeness was
directly observable throughout the experiment. In particular,
for half of the participants, the right screen side was
associated with the informative action and the left screen
side was associated with the non-informative action. For the
other half of the participants, the coupling between screen
side and action informativeness was reversed. As a visual
reminder for the participants, the informative and non-
informative screen sides were also indicated by black and
grey backgrounds, respectively. Note that we use the terms
informative side and non-informative side in accordance
with the action definitions. Similarly, we will also use the
terms “lucrative shape” and “detrimental shape” instead of
“action of choosing the lucrative or detrimental shape” for
simplicity. Also note that throughout the depiction of the
experimental design and results, we visualize lucrative and
detrimental actions by yellow and blue colors, respectively,
and informative and non-informative actions by black and
grey colors, respectively.

The experiment consisted of two runs of 80 trials each.
On half of the trials, choosing the square was lucrative
and choosing the triangle was detrimental. On the other
half of the trials, choosing the square was detrimental and
choosing the triangle was lucrative. We pseudo-randomized
the sequence of lucrative shapes, such that choosing a
certain shape was lucrative for 17–23 consecutive trials
upon which the actions’ lucrativeness reversed. This yielded
a total of three shape lucrativeness reversals (or equivalently,
four blocks of trials without a reversal) per task run
(Fig. 1d). Furthermore, we also pseudo-randomized the
trial-by-trial sequence of choice options (e.g., a choice
between the square on the informative side or the triangle
on the non-informative side) with two constraints. First, a
certain choice option combination occurred for a maximum
of five consecutive trials. Second, on 50% of the trials in
which the square was lucrative, the square was presented on
the informative side (and the triangle on the non-informative
side), while on the other 50% of the trials, the square was
presented on the non-informative side (and the triangle on
the informative side). The same constraint applied to those
trials on which the triangle was lucrative. This way, we
did not only counterbalance the shape-side combinations,
but also ensured that participants faced a choice between a
lucrative and informative action (L ∧ I) and a detrimental
and non-informative (D ∧ N) action on half of the trials.
We refer to the trials with action choices between L ∧ I
and D ∧ N actions as trial type I (Fig. 1b). Accordingly,
on the other half of the trials, participants faced a choice
between a lucrative and non-informative action (L ∧ N) and
a detrimental and informative (D ∧ I) action. We refer to
the trials with action choices between L ∧ N and D ∧ I
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Fig. 1 Information-selective symmetric reversal bandit task. a
Experimental design. Possible actions differed in lucrativeness (lucra-
tive (L) or detrimental (D)), as well as in informativeness (informative
(I) or non-informative (N)). The former experimental factor was asso-
ciated with selectable shapes (square and triangle), while the latter
experimental factor was associated with black and grey screen sides.
In addition, and unbeknownst to the participants, the lucrativeness of
the shapes reversed at random trials throughout the experiment, corre-
sponding to the unobservable task state: for some time, the square may
represent the lucrative action, indicated here by its yellow color (and
the triangle, accordingly, represent the detrimental action, indicated
here by its blue color), but this could reverse. b On a given trial, par-
ticipants faced a choice between either a lucrative and informative vs.
a detrimental and non-informative action (Trial Type I; L ∧ I or D ∧

N) or a lucrative and non-informative vs. a detrimental and informative
action (Trial Type II; L∧N or D∧ I). c Trial design. Participants could
indicate their choice within 2.5 s of the choice options onset. If they
chose the shape on the black side, the returned reward was revealed
(top). If they chose the shape on the grey side, the returned reward was
not revealed (bottom). Note that the current lucrativeness of the shapes
was not revealed to the participants, hence the white shape color. dRun
design. Every 17 to 23 trials, the reward probabilities associated with
the shapes reversed. Here, the reversal times of the first run are shown.
For trials 1 to 19, the square was lucrative, indicated by its yellow
color, and the triangle was detrimental, indicated by its blue color. This
reversed on trial 20 at which choosing the triangle became the lucra-
tive action and choosing the square became the detrimental action. For
the generation of this figure, please see figure 1.m

actions as trial type II (Fig. 1b). Importantly, for a consistent
experiment history across participants, we generated the
sequence of lucrative shapes and choice options prior to

the study and used the identical trial sequence for all
participants. The task was implemented as irb task.py in
Python 2.7 using PsychoPy V1.82.01 (Peirce, 2007).
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Participants were encouraged to maximize the cumu-
lative sum of returned rewards across all trials. As an
incentive, participants were informed that in addition to a
standard reimbursement of $70 for partaking in the study,
they would receive a bonus up to $30 depending on their
final balance at the end of the second run of the task. They
were not further informed about the balance-bonus conver-
sion rate. In effect, however, all participants were payed the
full bonus of $30 as requested by the Institutional Review
Board.

Trial design Each trial started with the presentation of the
two available choice options and participants were given
a maximum of 2.5 s to indicate their choice (Fig. 1c). If
participants responded within this time window, the border
of the chosen shape turned white to signal the recording of
their choice. The duration of this feedback signal depended
on the response time, such that the choice options and
feedback together were presented for 3 s in total. Then,
a post-choice fixation cross was presented for 3–5 s. This
fixation cross was followed by the image representing the
choice outcome, i.e., a moneybag, a crossed-out moneybag,
or a question mark moneybag image, which was presented
for 3 s. Finally, before the start of the next trial, an inter-
trial fixation cross was displayed for 3–5 s. If participants
did not respond within the choice time window, the message
“too slow” appeared for 0.5 s followed by an inter-trial
fixation cross, a reward of −1 was automatically registered
to the participant’s account, and the next trial commenced.
Notably, while the sequences of lucrative shapes and choice
options were generated prior to the experiment, the fixation
cross duration times and the returned rewards were sampled
online as participants interacted with the task. Specifically,
the fixation cross duration times were sampled uniformly
from an interval of 3 to 5 s. The reward values +1 and
−1 were sampled from discrete categorical distributions
with probabilities 0.85 and 0.15 for the lucrative action and
with probabilities 0.15 and 0.85 for the detrimental action,
respectively.

Descriptive Analyses

To assess the behavioral data set on a descriptive level, we eval-
uated nine summary choice rates for every participant. In
particular, we first evaluated overall and trial type-specific
valid choice rates. These choice rates were defined as the
number of valid action choices on all trials, on type I trials,
and on type II trials divided by the number of all trials, of
type I trials, and of type II trials, respectively. For example,
by design, there were 80 trials of type I. If a participant
failed to make a valid choice on one of these trials, the trial
type I valid choice rate evaluated to 79/80. The partici-

pant-specific choice rates were then averaged across par-
ticipants and the standard error of the mean (SEM) was
evaluated. These analyses showed that participants com-
pleted the vast majority of trials and achieved an overall
valid choice rate of 97.86% ± 0.62. There was virtually
no difference in the number of valid choices between trial
types: the valid choice rate on trial type I was 97.97%±0.62
and the valid choice rate on trial type II was 97.76%± 0.68.

We then evaluated the choice rates for the lucrative and
informative actions (L ∧ I), lucrative and non-informative
actions (L ∧ N), detrimental and informative actions (D ∧
I), and detrimental and non-informative actions (D ∧ N).
These choice rates were computed by dividing the number
of respective actions by the number of valid choices of the
corresponding trial type. Consequently, the choice rates of a
given trial type are symmetrical, i.e., they sum up to 100%.
For example, if a participant on type I trials made 79 valid
action choices of which 65 were L ∧ I actions and 14 were
D ∧ N actions, then the L ∧ I choice rate was 65/79 and
the D ∧ N choice rate was 14/79. In addition, we evaluated
the choice rates of the lucrative actions and the informative
actions. These were computed by dividing the sum of the
number of L ∧ I and L ∧ N actions, as well as the sum
of the number of L ∧ I and D ∧ I actions, by the number
of valid choices on all trials. For example, if a participant
made 159 valid choices in total, and of these 65 choices were
L ∧ I actions, while 58 were L ∧ N actions, the lucrative
action choice rate evaluated to 123/159. The participant-
specific choice rates were then averaged across participants
and SEMwas evaluated. As shown in Fig. 2a, on trial type I,
the majority of action choices was lucrative and informative
(L∧ I, 87.45%±1.53), while only a few action choices were
detrimental and non-informative (D ∧ N, 12.55% ± 1.53).
The difference between the choice rates on trial type II was
less pronounced: as shown in Fig. 2a, 66.01% ± 2.28 of
the action choices on trial type II were lucrative and non-
informative (L ∧ N), while 33.99%±2.28 were detrimental
and informative (D ∧ I). Summed over informative and
non-informative action choices, the lucrative action choice
rate was 76.74%± 1.7, whereas summed over lucrative and
detrimental action choices, the informative action choice
rate was 60.74% ± 0.92. Notably, participants made more
lucrative choices if the lucrative action was also informative
(L ∧ I, 87.45% ± 1.53) compared to lucrative choices if
the lucrative action was non-informative (L ∧ N, 66.01% ±
2.28). To statistically corroborate this finding, we conducted
a two-sided paired sample t-test across participants. This
yielded a test statistic of t (23) = 11.55 with an
associated p-value smaller than 0.001. Taken together, these
summary statistics suggest that while participants’ choices
were primarily guided by action lucrativeness, participants
also took the action’s informativeness into account when
deliberating which action to choose.
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Fig. 2 Participant choice rates. a Average choice rates across partic-
ipants and task dynamics for trial type I and trial type II. On trial type
I, participants faced a choice between a lucrative and informative (L ∧
I) and a detrimental and non-informative (D ∧ N) action. On average,
participants preferred the L ∧ I action. On trial type II, participants
faced a choice between a lucrative and non-informative (L ∧ N) and
a detrimental and informative (D ∧ I) action. On average, participants
preferred the L ∧ N action, but to a lesser degree than the L ∧ I action
on trial type I. b Group trial-by-trial L ∧ I, D ∧ N, L ∧ N, and D ∧
I action choice rates. The vertical lines represent the last trial before a
reward rate reversal. The vertical lines at t = 80 and t = 160 mark
the end of the first and second run, respectively. Note that given the

experimental design, the action choice rates on trial type I (L ∧ I vs. D
∧ N) and on trial type II (L ∧ N vs. D ∧ I) are complementary and add
up to 100%. On the majority of trials the lucrative action choice rates L
∧ I and L∧N prevail over the detrimental action choice rates D∧ I and
D ∧ N. This effect is more pronounced for the L ∧ I choice rate than
for the L ∧ N choice rate. c Average reversal-locked group trial-by-
trial action choice rates for L∧ I and L∧N actions. Both action choice
rates increase over post-reversal trials. The error bars depict the SEM
over reversal blocks. d Average group reversal-locked L ∧ I and L ∧ N
choice rate difference. The difference decreased between the first trials
after and the last trials before a reversal. For implementational details,
please see figure 2.m

In addition to the summary choice rates, we also eval-
uated trial-by-trial choice rates. Specifically, we computed
group trial-by-trial L ∧ I, L ∧ N, D ∧ I, and D ∧ N action
choice rates. To this end, for every trial, we divided the num-
ber of respective actions by the number of valid choices on
the trial over participants. As a given trial belonged to one
of the two trial types, it either had associated L ∧ I and D
∧ N action choice rates, or associated L ∧ N and D ∧ I
action choice rates. Consequently, in accordance with the
summary action choice rates, the choice rates of each trial
were symmetrical. For example, by design, the first trial of
the first run was of type I for every participant. If on this
trial 18 participants chose the L ∧ I action, 5 chose the D ∧
N action, and 1 participant missed to make a valid choice,
the L ∧ I action choice rate for this trial evaluated to 18/23
and the D ∧ N action choice rate evaluated to 5/23. Finally,
for each trial between two reversals, we computed the aver-
age reversal-locked group trial-by-trial L ∧ I action and L ∧
N action choice rates. Note that because the trial sequence
was pseudo-randomized, the average reversal-locked group
choice rate of a particular trial was computed based on

different number of data points. For example, of the eight
first trials, three were of type I and had an associated group
trial-by-trial L ∧ I action choice rate, while five were of
type II and had an associated group trial-by-trial L ∧ N
action choice rate. Also note that as the number of trials
between two reversals varied, there were fewer than eight
18th to 23rd trials. As show in Fig. 2b, on the majority of
trials, the two lucrative trial-by-trial action choice rates L ∧
I and L ∧ N prevailed over the two detrimental trial-by-trial
action choice rates D ∧ I and D ∧ N. This effect was more
pronounced for the trial-by-trial L ∧ I action choice rate.
Notably, as shown in Fig. 2c, both the average L ∧ I action
choice rate and the average L ∧ N action choice rate exhibit
an overall increase between two reward rate reversals, indi-
cating that participants were able to gradually resolve their
uncertainty about the currently lucrative shape. Moreover,
as shown in Fig. 2d, although the average L ∧ I action
choice rate was larger than the average L ∧ N action choice
rate on virtually all trials between two reversals, their dif-
ference decreased slightly between the first trial after and
the last trial before a reward rate reversal. This suggests
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that with decreasing uncertainty about the currently lucra-
tive shape participants placed less valence on the actions’
informativeness.

Agent-Based Behavioral Modeling

To arbitrate between different trial-by-trial decision-making
strategies that participants may have used on the experimen-
tal task and that gave rise to the descriptive results docu-
mented above, we used an agent-based behavioral modeling
approach. In our documentation of this approach, we pro-
ceed as follows. In the Model Formulation section, we first
formulate the relevant model components, comprising a task
model, a set of agent models, and a set of data analysis
models. Here, the task model corresponds to a probabilis-
tic model that captures key aspects of the experiment and
serves to explicate the agents’ knowledge about their choice
environment. The agent models specify the dynamic sub-
jective representation of the task (e.g., trial-by-trial belief
state updates for some agent models) and several decision-
making processes based on these representations. Finally,
the data analysis models specify the embedding of the agent
models in a statistical observation framework, allowing for
the quantification of decision noise and the estimation of
the models’ parameters and evidence. Having formulated
our modeling approach, we then document the computa-
tional methods for model parameter estimation and model
evidence evaluation in the Model Estimation and Compar-
ison section. Finally, we report the results of a number of
model validation analyses (Model and Parameter Recovery
Analyses) and conclude with the evaluation of the agent-
based behavioral models in the light of the experimental
data (Model Comparison Results).

Model Formulation

Task Model

To render the task amenable to agent-based behavioral
modeling, we first formulated a model of the task using
concepts from the theory of partially observable Markov
decision processes (Bertsekas, 2000). Specifically, we
represent an experimental run by the tuple

MTask :=
(
T , S, A, R, O, ps1t ,at (rt ) , f, g

)
. (1)

Here,

• T denotes the number of trials, indexed by t = 1, ..., T .
• S := N2×N2 denotes the set of states s := (

s1, s2
)
. The

first state component s1 encodes the lucrative shape.
Specifically, on trial t , s1t takes on the value 1 if the
square is lucrative and takes on the value 2 if the triangle

is lucrative. From the perspective of the agent, s1 is
not directly observable. The second state component s2

encodes the available actions. Specifically, on trial t , s2t
takes on the value 1, if the agent can choose between
the square on the informative side or the triangle on
the non-informative side. If on trial t the agent can
choose between the square on the non-informative side
or the triangle on the informative side, s2t takes on the
value 2. From the perspective of the agent, s2 is directly
observable.

• A := {A1, A2} denotes the set of state-dependent action
sets. Specifically, depending on the observable state
component s2t on a given trial t the available actions
are either A1 := {1, 4} or A2 := {2, 3} for s2t = 1
or s2t = 2, respectively. If the available action set is
A1, then the agent can choose between a = 1, which
corresponds to choosing the square on the informative
side vs. a = 4, which corresponds to choosing the
triangle on the non-informative side. If the available
action set is A2, then the agent can choose between
a = 2, which corresponds to choosing the square on the
non-informative side vs. a = 3, which corresponds to
choosing the triangle on the informative side.

• R := {−1, +1} denotes the set of rewards r .
• O := N3 denotes the set of observations o. o = 1

encodes the image of the crossed-out moneybag, o = 2
encodes the image of the moneybag, and o = 3 encodes
the image of the question mark moneybag.

• ps1t ,at (rt ) is the state- and action-dependent reward
distribution. For each combination of s1 ∈ S1 and a ∈
As2 , the state- and action-dependent reward distribution
conforms to a discrete categorical distribution over rt
with probability parameters listed in the first panel of
Table 1. As an example, consider s1 = 1 (square is
lucrative) and a = 1 (square on the informative side
chosen). In this case, a reward of −1 is returned with
a probability of 0.15 and a reward of +1 is returned
with a probability of 0.85. On the other hand, if s1 =
2 (triangle is lucrative) and a = 1 (square on the
informative side chosen), the reward probabilities are
reversed.

• f is the state evolution function, which specifies the
value the state st takes on at trial t ,

f : NT → S, t �→ f (t) := st . (2)

f is defined in a tabular form and corresponds to
the sequence of lucrative shapes and choice options
presented to all participants (cf. “S.3. Experimental
state sequence”).

• g is the observation function

g : A × R → O, (a, r) �→ g(a, r) := o (3)
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Table 1 Model components

State- and action-dependent reward distribution

s1t 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2

at 1 1 2 2 3 3 4 4 1 1 2 2 3 3 4 4

rt −1 +1 −1 +1 −1 +1 −1 +1 −1 +1 −1 +1 −1 +1 −1 +1

ps1t ,at (rt ) 0.15 0.85 0.15 0.85 0.85 0.15 0.85 0.15 0.85 0.15 0.85 0.15 0.15 0.85 0.15 0.85

Observation function

at 1 1 2 2 3 3 4 4

rt −1 +1 −1 +1 −1 +1 −1 +1

g(at , rt ) 1 2 3 3 1 2 3 3

State-state transition distribution

s1t 1 1 2 2

s1t+1 1 2 1 2

p
(
s1t+1|s1t

)
0.9625 0.0375 0.0375 0.9625

The upper table shows the state- and action-dependent reward distribution ps1t ,at (rt ), the middle table shows the observation function g, and the
lower table shows the action-independent state-state transition distribution p

(
s1t+1|s1t

)

as defined in the second panel of Table 1. For the
informative actions a = 1 and a = 3, g is injective:
the reward r = −1 is mapped onto the observation
o = 1, corresponding to the image of the crossed-out
moneybag, while the reward r = +1 is mapped onto
the observation o = 2, corresponding to the image of
the moneybag. For the non-informative actions a = 2
and a = 4, g is not injective: both rewards r = −1
and r = +1 are mapped onto the observation o =
3, corresponding to the image of the question mark
moneybag.

Agent Models

We designed five agent models, denoted by C1, C2, A1,
A2, and A3, to account for the putative cognitive processes
underlying participants’ choices (cf. Table 2). Before we
introduce the individual characteristics of these agents, we
first represent the general structure of an agent interacting
with an experimental run. This general agent structure

Table 2 Agent model space

Agent Choice strategy

C1 Belief state-free random choice

C2 Belief state-free win-stay-lose-switch

A1 Belief state-based exploitation

A2 Belief state-based exploration

A3 Belief state-based exploration-exploitation hybrid

Agent model denominations (left column) and keywords highlighting
central aspects of the respective agent’s choice strategy (right column)

corresponds to the tuple

MAgent :=
(
T , S, A, R, O, p

(
s11

)
, p

(
s1t+1|s1t

)
,

pat

(
rt |s1t

)
, pat

(
ot |s1t

))
. (4)

Here,

• T , S, A, R, and O are defined as the corresponding sets
of the task model MTask.

• p
(
s11

)
denotes the initial agent belief state, which

specifies the agent’s subjective uncertainty over the
non-observable state component s11 at trial t = 1.
p

(
s11

)
is defined in terms of the discrete categorical

distribution

p(s11 = 1) = 0.5 and p(s11 = 2) = 0.5. (5)

Because p(s11) is fully parameterized by specifying
p(s11 = 1), we hereinafter occasionally represent the
initial belief state by the scalar b1 := p(s11 = 1).

• p
(
s1t+1|s1t

)
is the state-state transition distribution,

which specifies the agent’s subjective uncertainty over
the non-observable state component s1t+1 at trial t + 1
given the non-observable state component s1 at trial
t . More specifically, for each s1 ∈ S1, the state-
state transition distribution corresponds to a discrete
categorical distribution over s1t+1 with probability
parameters listed in the third panel of Table 1. Note
that the trial-by-trial state transitions are probabilistic,
because from the agent’s perspective a reversal in
the shapes’ lucrativeness could happen between any
two trials. This is in contrast with the state evolution
from the task perspective, which—given the apriori
defined sequence of lucrative shapes—is deterministic
(cf. Eq. 2). Crucially, participants were informed that
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a reversal would happen 1–4 times in a run, but were
not informed about the approximate number of trials
without a reversal. Therefore, we equipped the agent
with a constant reversal probability of 0.0375, which
reflects the true reversal frequency in a run (there were
3 reversals across the 80 trials). For example, if s1t = 1
(square is lucrative), the agent allocates a probability
of 0.9625 to the event that on the next trial s1t+1 takes
on the value 1 (square is lucrative), while it allocates a
probability of 0.0375 to the event that s1t+1 takes on the
value 2 (triangle is lucrative).

• pat
(
rt |s1t

)
is the action-dependent state-conditional

reward distribution, which specifies the agent’s sub-
jective uncertainty over the reward rt given the non-
observable state component s1 and action a at trial t .
More specifically, for each combination of s1 ∈ S1 and
a ∈ As2 , the action-dependent state-conditional reward
distribution defines a discrete categorical distribution
over rt with probability parameters corresponding to

pat=a
(
rt = r|s1t = s1

)
:= ps1t =s1,at=a (rt = r) . (6)

Notice that the only difference between the agent’s
action-dependent state-conditional reward distribution
and the task’s state- and action-dependent reward
distribution is that for the former, the state is conceived
as a random variable, while for the latter the state is
conceived as a parameter. We equipped the agent with
the true reward emission probabilities to reflect the task
instructions. In particular, participants were truthfully
informed that choosing the lucrative shape would return
a reward of +1 with a high probability and a reward
of −1 with a low probability, as well as that choosing
the detrimental shape would return a reward of +1 with
a low probability and a reward of −1 with a high
probability.

• pat
(
ot |s1t

)
is the action-dependent state-conditional

observation distribution, which specifies the agent’s
subjective uncertainty over the observation ot given
the non-observable state component s1 and action
a at trial t . In detail, for each combination of
s1 ∈ S1 and a ∈ As2 , the action-dependent state-
conditional observation distribution corresponds to a
discrete categorical distribution over ot with probability
parameters resulting from transforming the distribution
of rt by the observation function g. Formally,

pat=a
(
ot = o|s1t = s1

)
:=

∑
{r|g(a,r)=o}

pat=a
(
rt = r|s1t = s1

)
.

(7)

For the informative actions a ∈ {1, 3}, it thus follows
that

pat=a
(
ot = 1|s1t = s1

)
= pat=a

(
rt = −1|s1t = s1

)

(8)

and

pat=a
(
ot = 2|s1t = s1

)
= pat=a

(
rt = +1|s1t = s1

)
.

(9)

For the non-informative actions a ∈ {2, 4}, on the other
hand, it follows that

pat=a
(
ot = 3|s1t = s1

)
= pat=a

(
rt = −1|s1t = s1

)

+pat=a
(
rt = 1|s1t = s1

)
= 1. (10)

As an example, consider the case s1 = 1 (square is
lucrative) and a = 1 (square on the informative side
chosen). The agent allocates the same probabilities to
observing either the image of the crossed-out moneybag
or the image of the moneybag as to obtaining a reward
of -1 or +1, respectively. Alternatively, consider the case
s1 = 1 (square is lucrative) and a = 4 (triangle on
the non-informative side chosen). In this case, the agent
allocates a probability of 1 to observing the image of
the question mark moneybag.

Based on the general agent structure encoded in the tuple
MAgent, we next discuss our model space of interest, which
comprises two control agents, denoted by C1 and C2, and
three Bayesian agents, denoted by A1, A2, and A3.

Control agents C1 and C2 The control agents C1 and C2
rely on heuristic choice strategies. Because C1 and C2 do
not represent a belief state, their action valence function is a
function of action only,

v : A → R, a �→ v (a) . (11)

To realize an action on trial t , both agents use a probabilistic
decision rule. Specifically, C1 and C2 directly translate
the action valences into action and observation history-
dependent choice probabilities.

C1: A belief state-free random choice agent Agent C1 may
be considered a cognitive null model. It does not have
an optimization aim based on which it could differentiate
between actions, but merely allocates equal valences to all
available actions a ∈ As2 ,

vC1 (a) := 1

|As2 |
= 0.5. (12)

C2: A belief state-freewin-stay-lose-switch agent Agent C2
aims to maximize immediate rewards without relying on
a belief state. To this end, C2 adopts a heuristic win-stay-
lose-switch strategy (Robbins, 1952). Specifically, on each
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trial t , agent C2 determines its preferred choice based on
previous reward signaling observations, but does not take
action informativeness (i.e., shape laterality) into account.
Formally, on trial t = 1, the action valence function of agent
C2 is defined as

v1C2 (a) := 0.5 for all a ∈ As21
. (13)

Subsequently, on trials t = 2, 3, ..., T agent C2 allocates
action valences according to

vt
C2 (a) :=

⎧
⎪⎪⎨
⎪⎪⎩

0, if ot−1 = 1 and a ∈ At−1 or ot−1 = 2 and a /∈ At−1,

1, if ot−1 = 2 and a ∈ At−1 or ot−1 = 1 and a /∈ At−1,

vt−1
C2 (a) , if ot−1 = 3,

(14)

whereA denotes the set of actions of choosing a given shape
and thus A := {1, 2} for the actions choose square and
A := {3, 4} for the actions choose triangle.

Informally, agent C2 allocates equal initial action
valences to all actions, because on trial t = 1 no previous
observations are available and therefore the agent has no
basis for differentiating between actions. Subsequently, on
trials t = 2, 3, ..., T , agent C2 allocates action valences
depending on the observation on trial t − 1. Specifically, if
on trial t−1 the choice of a shape resulted in the observation
o = 1, i.e., the image of the crossed-out moneybag, then
agent C2 allocates an action valence of 0 to choosing the
same shape and an action valence of 1 to choosing the other
shape on trial t . In contrast, if on trial t − 1 the choice of
a shape resulted in the observation o = 2, i.e., the image
of the moneybag, then agent C2 allocates an action valence
of 1 to choosing the same shape and an action valence of 0
to choosing the other shape on trial t . Crucially, if on trial
t −1 the choice of a shape resulted in the observation o = 3,
i.e., the image of the question mark moneybag, the value of
the returned reward is not signaled to the agent. In this case,
agent C2 relies on its action valence allocation scheme from
trial t − 1: the action valences that agent C2 allocates to
choosing a given shape on trial t correspond to the valences
the agent allocated to choosing that shape on trial t − 1.

Bayesian agents (A1, A2 and A3) The Bayesian agents
maintain a belief state which subserves their action
choice. Specifically, the distributions p

(
s11

)
, p

(
s1t+1|s1t

)
and pat

(
ot |s1t

)
of MAgent induce a trial-by-trial action-

dependent joint probability distribution pa1:t−1
(
s11:t , o1:t−1

)
.

This allows for the recursive evaluation of the belief state
pa1:t−1

(
s1t |o1:t−1

)
on trial t given the history of observations

o1:t−1 and actions a1:t−1 by means of

pa1:t−1
(
s1t |o1:t−1

)

=
∑

s1t−1
p

(
s1t |s1t−1

)
pat−1

(
ot−1|s1t−1

)
pa1:t−2

(
s1t−1|o1:t−2

)
∑

s1t

∑
s1t−1

p
(
s1t |s1t−1

)
pat−1

(
ot−1|s1t−1

)
pa1:t−2

(
s1t−1|o1:t−2

) , (15)

for t = 1, ..., T , and where the prior belief state is given
by p

(
s11

)
for t = 1. For the derivation of Eq. 15, please

see “S.4. Belief state, posterior predictive distribution, and
KL-divergence”. Intuitively, the Bayesian agents update
their belief state in a trial-by-trial fashion based on the
observation made after choosing a shape on either side and
by accounting for a reversal in the shapes’ lucrativeness.
Note that on an implementational level, we represent
the distributions p

(
s11

)
, p

(
s1t+1|s1t

)
and pat

(
ot |s1t

)
by

stochastic matrices and evaluate the belief state using matrix
multiplication as detailed in “S.5. Belief state and posterior
predictive distribution implementation”.

Based on their belief state representation, the Bayesian
agents then decide for an action based on a combination of
an action valence function, which evaluates the desirability
of a given action in the light of the agent’s current belief
state, and a decision function, which selects the maximal
desirable action as the action to issue. Specifically, the scalar
representation of the belief state

bt := pa1:t−1
(
s1t = 1|o1:t−1

)
(16)

constitutes the basis for action evaluation by means of an
action valence function

v : A × [0, 1] → R, (a, b) �→ v (a, b) . (17)

As detailed below, the exact forms of the valence function
differ between agents A1, A2, and A3. However, to realize
an action, all Bayesian agents pass the evaluated action
valences on to a maximizing decision rule of the form

d : R × [0, 1] → As2 , v(·, b) �→ d(v(·, b)) := argmax
a∈A

s2

v(a, b).

(18)

On every trial, the Bayesian agents thus choose the action
with the highest valence.

A1: A belief state-based exploitative agent Agent A1 uses
its belief state to maximize the immediate reward gain. To
this end, agent A1 uses an action valence function that
allocates to action at = a an action valence based on the
action-dependent expected reward under the current belief
state bt = b according to

vA1 (a, b) := bEpa
(
rt |s1t =1

) (rt ) + (1 − b)Epa
(
rt |s1t =2

) (rt ) .

(19)

The upper and lower panels of Fig. 3a visualize the A1
valences for actions a ∈ A1 (choose square on the
informative side or triangle on the non-informative side)
and a ∈ A2 (choose square on the non-informative side or
triangle on the informative side), respectively, as functions

451Comput Brain Behav  (2021) 4:442–462



of the belief state b. Note that the expected reward is

Epa(rt |st ) (rt ) = 0.85 · −1 + 0.15 · 1 = −0.7 (20)

for choosing the detrimental shape and

Epa(rt |st ) (rt ) = 0.85 · 1 + 0.15 · −1 = 0.7 (21)

for choosing the lucrative shape. Consequently, the more
certain A1 becomes that a given shape is lucrative (as b gets
closer to 0 or 1 from 0.5) the higher the belief state-weighted
expected reward for choosing that shape and, accordingly,
the lower the belief state-weighted expected reward for

choosing the other shape. As the belief state-weighted
expected reward is irrespective of the side of the shape, in
the case of both sets of available actions, agent A1 allocates
valences without taking the actions’ informativeness into
account.

A2: A belief state-based explorative agent Agent A2
explores its belief state to maximize the immediate
information gain. To this end, on trial t agent A2 allocates
a valence to each available action at = a based on its
expected Bayesian surprise

a b c d

Fig. 3 Bayesian agents’ action valence functions. a Action valence
functions of agent A1 for the available action set A1 := {1, 4}
(upper panel) and the available action set A2 := {2, 3} (lower panel).
Agent A1 allocates action valences based on the belief state-weighted
expected reward. As the expected rewards for choosing the lucrative or
detrimental shape are constant, the more extreme the agent’s belief that
a given shape is lucrative the higher the valence it allocates to choos-
ing the corresponding shape and the lower the valence it allocates to
choosing the other shape. The valences of A1 do not depend on the
actions’ informativeness, which reverses between available action sets
A1 and A2 and therefore the two panels are identical. b Action valence
functions of agent A2 for the available action set A1 := {1, 4} (upper
panel) and the available action set A2 := {2, 3} (lower panel). Agent
A2 allocates action valences based on the expected Bayesian surprise,

which is higher for the informative action than for the non-informative
action, thus the graphs on the upper and lower panels flip. The higher
the agent’s uncertainty about the lucrative shape, the larger the bene-
fit of the informative action. c, d Action valence functions of agent A3
for the available action set A1 := {1, 4} (upper panel) and the available
action set A2 := {2, 3} (lower panel) for λ = 0.5 (c) and λ = 0.25.
Agent A3 allocates action valences based on the convex combination
A1 and A2 action valences. The higher the value of λ the more the
valences of A3 resemble the valences of A1 and correspondingly, the
lower the value of λ the more the valences of A3 resemble the valences
of A2. Note that the colors used for the graphical depiction of the
agents’ action valence functions correspond to the agent model color
scheme used for model recovery and model comparison in all Figures
below. For implementational details, please see figure 3.m

vA2 (a, b) :=
∑
ot

pa1:t−1,at=a (ot |o1:t−1)KL
(
pa1:t−1,at=a

(
s1t+1|o1:t−1, ot

)∣∣∣
∣∣∣pa1:t−1

(
s1t |o1:t−1

))
. (22)

The first term in Eq. 22,

pa1:t−1,a (ot |o1:t−1) = bpa
(
ot |s1t = 1

)
+ (1 − b) pa

(
ot |s1t = 2

)
(23)
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denotes the agent’s belief state-dependent posterior pre-
dictive distribution, which specifies the agent’s subjective
uncertainty over the observation ot given action a on trial
t and its history of observations o1:t−1 and actions a1:t−1.
For a derivation of the right-hand side of Eq. 23, please
see “Belief state, posterior predictive distribution, and KL–
divergence” and for implementational details regarding its
evaluation, please see “Belief state and posterior predictive
distribution implementation.”. The second term in Eq. 22,

KL
(
pa1:t−1,at=a

(
s1t+1|o1:t−1, ot

)∣∣∣
∣∣∣pa1:t−1

(
s1t |o1:t−1

))

= (
1 − ba,o

)
ln

(
1 − ba,o

1 − b

)
+ ba,o ln

(
ba,o

b

)
(24)

denotes the Kullback-Leibler (KL) divergence between the
agent’s belief state on trial t and its virtual belief state on
trial t + 1 given observation ot and action at = a on trial
t . Intuitively, this KL divergence quantifies the information
gain afforded by choosing action at = a and making
observation ot on trial t . On the right-hand side of Eq. 24,
b denotes the agent’s belief state on trial t (cf. Eq. 19)
and ba,o denotes the agent’s belief state bt+1 resulting from
action at = a and observation ot = o. For a derivation
of the right-hand side of Eq. 24, please see Section “Belief
state, posterior predictive distribution, and KL-divergence”.
In summary, vA2 (a, b) quantifies the agent’s weighted
expected information gain afforded by choosing at = a

given its current belief state bt = b, where the expectation
is formed with regards to the possible observations ot on
trial t and the weighting is determined by the agent’s current
estimate of observing a specific observation ot = o.

The upper and lower panels of Fig. 3b visualize the
A2 valences for actions a ∈ A1 (choose square on the
informative side or triangle on the non-informative side)
and a ∈ A2 (choose square on the non-informative
side or triangle on the informative side), respectively, as
functions of the belief state b. Choosing the shape on the
non-informative side does not deliver reward information.
Therefore, the expected Bayesian surprise-based A2 valence
is always higher for the informative action, irrespective of
the agent’s belief state. Yet, the difference between the
informative and non-informative action valences depends
on the belief state. Specifically, in contrast to agent
A1, the more uncertain agent A2 becomes about the
lucrative shape (as b gets closer to 0.5 from 1 or 0),
the larger the difference between the valences and thus
the stronger the agent’s preference for the informative
action.

A3: A belief state-based explorative-exploitative hybrid
agent Agent A3 combines the choice strategies of agents
A1 and A2 and uses its belief state to maximize the
combination of immediate reward gain and information

gain. Formally, on each trial t and for each available action
at = a ∈ As2 , agent A3 evaluates its action valences based
on the convex combination of the action valences of agents
A1 and A2,

vA3(a, b) := λvA1(a, b) + (1 − λ) vA2(a, b), (25)

where λ ∈ [0, 1] is the weighting parameter. The upper and
lower panels of Figs. 3c and d visualize valences of agent
A3 for actions a ∈ A1 (choose square on the informative
side or triangle on the non-informative side) and a ∈
A2 (choose square on the non-informative side or triangle
on the informative side), respectively, as functions of the
belief state b for weight parameter values of λ = 0.5 and
λ = 0.25, respectively. For λ = 1, the action valences of
agent A3 correspond to the action valences of A1, while
for λ = 0 the action valences of agent A3 correspond to
the action valences of agent A2. For weighting parameter
values λ ∈]0, 1[, the decision strategy of agent A3 results
from a mixture of the strategies of agents A1 and A2:
for non-extreme belief state values, i.e., b values close to
0.5, agent A3 allocates a higher valence to choosing the
shape on the informative side, even if the agent allocates a
lower probability to that shape being lucrative. This shows
the contribution of agent A2’s choice strategy. For more
extreme belief state values, i.e., b values close to 0 or 1,
agent A3 allocates a higher valence to choosing the shape
with the higher probability to be lucrative, even if the action
is non-informative. This shows the contribution of agent
A1’s choice strategy. Note, however, that a λ value of 0.5
should not be understood as the agent A3’s choice strategy
resembling respective strategies of agents A1 of A2 to equal
degree. The reason for this is that agent A3 applies a convex
combination of the A1 and A2 action valences, which take
values in different ranges (-0.7 to 0.7 for A1, 0 to 0.23 for
A2). Therefore, while for λ = 0.5 the action valences of
agent A3 primarily reflect the contribution of agent A1 (cf.
Fig. 3c), the contribution of the action valences of agent A2
becomes evident for λ = 0.25 (cf. Fig. 3d).

Data Analysis Models

To evaluate the agent models in light of the participants’
data, we embedded the agent models in a statistical
inference framework. In particular, for agent models
C2, A1, A2, and A3 we formulated behavioral data
analysis models by nesting the agent-specific action valence
functions in a softmax operation (Reverdy & Leonard,
2015). To this end, we defined the probability of action a

given the history of actions a1:t−1 and observations o1:t−1 as

p (at = a|a1:t−1, o1:t−1) := exp
(
τ−1v(a, ·))∑

ã∈A
s2
exp

(
τ−1v(ã, ·)) ,

(26)
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where for each agent, v(a, ·) corresponds to the agent-
specific action valence function. Here, the parameter τ ∈
R>0 encodes the level of post-decision noise: the lower the
value of τ , the higher the probability that the action with the
higher action valence is realized and thus the lower the post-
decision noise. Notably, as agent C1 allocates equal action
valences throughout, for any τ value the softmax operation
returns a uniform probability distribution. Therefore, for this
agent, a softmax operation is not required, and we defined
the respective data analysis model as

p (at = a|a1:t−1, o1:t−1) = p (at = a|a1:t−1) := vC1 (a) .

(27)

Model Estimation and Comparison

To estimate the parameters of the data analysis models for
agents C2, A1, A2, and A3, we used a maximum likelihood
(ML) approach. Specifically, we assumed conditionally
independently distributed actions and for each participant’s
data defined the conditional log likelihood function as

� : � → R, θ �→ �(θ) := ln
N∏

n=1

pθ (an|a1:n−1, o1:n−1)

=
N∑

n=1

lnpθ (an|a1:n−1, o1:n−1) .(28)

For agents C2, A1, and A2, the conditional log likelihood
function is a function of the softmax operation parameter τ

only. Thus, for these data analysis models θ := τ . For agent
A3, the conditional log likelihood function is a function of
τ and the action valence weighting parameter λ ∈ [0, 1]
(cf. Eq. 25). Thus, for this data analysis model θ := (τ, λ).
Note that in Eq. 28 we index trials by n = 1, ..., N rather
than by t = 1, ..., 2T to account for the fact that participants
occasionally failed to respond, resulting in invalid choice
trials. n hence indexes a participant’s nth valid choice trial
and N denotes a participant’s total number of valid choice
trials.

For every data analysis model, we estimated θ based on
single participant data sets by minimizing the respective
negative conditional log likelihood function using MAT-
LAB’s constrained nonlinear optimization function fmin-
con.m (Byrd et al., 1999; Byrd et al., 2000; Waltz et al.,
2006). The parameter constraints were set to τ ∈ [0.01, 2.5]
and to λ ∈ [0, 1]. To mitigate the risk of identifying local
maximizers rather than global maximizers of the conditional
log likelihood function, the initial parameter estimate val-
ues were sampled from a continuous uniform distribution
covering the constrained parameter space, the parameter
estimation procedure was repeated ten times, and only the
parameter estimates achieving the highest conditional log

likelihood function value were regarded as ML estimates
(Wilson & Collins, 2019). Note that the conditional log like-
lihood function of agent model C1 does not require any
parameter optimization and can be evaluated directly.

To compare the models’ relative plausibilities given the
participant’s data, we first evaluated all agent model- and
participant-specific Bayesian Information Criterion scores
according to Schwarz and et al. (1978)

BIC := �(θ̂) − k

2
lnN . (29)

Here, θ̂ denotes the ML parameter estimate, k denotes the
respective model’s number of to be estimated parameters,
and N denotes the respective participant’s total number of
valid choices. The BIC scores of all agents and participants
were then subjected to a random-effects Bayesian model
selection procedure as implemented in spm BMS.m and
distributed with the SPM toolbox for neuroimaging data
analysis (www.fil.ion.ucl.ac.uk/spm/, Stephan et al. (2009)
and Rigoux et al. (2014)). For each model, spm BMS.m
returns a protected exceedance probability (PEP) which
corresponds to the group-level probability that the particular
model is more likely than the other models of the model
space.

Model and Parameter Recovery Analyses

Model recovery analyses To validate our agent-based
behavioral modeling approach, we performed a number
of model recovery simulations with the aim of assessing
to which degree our analysis approach allows for reliably
arbitrating between the models in our model space. To
this end, we first generated synthetic behavioral data
using each of our agent-based data analysis models
C1, C2, A1, A2, and A3. The synthetic behavioral
data sets comprised agent-specific actions on 160 trials
under the experimentally employed state sequence (cf.
“Experimental state sequence”) and for agent action-
dependent observations o1:2T and rewards r1:2T . For agent
C1, the synthetic data were generated without further
specifications. For agents C2, A1, A2, and A3, the
synthetic data were generated using softmax operation
parameter values between τ = 0.05 and τ = 2.5
in steps of �τ = 0.05. In addition, for agent A3,
the synthetic data were generated with parameter values
λ ∈ {0.1, 0.25, 0.3, 0.5, 0.7, 0.9}. For each data generating
model and for each parameter value, we generated 24
data sets (corresponding to the experimental sample size),
evaluated these data sets using all models in our model space
by means of the ML estimation and BIC model comparison
approach discussed above, and repeated this procedure
10 times. Finally, as our primary outcome measure, we
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evaluated the average protected exceedance probabilities
across the 10 data generation and data analysis repeats.

Figure 4 summarizes the results of the model recovery
analyses. For each data generating model, the corresponding
panel depicts the protected exceedance probabilities (PEPs)
of each data evaluation model in the model space. As shown
in the leftmost panel of Fig. 4a, for data generated based on
the cognitive null agent C1, the PEP is maximal for the data
analysis model based on agent C1, thus indicating that agent
model C1 can be reliably recovered. For the data generating
models based on agents C2, A1, A2, and A3, the PEPs are
shown as functions of the post-decision noise parameter τ

used for data generation. For data generated based on agents
C2 and A1, the PEP is maximal for data analysis models
based on agents C2 and A1, respectively, for all values of
τ . This indicates that agent models C2 and A1 can reliably
be recovered for both low and high levels of post-decision
noise. For data generated based on agent A2, the PEP is
maximal for the data analysis model based on agent A2 for
τ values up to 0.35, while the PEP is maximal for the data
analysis model based on C1, if τ > 0.35. This indicates that
agent model A2 can be reliably recovered for low, but not for
high levels of post-decision noise. For data generated based
on agent A3 and with action valence weighting parameter
set to λ = 0.25, the PEP is maximal for the data analysis
model based on A3 up to a value of τ = 0.25. For larger
values of τ , the PEP of the data analysis model based on
agent A1 and eventually the PEP of the data analysis model
based on agent C1 exceed that of agent A3. This indicates

that for λ = 0.25, the data analysis model based on agent
A3 can be recovered reliably only for low levels of post-
decision noise. With increasing noise, the data is better
accounted for by the less complex model based on agent A1
and eventually by the cognitive null model C1.

For data generated based on agent model A3, model
recovery performance depends not only on the post-decision
noise parameter τ , but also on the action choice weighting
parameter λ. As shown in Fig. 4b, for λ = 0.1, λ = 0.3, and
λ = 0.5 and for small values of τ , the PEP is maximal for
the data analysis model based on agent A3. For λ = 0.1 and
increasing post-decision noise, first the data analysis based
on agent A2 and next the cognitive null model C1 prevail
(left-most panel). For λ values of λ = 0.7 and λ = 0.9, the
PEP profiles shift towards a prevailment of the model based
on agent A1, in line with the increasing similarity between
the action valences of agents A3 and agent A1 for increasing
values of λ (cf. Figs. 3c, d). More precisely, for λ = 0.7 and
λ = 0.9 the PEP is maximal for model A1 up to values of
τ = 1.9 and τ = 2.4, respectively. For even larger values of
τ , the PEP of the cognitive null model C1 prevails. Together,
in line with the meaning of the action valence weighting
parameter of agent A3, these results indicate that agent
model A3 is reliably recoverable for low to medium values
of λ in the presence of low levels of post-decision noise. For
very low values of λ and low levels of τ , model A3 cannot
be distinguished from model A2, while for high levels of λ,
it cannot be distinguished from model A1. Finally, for high
levels of post-decision noise, the cognitive null model C1
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Fig. 4 Model recovery results. a Model recovery results. Each sub-
plot pertains to a specific data generating model (C1, C2, A1, A2, and
A3) and shows the protected exceedance probabilities (PEPs) of all
data analysis models in the model space evaluated in light of data sets
sampled from the respective data generating model. For data gener-
ated based on the cognitive null model C1, the PEP was maximal for
C1. For data generated based on agents C2, A1, A2, and A3, the PEPs

depend on the value of the post-decision noise parameter τ . Agents C2
and A1 are recoverable up to high levels of post-decision noise. Agents
A2 and A3 (for λ = 0.25) are recoverable only for low levels of post-
decision noise. b Model recovery results for agent A3 for different
values of the action valence weighting parameter λ. Agent A3 is recov-
erable up to medium values of λ and for low levels of post-decision
noise. For implementational details, please see figure 4.m
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provides the most parsimonious data explanation for data
generated by agent model A3.

Parameter recovery analyses Additionally, to assess to
which degree we can reliably estimate the data analysis
model parameters, we performed a number of parameter
recovery analyses. Specifically, for a given data generating
model and model parameter setting, we evaluated the
average ML parameter estimates and their associated
standard errors of the data generating model across the 24
synthetic data sets and the 10 data generation and data
analysis repeats.

Figure 5 summarizes the parameter recovery analyses
results. Each panel of Fig. 5 depicts model-specific ML
parameter estimates as functions of the post-decision noise
parameter τ . Specifically, Fig. 5a depicts the parameter
estimate τ̂ as a function of the respective data generating
parameter values τ under the data generating and data
analysis models C2, A1, A2, and A3 with λ = 0.25. In
general, the parameter estimates are consistent with their
respective data generating parameters for small values of τ .
For larger values of τ , the true parameter values are first
over- and then underestimated. As shown in Fig. 5a, this
bias is subtle for agents C2 and A1 and only appears for
relatively large τ values above τ = 1.5. For agents A2 and
A3, the bias is more pronounced and affects medium to large
values above τ = 0.5. These results are consistent with the

model recovery results: for large post-decision noise, data
generated by any model starts to resemble data generated
by a purely random choice strategy and thus the parameter
estimate for τ reaches an asymptote.

The panels of Fig. 5b show the parameter estimates τ̂

and λ̂ of agent model A3 as a function of τ for λ = 0.1,
λ = 0.5, λ = 0.7, and λ = 0.9, respectively. As above,
the parameter estimates τ̂ show a pattern of consistent
estimation for values up to τ = 1, upon which they exhibit
a downward bias. The parameter λ is reliably recovered for
small values of τ , except for a slight downward bias for
λ = 0.9. However, for medium to large τ values, λ̂ is more
strongly downward biased. These findings are consistent
with the model recovery analyses results: first, the deflation
effect for λ = 0.9 and small values of τ shows that for
large values of λ, data generated by agent A3 is virtually
indistinguishable from data generated by agent A1 and thus
λ̂ reaches an asymptote. Second, the bias of λ̂ for medium to
large values of τ reiterates that with increasing post-decision
noise, data generated by agent A3 increasingly resembles
data generated by a random choice strategy, such that λ

cannot be reliably identified.

Model Comparison Results

Upon validating our modeling initiative, we evaluated
and compared our agent-based model set in light of the
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Fig. 5 Parameter recovery results. a Parameter recovery results for all
agents with free parameters. For every agent, the corresponding panel
shows the ML parameter estimates as functions of the post-decision
noise parameter τ used for data generation. The post-decision noise
parameter of agents C2 and A1 is recoverable from small to medium
values. The post-decision noise parameter of agents A2 and A3 with
λ = 0.25 is recoverable for small values. b Parameter recovery results

for agent A3 with different λ values. The parameter τ is recoverable
for τ values up to τ = 1, upon which it exhibits a downward bias. The
parameter λ is recoverable for small τ values, except for a slight down-
ward bias for λ = 0.9. For medium to large values of the post-decision
noise parameter, λ̂ is downward biased. For implementational details,
please see figure 5.m
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participants’ data. For 18 of the 24 participant data sets, the
BIC score was maximal for the model based on agent A3.
Accordingly, as shown in Fig. 6a, the group cumulative BIC
score was maximal for model A3 and the group-level PEP of
model A3 was larger than 0.99. TheML parameter estimates
τ̂ and λ̂ for model A3 varied moderately across participants.
Specifically, τ̂ ranged from 0.035 to 0.377 with an average
of 0.124 ± 0.014 and λ̂ ranged from 0.044 to 0.622 with
an average of 0.274 ± 0.027. Notably, these are parameter
ranges, in which A3 is well recoverable and identifiable.
Taken together, these findings indicate that agent model A3
provides the most plausible explanation of the participant’s

choices among the set of behavioral models assessed and
that the most frequently applied choice strategy among the
group of participants resembled that of agent A3 most.

Post hocmodel validation Upon identifying agent A3 as the
most plausible model to explain our observed experimental
data based on the formal criteria discussed above, we
further investigated the behavioral face validity and the
participant parameter estimate-based identifiability of this
model. To this end, we first generated 24 synthetic data
sets based on agent A3 using the 24 participant-specific
ML parameter estimates. As in the model recovery analysis,
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Fig. 6 Computational modeling results. a Model comparison results.
Both the group cumulative Bayesian information criterion scores
(cumulative BIC, left panel) and the protected exceedance probabili-
ties (right panel) were maximal for agent model A3, indicating that
this model explained participants’ choice data the best. b Model A3
behavioral validation. Average reversal-locked group trial-by-trial L ∧
I action and L ∧ N action choice rates (left panel) and their difference
(right panel) based on synthetic data sets generated using agent A3 and
the participants’ parameter estimates. The patterns closely resemble
those observed in the participants’ data (cf. Figs. 3c, d), re-visualized
here for convenience. c Model A3 recovery based on the participants’

data parameter estimates. The protected exceedance probability based
on re-analysis of simulated data from agent model A3 with parame-
ters set to the participants’ parameter estimates is maximal for agent
model A3. d Parameter recovery results based on data generated with
agent model A3 and the participants’ data-based parameter estimates.
The panels depict the simulation-averaged participant-specific recov-
ered parameter estimates τ̂r and λ̂r and their associated SEMs over
simulations as a function of the participant-specific parameter esti-
mates τ̂ and λ̂. Both the participants’ post-decision noise parameter
estimates τ̂ as well as the participants’ weighting parameter estimates
λ̂ are recoverable. For implementational details, please see figure 6.m
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the synthetic data conformed to the agent’s actions on 160
trials, with trial sequence identical to the participants’ trial
sequence and with agent action-dependent observations.
To assess the model’s behavioral face validity, we then
subjected these 24 data sets to the descriptive analyses
described above and computed the same action choice rates
as for the participants’ data. To minimize random variation,
we repeated this process 100 times and for each action
choice rate evaluated the average over the 100 simulations.
Similarly, we subjected the simulated data sets to our model
estimation and comparison procedures and evaluated the
average model and parameter recoverability performance
as discussed above. We next evaluated the same summary
and trial-by-trial choice rates as for the participants’ data.
Consistent with the empirically observed results, most
synthetic action choices were lucrative and informative
(L ∧ I, 84.98% ± 1.29), followed by significantly fewer
lucrative and non-informative synthetic actions (L ∧ N,
66.35% ± 1.96, two-sided paired sample t-test, t (23) =
11.59, p < 0.001). Furthermore, as shown in Fig. 6b
the reward reversal-locked trial-by-trial dynamics of the
synthetic actions exhibited a very similar pattern to that of
the participants (cf. Figs. 2c, d). Specifically, while both
the average L ∧ I as well as the average L ∧ N action
choice rates increased between two reversals (left panel),
their difference decreased moderately between the first trial
after and the last trial before a reward rate reversal (right
panel). Taken together, these results support the behavioral
validity of agent model A3. At last, we conducted model
and parameter recovery analyses for agent model A3 based
on the parameter estimates for the 24 participant data sets.
As already implied by the results of the full parameter space
recovery analyses reported above, these analyses confirmed
that also for the range of empirically estimated parameter
values, both the model and its parameters are reliably
recoverable (Figs. 6c, d).

Discussion

In this work, we addressed the question of how humans
make sequential decisions if all available actions bear
economic consequences, but only some also deliver choice-
relevant information. By collecting human choice data on
an information-selective symmetric reversal bandit task,
we demonstrated that in such situations, humans strive
for a balance of exploratory and exploitative choice
strategies. To arrive at this conclusion, we applied a set
of descriptive and agent-based computational modeling
analyses, including model evaluation based on formal
as well as informal criteria. Given our model set, the
behaviorally most plausible strategy was captured by a
Bayesian agent that assessed the desirability of an action

by applying a convex combination of its expected Bayesian
surprise and its expected reward. A series of recovery
analyses validated our modeling initiative and supports the
robustness and reliability of our results. In sum, the key
contributions of this work are threefold: we designed an
information-selective symmetric reversal bandit task, we
formulated, implemented, and validated a set of agent-
based behavioral models that interact with this task, and we
provide empirical evidence for human uncertainty-guided
exploration-exploitation choice strategies. In the following,
we discuss each of these contributions in turn.

As the first of our contributions, we introduced
an information-selective symmetric reversal bandit task
suitable to model a class of sequential decision-making
problems in which information about the conferred reward
is not available for every action. In the following, we
briefly discuss the key aspects of our task with respect
to other tasks in the literature. As alluded to in the
Introduction, previous research primarily employed either
classical bandit paradigms or pure-exploration paradigms
to study sequential decision-making under uncertainty
(Bubeck et al., 2009; Hertwig & Erev, 2009; Ostwald
et al., 2015; Sutton & Barto, 2018; Wulff et al., 2018). We
consider these paradigms in turn.

In the classical bandit paradigm, the deciding agent
chooses between a set of “arms” (Berry & Fristedt, 1985).
Similar to our task, each arm confers reward according to its
associated reward distribution, and, in contrast to our task,
each arm confers also information about its expected reward
value. A drawback of this design is that the co-occurrence
of reward and information evokes a confound between
an action’s value estimate and the associated uncertainty:
as people tend to favor the action with the higher
value estimate, for that action the associated uncertainty
becomes smaller—simply because for that action more
reward observations are made. This makes it difficult
to uncover uncertainty-guided exploration in the classical
bandit paradigm (Dezza et al., 2017; Gershman, 2018;
Wilson et al., 2014). The task employed in the current study
circumvents this problem by adopting a symmetrical reward
structure of the actions: the probability of the positive
reward for the lucrative action is identical to the probability
of the negative reward for the detrimental action. Likewise,
the probability of the negative reward for the lucrative action
is identical to the probability of the positive reward for the
detrimental action. In this manner, each reward observation
following the informative action confers the same amount
of information about the expected reward value of both
the lucrative and detrimental action. Furthermore, as in
each trial information is randomly coupled with either
the lucrative or the detrimental action, our task arguably
evokes a more explicit exploration-exploitation dilemma
than the classical bandit paradigm, in particular on trials
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on which participants face decisions between potentially
lucrative, but non-informative and potentially detrimental,
but informative actions.

The pure-exploration paradigm models sequential
decision-making problems in which an action either con-
fers information or reward. In the classical variant of this
paradigm, an action that confers reward automatically
terminates the task. In an extended variant, referred to as
the “observe-or-bet task” (Blanchard & Gershman, 2018;
Navarro et al., 2016; Tversky & Edwards, 1966), the decid-
ing agent can freely switch between an “observe action” that
confers information and “bet actions” that confer reward.
Specifically, “observe actions” return information about the
expected reward of the bet actions, but do not return reward.
“Bet actions,” on the other hand, return rewards according
to their associated reward distributions, but no information.
Similar to the bet actions, in our task one of the available
actions confers only reward, but no information. However,
in our task, the other available action does not only confer
information, as the “observe action” does, but it also con-
fers reward. Therefore, while exploration and exploitation
are temporally separated in the observe-or-bet task, they
have to be balanced simultaneously in our task.

In summary, the task proposed in the current study
complements the experimental arsenal for studying human
exploration-exploitation behavior in the following sense: in
contrast to the classical bandit paradigm, the exploration-
exploitation dilemma on each trial is explicit, i.e., partic-
ipants need to actively decide whether to gather reward
and/or information, and do not obtain information as a by-
product of reward-maximizing decisions as in the classical
bandit task. Furthermore, in contrast to the pure-exploration
and observe-or-bet task, exploration and exploitation phases
occur simultaneously and not separated in time. Finally,
by introducing a constant probability for the reward rate
reversal of the choice options, the task does not only
evoke an explicit and simultaneous exploration-exploitation
dilemma, but also one that is ongoing. This aspect is in
line with recent studies using classical bandit or observe-or-
bet tasks that also adopted non-stationary reward structures
(Bartolo & Averbeck, 2020; Blanchard & Gershman, 2018;
Chakroun et al., 2020; Navarro et al., 2016; Hampton et al.,
2006; Speekenbrink & Konstantinidis, 2015) and emulates
the ever-changing reward structure of real environments.

Our second contribution is the formulation and validation
of a set of agent-based behavioral models that can
interact with the information-selective symmetric reversal
bandit task. Specifically, our model space comprises belief
state-based agents that formalize subjective uncertainty-
based exploitative, explorative and hybrid explorative-
exploitative strategies, as well as belief state-free agents
that formalize random choice and heuristic win-stay-lose-
switch strategies. The belief state-based agents implement

recursive belief-state updates to infer the not directly
observable structure of the task environment, i.e., the most
likely currently lucrative action. While this form of optimal
Bayesian learning may seem to be a strong assumption, it
has been shown to approximate human learning reasonably
well in comparable switching state tasks, such as the
two-armed reversal bandit task, non-stationary versions of
the observe-or-bet task, and the multi-armed bandit task
(Hampton et al., 2006; Blanchard & Gershman, 2018;
Navarro et al., 2016; Daw et al., 2006; Speekenbrink &
Konstantinidis, 2015). Moreover, by also including belief
state-free agents in our model space, we also accounted
for simple strategies that do not require Bayesian updates.
Of these, the win-stay-lose-switch agent adopts a well
established effective strategy to approach similar bandit
problems (Robbins, 1952).

The three belief state-based agents implement their
respective choice strategies by following different optimiza-
tion aims. In particular, the belief state-based exploita-
tive agent A1 seeks to maximize the belief state-weighted
expected reward. The belief state-based explorative agent
A2 seeks to maximize the expected Bayesian surprise. The
belief state-based hybrid explorative-exploitative agent A3
seeks to maximize the convex combination of these two
quantities. Belief state-weighted expected reward is a natu-
ral quantity to formally capture immediate reward gain and
thus myopic exploitation (Sutton & Barto, 2018). Expected
Bayesian surprise is one of many quantities that have
been proposed to formally capture immediate information
gain and thus myopic exploration (Schwartenbeck et al.,
2019). As alluded to in the Introduction, we here opted for
Bayesian surprise due to its putative representation in the
human neurocognitive system (Itti & Baldi, 2009; Ostwald
et al., 2012; Gijsen et al., 2020).

Importantly, we would like to note that our definition of
exploration here pertains to a form of exploration that is
generally referred to as “directed exploration” (Gershman
2018, 2019; Wilson et al. 2014). This term is used
to distinguish information gain maximizing exploration
from “random exploration.” Random exploration is a
form of exploration that achieves information gain by
implementing a stochastic strategy, i.e., making stochastic
choices based on the actions’ reward value estimate. While
there are more principled ways such as Thompson sampling
(Thompson, 1933), random exploration is commonly
accounted for by the softmax operation (Reverdy &
Leonard, 2015). Notably, we here do not interpret the
softmax operation as random exploration. Instead, we
employ the softmax operation to embed the agents in a
statistical framework that accounts for post-decision noise.
This way, we clearly separate the (deterministic) choice
strategies implemented by the agents and the statistical
agent-based behavioral data analysis models. In future
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work, we aim to broaden our model space by considering
agents that adopt random exploration. Crucially, this
necessitates a probabilistic filtering framework that allows
to partition the variability of choice data into components
relating to an agent’s stochastic exploration strategy and to
post-decision noise (c.f., Ostwald et al. 2014).

As a third contribution, we provided evidence for
human uncertainty-guided exploration-exploitation in the
information-selective symmetric reversal bandit task: as
uncertainty decreased, participants’ choices were less
influenced by the prospect of information gain and more
influenced by the prospect of reward gain. This finding
is consistent with the behavior in the observe-or-bet
task. In the first empirical study using the observe-or-bet
task, Tversky and Edwards (1966) found that participants
explored more, i.e., chose the observe action more
frequently, if they (falsely) believed that the underlying
environment was dynamic, i.e., the lucrative and detrimental
bet actions reversed over time. While Tversky and Edwards
(1966) did not relate this result to the notion that dynamic
environments promote uncertainty, which, in turn, promotes
exploration, in a recent study, Navarro et al. (2016) formally
tested this hypothesis. By modeling participants’ choices in
both static and dynamic versions of the observe-or-bet task,
they demonstrated that switches between the exploratory
observe action and the exploitative bet actions were
mediated by uncertainty. Our result is also in line with recent
findings from studies employing multi-armed bandit tasks.
Work by several authors showed that when controlling for
the value estimate-uncertainty confound, behavior in static
two-armed bandit tasks reflects an uncertainty-dependent
combination of exploration and exploitation (Dezza et al.,
2017; Gershman, 2018; 2019; Wilson et al., 2014). Notably,
however, consistent with the notion that the value estimate-
uncertainty confound has the potential to mask directed
exploration, findings from earlier studies not accounting for
this confounding effect are less conclusive. For example,
Zhang and Angela (2013) also found evidence for a belief
state-based explorative-exploitative strategy in static four-
armed bandit tasks. In contrast, Daw et al. (2006) did not
find evidence for such a strategy in analyzing choices in
a dynamic four-armed bandit task with changing action
values. While the finding from Daw et al. (2006) is contrary
to our finding, by acknowledging that value estimate and
uncertainty are not confounded in our task, these two
findings can be reconciled.

At last, some limitations of our study along with some
suggestions for future research must be acknowledged.
First, as for any scientific study, inferences can only be
made with respect to the model space, which per se
is incomplete. Thus, although we provide evidence for
a strategy resembling a belief state-based agent seeking
to maximize the convex combination of its expected

Bayesian surprise and its expected reward, it is very
well conceivable that an agent not included in our
model space can better account for the behavioral data.
Future research may broaden the model space and could
also consider, for example, probabilistic variants of the
win-stay-lose-switch agents (Worthy et al., 2012) or agents
with non-adaptive learning rates (Wiering & Otterlo,
2012; Rescorla & Wagner, 1972), besides the already
mentioned random exploration agents in a probabilistic
filtering framework (Ostwald et al., 2014). Second, on a
related note, we here do not derive an optimal agent in
the sense of partially observable Markov decision process
theory (Bertsekas, 2000; Puterman, 2005; Bäuerle & Rieder,
2011). A model space that comprises an agent implementing
an optimal choice strategy would afford the analysis of
the participants’ behavior from a normative perspective
and is thus an interesting endeavor for future research. To
facilitate such an undertaking, we have provided a detailed
documentation of the task and agents developed thus far.
Third, given the modest sample size of our study, the
behavioral data reported here are best capitalized on in an
exploratory fashion. Together with the implemented open
research measures (Ritchie, 2020), we believe to have laid
the foundations for reproducing our study and build upon
our work.

Conclusion

In conclusion, we here introduced a new behavioral task
that models a subset of real-life sequential decision-
making problems that has thus far received relatively
little attention in the computational modeling literature:
problems, in which information about the conferred reward
is not available for every action. Importantly, this task
allows to investigate a pronounced form of simultaneous
exploration and exploitation processes without introducing
a value estimation-uncertainty confound. By analyzing
participants’ choices on this task using descriptive methods
and agent-based behavioral models, we provide evidence
for an uncertainty-guided balance between exploration and
exploitation in human sequential decision-making under
uncertainty.
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