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Abstract
The Full Bayesian Significance Test (FBST) and the Bayesian evidence value recently have received increasing attention
across a variety of sciences including psychology. Ly and Wagenmakers (2021) have provided a critical evaluation of the
method and concluded that it suffers from four problems which are mostly attributed to the asymptotic relationship of the
Bayesian evidence value to the frequentist p-value. While Ly and Wagenmakers (2021) tackle an important question about
the best way of statistical hypothesis testing in the cognitive sciences, it is shown in this paper that their arguments are based
on a specific measure-theoretic premise. The identified problems hold only under a specific class of prior distributions which
are required only when adopting a Bayes factor test. However, the FBST explicitly avoids this premise, which resolves the
problems in practical data analysis. In summary, the analysis leads to the more important question whether precise point
null hypotheses are realistic for scientific research, and a shift towards the Hodges-Lehmann paradigm may be an appealing
solution when there is doubt on the appropriateness of a precise hypothesis.

Keywords Full Bayesian significance test · Statistical evidence · Bayes factor · Mixture prior · Point null testing ·
Hodges-Lehmann-paradigm

Introduction

Over the last two decades, the Full Bayesian Significance
Test (FBST) has been developed as a Bayesian counterpart
to a frequentist point null hypothesis test (Pereira & Stern,
1999). The FBST and its associated Bayesian evidence
value, the e-value, were designed to replace a frequentist
hypothesis test while being coherent with the likelihood
principle and a fully Bayesian philosophy (Pereira et al.,
2008). In their paper, Ly and Wagenmakers (2021) identify
four problems of the FBST and conclude that the Bayes
factor (BF) avoids these. In this paper, it is shown
that the problems are observed only under a measure-
theoretic premise which is required for a Bayes factor test,
but explicitly avoided under the FBST. This renders the

� Riko Kelter
riko.kelter@uni-siegen.de

1 Department of Mathematics, University of Siegen,
Walter-Flex-Street 3, 57072 Siegen, Germany

criticism inadequate in practical data analysis and leads to
the question whether testing precise hypotheses is realistic
in scientific research.

Measure-Theoretic Background—the Bayes
Factor

Let (Θ,G) be the parameter space (which is a measurable
space) parameterizing a statistical model Θ → P : θ �→
Pθ , where P := {Pθ : θ ∈ Θ} is the family of distributions
the statistician deems plausible for describing the observed
data. The observed data Y themselves are located in the
sample space (Y,B) (which also is a measurable space),
that is, Y ∈ Y , and in the Bayesian approach a prior
distribution Pϑ : G → [0, 1] is chosen which maps
from the parameter space Θ (actually, the associated σ -
algebra G) to the values [0, 1]. In hypothesis testing, we
consider the measurable partition {Θ0, Θ1} of Θ such that
Pϑ(Θ0) > 0 and Pϑ(Θ1) > 0. The prior and posterior
odds ratios in favour of Θ0 are defined as Pϑ(Θ0)/Pϑ(Θ1)

and Pϑ |Y (Θ0)/Pϑ |Y (Θ1) respectively (Robert, 2007). The
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Bayes factor in favour of Θ0 is then defined as the ratio of
posterior and prior odds

BF01 = Pϑ |Y (Θ0)

Pϑ |Y (Θ1)

/
Pϑ(Θ0)

Pϑ(Θ1)
(1)

where Pϑ |Y is the posterior distribution of ϑ given Y .1

An important condition in the definition of the Bayes
factor is that both Θ0 and Θ1 receive strictly positive prior
probability mass, that is, Pϑ(Θ0) > 0 and Pϑ(Θ1) > 0
both need to hold. Otherwise, it is clear that the prior odds
Pϑ(Θ0)/Pϑ(Θ1) are either zero (whenever Pϑ(Θ0) = 0
and Pϑ(Θ1) > 0) or not even well-defined (whenever
Pϑ(Θ0) > 0 and Pϑ(Θ1) = 0). In the former case, the
posterior odds are zero, too, because these can be rewritten
as

Pϑ(Θ0)

Pϑ(Θ1)
· BF01 = Pϑ |Y (Θ0)

Pϑ |Y (Θ1)
(2)

so that no matter what value the Bayes factor BF01(y)

takes for observed data Y = y, the posterior odds
Pϑ |Y (Θ0)/Pϑ |Y (Θ1) are then zero, too. In the latter case,
the posterior odds are not well-defined because one would
have to divide by zero. Now, consider a dominated statistical
model P := {Pθ : θ ∈ Θ} for sample data Y ∈ Y where the
parameter space is a subset of the real numbers, Θ ⊂ R (we
could also use R

n for n ∈ N to generalize the argument),
and more specifically, an interval (a, b) for a < b ∈ R.
Suppose we test the precise point null hypothesis2

H0 : θ = θ0 versus H1 : θ �= θ0 (3)

Now, if the prior Pϑ is absolutely continuous with respect
to Lebesgue measure λ on Θ , the prior odds are zero, and
the posterior odds, too. This follows because of the absolute
continuity of Pϑ with respect to λ, as for every Lebesgue-
null-set A with λ(A) = 0 it follows that Pϑ(A) = 0.
However, it is well-known from standard measure theory
that lower-dimensional submanifolds and, in particular,
countable sets have Lebesgue measure zero (Bauer, 2001).
As a consequence, as H0 : θ = θ0 is a countable set
with a single element θ0 ∈ Θ , it follows that λ(Θ0) = 0
and thereby Pϑ(Θ0) = 0, where Θ0 := {θ0}. The prior
odds of H1 are strictly positive, because λ((a, b)) > 0 for
any interval with a < b.3 From Eq. (2), it follows that

1Recall that the parameter is a random variable ϑ : (Ω,A, P ∗) →
(Θ,G) from the product space (Ω,A, P ∗) where Ω := Y × Θ is
the product space of the data and parameter,A the associated product-
σ -algebra and the joint probability measure P ∗ is implicitly defined
via the selection of prior distribution Pϑ and the statistical model
P := {Pθ : θ ∈ Θ} for the observed data Y ∈ Y , that is, Y ∼ Pθ ,
compare Schervish (1995).
2The below notation implies Θ0 := {θ0} and Θ1 := Θ \ {θ0} and is
mainly used because it is widely established.
3When Θ = R, λ(H1) = ∞ and the prior odds are zero, too, when
adopting the convention 0/∞ := 0.

the posterior odds Pϑ |Y (Θ0)/Pϑ |Y (Θ1) are then zero, too.4

Importantly, the Bayes factor BF01 is not even well-defined
in this case: as the prior odds are zero, and BF01 is the ratio
of posterior to prior odds which is seen from Eq. (2), we
would have to divide by zero in this case to obtain BF01. In
this context it is important to note that

“When the parameter space is uncountable, prior
distributions are typically continuous. This means that
the prior (and posterior) probability of Θ = θ0 is 0.”
(Schervish (1995), p. 221)

That is, in the majority of continuously parameterized
models P (or equivalently, whenever we have uncountable
parameter spaces), the prior distributions Pϑ are typically
absolutely continuous with respect to the Lebesgue measure
λ and have a continuous Radon-Nikodým density with
respect to λ. Examples include a normal prior, exponential
prior, Cauchy prior, or Student-t prior with corresponding
λ-densities. Under any of these priors, we cannot test a
simple null hypothesis versus its alternative. To circumvent
this problem, one is forced to introduce an arbitrary prior
probability � > 0 that θ = θ0 and additionally select a
prior distribution P

Θ1
ϑ under the alternative hypothesis Θ1.

The introduction of prior probability � is primarily justified
to be able to calculate a Bayes factor.5 Proceeding with
the subjective assignment of positive probability � to a
Lebesgue-null-set {θ0}, the resulting prior distribution Pϑ is
then a convex combination of a Dirac-measure6 EΘ0 under
Θ0 and the prior distribution P

Θ1
ϑ under Θ1:

Pϑ(G) := � · EΘ0(G) + (1 − �) · P
Θ1
ϑ (G) (4)

for all parameter sets G ⊆ G in the parameter space (Θ,G).
Even interpreting the Bayes factor as the ratio of marginal

likelihoods under H0 and H1 does not help, although
it seems to avoid the assignment of an explicit prior
probability to Θ0 and Θ1: equivalent to (1), the BF can be
expressed as (compare Robert (2007, p. 227))

BF01=
∫
Θ0

fθdPϑ∫
Θ1

fθdPϑ︸ ︷︷ ︸
=:(A)

(1)=
∫
Θ0

fθ (y)p0(θ)dλ∫
Θ1

fθ (y)p1(θ)dλ

(2)=
∫
Θ0

fθ (y)p0(θ)dθ∫
Θ1

fθ (y)p1(θ)dθ
(5)

4This also follows from the fact that the posterior distribution Pϑ |Y is
absolutely continuous with respect to the prior distribution Pϑ , that is,
Pϑ(A) = 0 implies Pϑ |Y (A) = 0 for A ⊆ Θ , see Schervish (1995,
Theorem 1.31).
5However, Schervish (1995) emphasizes that a (possibly) more
realistic alternative would be to “replace the hypothesis with (what
might be more reasonable) an interval hypothesis of the formH ′ : Θ ∈
[θ0 − ε, θ0 + ε].” (Schervish, 1995, p. 221), see also Berger (1985,
p. 148).
6The Dirac-measure EΘ0 is defined as follows: EΘ0 (A) := 1 for
A ∈ Θ0 and EΘ0 (A) := 0 for A /∈ Θ0, for any A ⊆ Θ , where
for a precise hypothesis H0 := Θ0 = {θ0} the former simplifies to
EΘ0 (A) := 1 for A = θ0 and EΘ0 (A) := 0 for A �= θ0.

573Comput Brain Behav  (2022) 5:572–582



where equality (1) follows from denoting the Lebesgue-
density of the prior distribution Pϑ on Θi as pi := dPϑ/dλ

for i = 0, 1, and equality (2) by writing integration of
θ with respect to λ as usual as dθ . Now, from (A) in
Eq. (5), it is immediate that whenever Θ0 is a Pϑ -null-set,
the Bayes factor BF01 will be zero because

∫
Θ0

fθdPϑ = 0
then. Thus, the Bayes factor cannot provide any evidence
anymore for Θ0.7 While the definition of the BF could
easily be adapted to incorporate this scenario, the more
alerting situation occurs when instead BF10 = 1/BF01

is calculated for a Pϑ -null-set Θ0 ∈ Θ: Again, from (A)
in Eq. (5), it follows that BF10 has a singularity in Θ0

then, and one would arrive at BF10 = 1/0, causing the BF
not to be well-defined anymore. This is the reason why by
definition, the Bayes factor is only defined for measurable
partitions {Θ0, Θ1} with both Pϑ(Θ0) > 0 and Pϑ(Θ1) > 0
(Schervish, 1995, p. 220–221). Thus, it is crucial that the
prior distribution Pϑ assigns positive mass to Θ0 for the
BF to be well-defined, and only then does Eq. (5) provide
the usual interpretation of the Bayes factor as the ratio of
marginal likelihoods under H0 := Θ0 and H1 := Θ1.

Also, the more familiar-looking representation BF01 =
fθ0 (y)∫

Θ1
fθ (y)p1(θ)dθ

of the Bayes factor for H0 : θ = θ0 against

H1 : θ �= θ0 holds if and only if a mixture prior with
Dirac-measure component Eθ0 for the value θ0 is assigned to
the parameter with positive mixing weight � > 0 (Robert,
2007, p. 231). Robert phrases this as follows: “Testing of
point-null hypotheses and the like thus impose a drastic
modification of the prior distribution ... This modification of
the prior is puzzling from a measure-theoretic point of view,
since it puts some weight on a set previously of measure 0.”
(Robert, 2007, p. 229), see also Berger (1985, p. 148).

The above line of thought clarifies why the Bayes factor
is only defined for hypotheses Θ0 and Θ1 which receive
strictly positive prior mass. Importantly, it plays no role for
this requirement whether the BF is interpreted as the ratio of
posterior to prior odds or as the ratio of marginal likelihoods
of both hypotheses under consideration.

Measure-Theoretic Background—the FBST

The idea of the FBST is to use the e-value ev(H0),
which quantifies the Bayesian evidence against H0 as a
Bayesian replacement of the frequentist p-value. Impor-
tantly, the FBST was designed as a Bayesian replacement of

7Note that because Θ1 := Θ \ Θ0 (where \ denotes the set
complement, that is A \ B includes all elements which are located in
A but not in B), the set Θ1 has Pϑ -measure one, because Pϑ(Θ1) =
Pϑ(Θ \Θ0) = Pϑ(Θ)−Pϑ(Θ0) = 1−0 = 1. Thus, BF01 = 0/1 = 0
in Eq. (5) when Pϑ(Θ0) = 0.

frequentist point null tests and thus should be capable only
to reject a point null hypothesis. In the FBST, the Bayesian
surprise function s(θ) := p(θ |y)/r(θ) normalizes the pos-
terior density p(θ |y) by a reference function r(θ). Possible
choices include a flat reference function r(θ) := 1 or any
prior probability density p(θ) for the parameter θ . In most
settings, r(θ) will be the probability density of an abso-
lutely continuous probability distribution with respect to the
Lebesgue measure λ, as the introduction of a mixture prior
as detailed above for the BF is not required for the FBST. As
a consequence, the FBST does not separate between hypoth-
esis testing and estimation with regard to the choice of prior
distribution, and is not forced to assign positive probabil-
ity � to a Lebesgue-null-set {θ0}. The calculations of the
e-value are explicitly possible under absolutely continuous
priors: s∗ is defined as the maximum of the surprise function
s(θ) over the null set Θ0 which belongs to the hypothesis
H0, that is, s∗ := s(θ∗) = max

θ∈Θ0
s(θ). Thus, for a precise

hypothesis H0 := Θ0 := {θ0} the maximum s∗ is given
as s(θ0).

The tangential set T (ν) to the hypothesis H0 is defined
as T (ν) := Θ \T (ν) where Θ \T (ν) is the set complement
of Θ and T (ν). In the above, T (ν) := {θ ∈ Θ|s(θ) ≤ ν}.
T (s∗) includes all parameter values θ with surprise smaller
or equal to the maximum s∗ of the surprise function under
the null set, and T (s∗) includes all parameter values θ which
attain a surprise larger than the maximum s∗ of the surprise
function under the null set. The cumulative surprise function
W(ν) is defined as

W(ν) :=
∫

T (ν)

p(θ |y)dθ (6)

and setting ν := s∗, W(s∗) is the integral of the posterior
density p(θ |y) over T (s∗). The Bayesian e-value, which
measures the evidence against the null hypothesis H0, is
then defined as ev(H0) := W(s∗) where W(ν) := 1 −
W(ν). The null hypothesis H0 is rejected when the evidence
against it is large, as then H0 traverses low posterior density
(respectively surprise) regions.

The crucial difference to the BF is that the FBST does not
force the introduction of an arbitrary prior probability mass
� on the point null value {θ0}. Thus, the FBST is coherent
with a Bayesian parameter estimation perspective (which
would not accept the assignment of arbitrary probability
mass to a point null value θ0) and does not separate Bayesian
hypothesis testing and parameter estimation. The use of
priors which are absolutely continuous with respect to the
Lebesgue measure λ is explicitly possible and a standard
choice when adopting the FBST.8

8The FBST could also be used with a mixture prior which is necessary
to calculate the BF, but there is no need to assume such a prior.
In general, the FBST is compatible both with absolutely continuous
priors and non-absolutely continuous priors with regard to λ.
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The e-value as an Approximate p-value

The first two problems identified by Ly and Wagenmakers
(2021) are connected to the alleged relationship of the e-
value to the frequentist p-value. As an example where the
e-value and p-value coincide, they provide the example of
Diniz et al. (2012) who assumed normally distributed data
N (μ, 1) and concluded that under a uniform prior the two
quantities become exactly equal. However, as Diniz et al.
(2012) stressed:

“This result is a consequence of the fact that the
normal density depends on t and μ only on (t − μ)2.”
(Diniz et al. (2012), p. 162)

Diniz et al. (2012) considered a Gauß test for normal data
with unknown mean μ ∈ R and variance σ 2 = 1, and
assumed that the sample mean t = 3.9 is observed for
n = 3 observations. The null hypothesis H0 := {(μ, σ 2) :
μ = 5, σ 2 ∈ R+} is considered. The standard error of
μ under H0 is σ/

√
n — compare Held and Sabanés-Bové

(2014, Example 3.4) — and thus the sampling density of
the statistic t (not the original data, which we can replace
with the minimal sufficient statistic t instead) under H0 is a
N (5, 1/3) density. The density of the posterior distribution
based on t under an improper flat prior p(μ) = 1 is
also a normal density N (3.9, 1/3), because the likelihood
L(μ) ∝ exp[− n

2σ 2 (μ − t)2], and the latter is a kernel of a

N (3.9, 1/3) density for observed t = 3.9 and σ 2 = 1. Now,
the two-sided p-value results in Pμ=5,σ 2=1/3(t < 3.9) · 2 =
0.0567, which is twice the tail-area of t < 3.9 of the
sampling density under H0 (we could equivalently compute
Pμ=5,σ 2=1/3(t < 3.9) + Pμ=5,σ 2=1/3(t > 6.1)). The e-
value ev(H0) in favour of H0 results in Pϑ=(3.9,1/3)|Y (μ >

5) · 2 = 0.0567 which is twice the tail area of μ >

5, where 5 is the value under H0 (we could equivalently
compute Pϑ=(3.9,1/3)|Y (μ > 5) + Pϑ=(3.9,1/3)|Y (μ <

2.8)). Thus, we arrive at p = ev(H0), and the only
reason for this coincidence is that the tail probabilities we
compute for p and ev(H0) depend only on the distance
(t −μ)2 because the variances are identical in the likelihood
N (5, 1/3) and posterior N (3.9, 1/3) (equivalently, omit
the quadratic term and replace it by |t − μ|, because
we are interested in the absolute differences between the
true parameter and t). In both cases, we compute tail
probabilities which only depend on the difference |t −μ| =
1.1 (or equivalently (t − μ)2 = 1.12) and thus p = ev(H0).
Very informally speaking, the “bell-shape” of the normal
distribution is equal for identical variances in the likelihood
and posterior, and the tail probabilities of both coincide
when the only difference are the means, which are shifted.
However, as soon as we use a proper prior, the relationship
disappears.

Also, it is well-known that testing based on improper
priors quickly leads to problems, which is why some authors
have argued that “improper priors should not be used at all
in tests.” (Robert, 2007, p. 232), compare Degroot (1973).
Widening their criticism from a single model to the general
case, Ly and Wagenmakers (2021) argue that the asymptotic
results of Diniz et al. (2012) pose a more serious problem,
while admitting that for “non-uniform priors the relation
between FBST ev and p-value is only approximate” (Ly
& Wagenmakers, 2021, p. 5). Diniz et al. (2012) showed
based on the Bernstein-von-Mises-Theorem (van der Vaart,
1998, Section 10) that for large samples sizes n

ev(H0) ≈ 1 − Fm[F−1
m−h(1 − p)] (7)

where p is the frequentist p-value, m := dim(Θ),
h := dim(Θ0) and Fm is the cumulative distribution
function (c.d.f.) of the χ2

m distribution and F−1 denotes
the generalized inverse c.d.f. Ly and Wagenmakers (2021)
argue that whenever dim(Θ0) = 0 and dim(Θ) = k for
k ∈ N0, Eq. (7) implies that ev(H0) ≈ 1 − Fm[F−1

m−h(1 −
p)] = 1 − Fk[F−1

k (1 − p)] = 1 − (1 − p) = p, so that
for large sample sizes n, the p-value and e-value become
equal. Admittedly, the binomial example chosen by Ly and
Wagenmakers (2021) exploits this condition as dim(Θ0) =
0 (H0 : θ = θ0 is a single point which has dimension zero)
and dim(Θ) = 1 which shows that at least in univariate
models, the asymptotic relationship seems to hold.9 The
simulations in Diniz et al. (2012) confirm this relationship,
but they also show that even under perfectly controllable
simulation settings, there remain differences: they try to
model the functional relationship between p-value and e-
value via a Beta c.d.f., and results show that the asymptotic
relationship (not equality!) starts to hold only for n ≥ 1000
observations in each group in some models (Diniz et al.,
2012, Figure 8).

However, the more important aspect is that even
when dim(Θ0) = 0 the relationship is, in general, a
purely theoretical result. The Bernstein-von-Mises theorem
assumes that the sample X1, X2, ... is generated i.i.d. from
Pθ0 from some θ0 ∈ Θ for the dominated and parameterized
statistical model P := {Pθ : θ ∈ Θ}. However, under
an absolutely continuous prior Pϑ with regard to λ on θ ,
the probability of the parameter taking the value θ0 is zero:
Pϑ(θ0) = 0, because λ(θ0) = 0. By Definition of a
sharp hypothesis as a submanifold10, this holds for any such

9Note that this still excludes the majority of widely used models, for
example, standard tests like Student’s t-test or the test for coefficients
in a regression model, or in general, any test where there is at least a
second parameter, which ensures that dim(Θ0) > 0.
10See Definition 1 in Diniz et al. (2012) and Definition 2.1 in Pereira
et al. (2008).
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hypothesis H0 := Θ0 := {θ0}. Thus, the critical condition
that H0 is true, under which the result of Diniz et al. (2012)
is established, has probability zero under any prior which is
absolutely continuous with respect to Lebesgue measure λ.
As a consequence, data is generated with probability zero
from Pθ0 , where θ0 is the value specified in H0 := Θ0 :=
{θ0}.11 As this is the usual prior choice in continuous models
P in the FBST, even in univariate models, the asymptotic
relationship (not equality) identified by Diniz et al. (2012)
will be observed with probability zero in practice. That is,
Eq. (7) holds with probability zero under this prior choice.
As Cohen stressed, the null hypothesis

“taken literally (and that’s the only way you can take
it in formal hypothesis testing) is always false. It can
only be true in the bowels of a computer processor
running a Monte Carlo study.”
Cohen (1990, p. 1308)

Although the relationship identified by Diniz et al. (2012)
is interesting from a theoretical perspective, it will only
be observed in the laboratory conditions of a computer
processor. Furthermore, even then the relationship does
not hold whenever the assumptions of the Bernstein-von-
Mises theorem are violated, in particular, in all models
P with discrete parameters. In summary, in continuous
models the relationship in Eq. (7) thus (1) holds only
in univariate models and (2) occurs with probability
zero outside of a Monte Carlo simulation with perfectly
controllable conditions, whenever an absolutely continuous
prior is assumed. Point (2) thus resolves the problem also
for univariate models. In discrete models, Eq. (7) does not
hold at all, even without the above arguments.

Note, however, that from a measure-theoretic point of
view when testing with Bayes factors, the last criticism
stays valid at least in univariate models P: the point null
value θ0 then has positive measure as specified in the Dirac
component of the mixture prior, compare Eq. (4), and the
Bernstein-von-Mises theorem can be applied to recover the
asymptotic relationship. However, unless the mixing weight
is chosen as � = 1 in the mixture prior, the probability
of obtaining an i.i.d. sample Xi ∼ Pθ0 goes to zero for
large enough sample size n → ∞. Thus, even under a
mixture prior the assumption of an i.i.d. sample cannot
be reconciled with the Bayesian approach. However, when

11Note that from the Bayesian perspective, the sample is not i.i.d.,
but only i.i.d. conditional upon having observed a parameter value θ .
Unconditionally, data is distributed as the marginal distribution (the
prior predictive distribution) of the data, P ϑ(B) := ∫

Θ
Pθ (B)dPϑ for

all B ∈ B, where (Y,B) is the sample space. Denote B := y ∈ Y
as the observed data, then Pθ (B) := Pθ (y) = f (y|θ) is the value of
the λ-density of Pθ ∈ P and denote p(θ) := dPϑ/dλ as the prior
density with respect to the Lebesgue measure λ. Then, P ϑ(B) is the
more familiar looking marginal likelihood P ϑ(B) = f (B) = f (y) =∫
Θ

f (y|θ)p(θ)dθ of the observed data B = y ∈ Y .

taking a frequentist measure-theoretic stance, θ is fixed
but unknown so it becomes meaningful again when saying
the sample X1, X2, ... is i.i.d. ∼ Pθ0 .

12 This is also the
assumption in the law of the iterated logarithm proven in
Feller (1968, p. 204–205), which shows that the assertation
that “the proofs on sampling to a foregone conclusion
in Feller (1970) also pertain to the FBST procedure” Ly
and Wagenmakers (2021, p. 6) does not hold, as the
i.i.d. assumption X1, X2, ... ∼ Pθ0 under an absolutely
continuous prior Pϑ – which is the standard choice in the
FBST – is not valid.

Revisiting Problem 1: Quantifying Evidence
in Favour of the Null Hypothesis

Now, the first problem in Ly and Wagenmakers (2021)
is revisited. It is argued that a defect of the FBST and
e-value is that it cannot quantify evidence in favour of
the null hypothesis H0 : θ = θ0. However, from the
above measure-theoretic analysis it is clear that this is
a mere consequence of the FBST not assigning arbitrary
probability mass � to Θ0 as is assigned by the mixture
prior in Eq. (4). Under absolutely continuous priors, Θ0 has
zero prior probability Pϑ(Θ0), so it cannot have positive
posterior probability Pϑ |Y (Θ0). Thus, acceptance of H0 :=
Θ0 is not possible. However, the FBST was designed as
a Bayesian replacement of frequentist point null tests and
thus should be capable only to reject a point null hypothesis.
Also, the mixture prior in Eq. (4) was historically chosen to
become able to confirm general laws (Wrinch & Jeffreys,
1921; Etz &Wagenmakers, 2015). Thus, the introduction of
positive probability � for the value θ0 (which in a general
law referred to a boundary of the parameter space like θ = 1
in a binomial experiment) was due to the fact that

“... Broad used Laplace’s theory of sampling, which
supposes that if we have a population of n members,
r of which may have a property ϕ, and we do not
know r , the prior probability of any particular value
of r (0 to n) is 1/(n + 1). Broad showed that (...) if
we take a sample of number m and find all of them
with ϕ, the posterior probability that all n are ϕ’s is
(m+1)/(n+1). A general rule would never acquire a
high probability until nearly the whole of the class had
been sampled. We could never be reasonably sure that
apple trees would always bear apples (...). The result
is preposterous, and started the work of Wrinch and
myself in 1919-1923.”
Jeffreys (1980, p. 452)

12This latter point shows that the Bernstein-von-Mises theorem
primarily provides an asymptotic justification of Bayesian methods for
frequentists, see Edwards (1992).
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While the mixture prior structure renders the statistician
able to confirm general laws, it is today commonly used for
what could be called “arbitrary laws”: For example, when
testing for a difference between two groups in a clinical
trial, “it will virtually never be the case that one seriously
entertains the possibility that θ = θ0 exactly (c.f. Hodges
and Lehmann (1954).” (Berger, 1985, p. 148), where θ could
model the effect size between the treatment and control
group. Thus, whenever no general law like all apple trees
bear apples or all swans are white are considered, it remains
questionable to impose the mixture prior.13

Importantly, next to the inadequate use of the mixture
prior in situations where no general law is tested, the
assignment of positive mass � > 0 to θ0 separates the
prior beliefs for hypothesis testing and parameter estimation
(where for the latter task an absolutely continuous prior
like a normal prior often is much more reasonable than
a mixture prior), while the FBST does not separate
testing and estimation.14 Importantly, the FBST does not
even need to be able to quantify evidence in favour
of H0 by measure-theoretic design. From the above, we
know that H0 has probability zero under an absolutely
continuous prior Pϑ with respect to λ. As the posterior
Pϑ |Y is absolutely continuous with respect to the prior Pϑ

(Schervish, 1995, Theorem 1.31), the posterior probability
of H0 will be zero, too. Thus, quantifying evidence in
favour of H0 becomes obsolete under the measure-theoretic
assumptions of the FBST.15 Admittedly, one might argue
what the use is to test H0 if it is a priori is known to
have probability zero. However, the e-value quantifies the
discrepancy between observed data and H0, and the FBST
rejects a null hypothesis only when the data display
sufficient evidence against it. The BF bypasses this issue
via the assignment of probability � to H0, but this does
not render H0 more realistic in practice. The relevance
of the ability of the BF to quantify evidence in favour
for H0 may thus be overstated, because in practice, the
parameter value is most probably not exactly equal to

13Note also that a small interval hypothesis is clearly not more realistic
than a point null hypothesis in the case a general law is tested. For
example, testing H0 : θ = 1 is in sharp contrast to H̃0 : θ ∈ [0.95, 1]
and the interpretation is radically different (e.g. now only 95–100% of
swans are white when confirming H̃ compared to all swans are white
when confirming H0).
14Which is again close to the frequentist paradigm, where for example
confidence intervals are obtained by inverting hypothesis tests (Robert,
2007).
15As a sidenote, the convergence rate under H0 and H1 for the
Bayes factor differ, which is why solutions like non-local priors have
been introduced to establish exponential convergence rates under both
hypotheses, see Johnson and Rossell (2010). The faster convergence
of the e-value under H1 compared to the BF, see Kelter (2020), is a
consequence of the FBST not assigning prior probability to H0.

θ0. Thus, for large enough sample size n, the BF will reject
H0, too, even if the true parameter is θ0 + ε for a tiny ε

and thus the choice H0 : θ = θ0 was very close to the true
parameter θ = θ0 + ε. Thus, from this perspective, both
the FBST and BF experience a similar form of sampling
to a foregone conclusion which could be called sampling
to trivial effect sizes. Admittedly, the FBST is somewhat
begging the question by not assigning prior mass to H0 :
θ = θ0 and being only able to rejectH0. The BF is, however,
similarly begging the question by assuming from the outset
that H0 is true with probability � > 0 a priori, and as a
consequence being able to confirm H0 : θ = θ0 then.

Revisiting Problem 2: Susceptibility
to Sampling to a Foregone Conclusion

Revisit problem 2: Based on the asymptotic relationship
to the frequentist p-value it is argued that the FBST will
sample to a foregone conclusion. Thus, by only collecting
enough samples one will eventually produce an e-value
ev(H0) which rejects H0 : θ = θ0. However, the measure-
theoretic premises circumvent this caveat again. While
under a frequentist perspective, H0 : θ = θ0 may be true
and from a Bayes factor perspective, θ in H0 : θ = θ0
has positive prior probability (compare Eq. (4)), under an
absolutely continuous prior Pϑ with respect to λ used in the
FBST Pϑ(H0) = 0 holds. Therefore, sampling to a foregone
conclusion will not occur as data is generated as i.i.d. from
Pθ0 with probability zero, except inside the bowels of a
computer processor running a Monte Carlo simulation, to
recite Cohen (1990). Under the mixture prior which is used
for the Bayes factor, the problem can occur as H0 has
positive prior probability. However, assuming such a prior
is simply not necessary when using the FBST, and thus the
problem vanishes when choosing an absolutely continuous
prior with respect to λ.16 Even when adopting a mixture
prior, unless � = 1 (which implies the prior probability
of θ0 is one, and all uncertainty vanishes) for large enough
n ∈ N the probability of sampling X1, ..., Xn i.i.d. as Xi ∼
Pθ0 goes to zero, compare Eq. (4). Thus, even under the
measure-theoretic assumptions of the mixture prior which is
used in the Bayes factor test the problem vanishes.17

16Importantly, this argument shows that the criticism of sampling
to a foregone conclusion pertains to p-values, as the assumption
X1, X2, ... ∼ Pθ0 remains possible: No probability statements about
θ0 being the true parameter can be made by frequentists and one can
assume such an i.i.d. sampling mechanism.
17When n is only moderate, convergence in the Bernstein-von-Mises
theorem is questionable because it is an asymptotic result (van der
Vaart, 1998). Thus, no sampling to a foregone conclusion occurs under
a mixture prior even in moderately sized samples.
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Revisiting Problem 3: the Principle
of Predictive Irrelevance

The third problem concerns the principle of predictive
irrelevance which goes back to Jeffreys (1961). The
binomial example used by Ly and Wagenmakers (2021)
shows that the FBST is, in general, not predictively
matched. However, although predictive matching is an
appealing property, it is at best loosely related to more
profound principles of statistical inference (Berger and
Wolpert, 1988). Furthermore, predictive matching depends
on the definition of a sample. Suppose that in the
experiment, tupels (n1, n2) are observed (e.g. simultaneous
sensor measurements) instead of single measurements n

for each step in the sequence. Observing an uninformative
tupel which consists of a success and a failure based on the
symmetric beta posterior will result in another symmetric
beta posterior, leaving ev(H0) unchanged at ev(H0) = 1.
The fallacy is to interpret ev(H0) = 1 as evidence in favour
for H0, while it actually only implies the weakest possible
evidence against H0. When the entire posterior has posterior
surprise values which are smaller or equal to the surprise
value under H0, there is essentially no evidence against
H0. Thus, ev(H0) = 1. As the FBST aims at rejection of
H0 (and not confirmation of H0), the concept of predictive
matching is not helpful. Any modification of the posterior
which causes the surprise function of the null value to shift
away from the mode indicates (and should indicate) some
magnitude of evidence against H0. More generally, Robert
(2016) argued that

“predictive matching is not a well-defined concept.
That both predictives take the same values for such
“completely uninformative” data thus sounds more
like a post-hoc justification than a way of truly
calibrating the Bayes factor.”
Robert (2016, p. 3)

Thus, as the FBST cannot accept H0, it cannot be calibrated
in this way. In fact, predictive matching is important
whenever one commits the “all too common sin of assuming
that θ can be assigned the same prior distribution, π(θ),
under H0 and H1.” Berger and Guglielmi (2001, p. 177).
A partial justification of such an assumption is thus given
by predictive matching, see Berger & Guglielmi (2001,
p. 177) as then a completely uninformative “sample of
size m should always yield a Bayes factor of 1 (implying
that the two models are equally supported by the data)”
(Berger & Guglielmi, 2001, p. 177), which justifies the
assignment of identical priors under H0 and H1.18 Thus,

18Compare also the intrinsic Bayes factor approach of Berger and
Pericchi (1996).

predictive matching post-hoc justifies the selection of
identical priors (for nuisance parameters) under H0 and H1,
but in the FBST, we do not need separate priors for nuisance
parameters because in the FBST there is only single prior
and no separate priors under H0 and H1 exist. Thus, there
is no need for predictive matching after all. Ultimately, pre-
dictive matching is an important concept for the BF, but a
controversial one as the BF itself is not always predictively
matched, see Gronau et al. (2019), Wang and Liu (2016),
and Berger and Guglielmi (2001).

Revisiting Problem 4: the Jeffreys-Lindley
Paradox

Problem four is formulated as the FBST avoiding the
Jeffreys-Lindley paradox. It is argued that “the FBST ev
is based on an assessment of the posterior distribution,
and therefore, lacks the Bayesian correction for cherry-
picking” (Ly & Wagenmakers, 2021, p. 11), where the
correction is the prior distribution which prevents the
selection of parameter values that the data happen to
support. However, the implicit premise is that a flat
reference function r(θ) = 1 is used (which is equal to
an improper prior), so that the surprise function results
in the posterior density. Whenever a proper absolutely
continuous prior (e.g. normal prior, Cauchy prior) is used
for r(θ), the correction of the prior applies as it prevents
the inclusion of parameter values inside the tangential
set that the data happen to support. The assumption is
similar to the flat prior assumption made in problem 1
for the binomial test, and it shows that improper priors
can be problematic for the FBST. However, the ultimate
question is what can be learned from the Jeffreys-Lindley
paradox, and as argued by Robert (2014) “divergences
between different statistical theories of inference and their
numerical conclusions are to be expected”, and even
more importantly, the Jeffreys-Lindley-paradox “points at
the poor (and even unacceptable) behaviour of improper
prior distributions when testing point-null hypotheses”
(Robert, 2014, p. 2).

In fact, the Jeffreys-Lindley paradox can be interpreted
as the consequence of the failing approximation of a
small interval hypothesis through a precise null hypothesis.
When replacing the precise hypothesis H0 : θ = θ0 with
a small interval hypothesis H0 : θ ∈ (θ0 − b, θ0 + b) for
b > 0, the Jeffreys-Lindley paradox does not occur because
the approximation is rendered unrealistic before the paradox
blends in. For illustration purposes, an example of Berger
(1985) is used: Suppose a sample X1, ..., Xn is observed
from a N (θ, σ 2) distribution with known σ 2. The observed
likelihood function is then proportional to a N (x̄, σ 2/n)
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density for θ , and given that we really should be testing H0 :
θ ∈ (θ0 − b, θ0 + b), we need to know when it is suitable to
approximate H0 by H0 : θ = θ0. The “only sensible answer
to this question is – the approximation is reasonable if the
posterior probabilities of H0 are nearly equal in the two
situations.” (Berger, 1985, p. 149) and this happens when
the observed likelihood function is approximately constant
on (θ0 − b, θ0 + b), because then the posterior probabilities
will be equal when b is small enough. Berger (1985) showed

that the likelihood function varies by no more than 5% on
(θ0 − b, θ0 + b) if

b ≤ (0.024)z−1σ/
√

n (8)

where z = √
n|x̄ − θ0|/σ is the classical test statistic for

a Gauß test. Turning to the Jeffreys-Lindley paradox now,
when we assign a N (μ, τ 2) density under H1 : θ �= θ0 to
θ , and set μ := θ0, the posterior probability of H0 : θ = θ0
can be computed as

Pϑ |Y (H0) =
[
1 + 1 − π0

π0
· exp[(x̄ − θ0)

2nτ 2/(2σ 2[τ 2 + σ 2/n])]
(2πσ 2/n)−1/2 exp[−(x̄ − θ0)2/(2σ 2/n)]

]−1

(9)

for details see Berger (1985, p. 150). Now, suppose a fixed
z is observed, which for example for z = 1.960 corresponds
to a two-sided p-value of p = 0.05. Berger (1985) provides
the posterior probabilities (9) for varying sample sizes n

and these start at Pϑ |Y (H0) = 0.35 for n = 1 and then
grow steadily to Pϑ |Y (H0) = 0.80 for n = 1000 (Berger,
1985, p. 151, Table 4.2). In fact, “this phenomenon that
α0 → 1 as n → ∞ and the P-value is held fixed,
actually holds for virtually any fixed prior and point null
testing problem.” Berger (1985, p. 156), where α0 equals
the posterior probability Pϑ |Y (H0) of H0 : θ = θ0. As
a consequence of Pϑ |Y (H0) → 1 for fixed z (or p-value)
under n → ∞, it follows that BF01 → ∞. Now, the reason
of the Jeffreys-Lindley paradox occurring (that is, p = 0.05
seems to reject H0 while BF01 → ∞ for n → ∞) is that
the assumption of a precise null hypothesis simply is not
feasible for even moderately large n:

“This large n phenomenon provides an extreme
illustration of the conflict between classical and
Bayesian testing of a point null. One could classically
reject H0 with a P-value of 10−10, yet, if n were
large enough, the posterior probability of H0 would be
very close to 1. This surprising result has been called
“Jeffreys’ paradox” and “Lindley’s paradox,” ... We
will not discuss this “paradox” here because the point
null approximation is rarely justifiable for very large
n.”
Berger (1985, p. 156)

Thus, when n is small, the Jeffreys-Lindley paradox does
not occur for a fixed z (or p-value). When we let n → ∞,
the Jeffreys-Lindley paradox blends in as Pϑ |Y (H0) → 1
and the p-value remains constant, but then the validity of
our approximation of the more realistic interval hypothesis
(θ0−b, θ0+b) by H0 : θ = θ0 breaks. In fact, it breaks even
for moderate sample sizes. For the situation n = 1 and z =
1.960 under σ = 1, we arrive at the posterior probability
Pϑ |Y (H0) = 0.35, which is not in conflict with p = 0.05,

but only somewhat weaker evidence againstH0 than assured
by the p-value. Increasing sample size to n = 50, the
paradox blends in as then Pϑ |Y (H0) = 0.52, so that the BF
concludes to favour H0 (assuming prior weights of 0.5 for
bothH0 andH1) while p = 0.05 states evidence againstH0 :
θ = θ0. However, for n = 50, we have b ≤ 0.0017 based
on Eq. (8) and we would have to accept the tiny interval
hypothesis (θ0 − 0.0017, θ0 + 0.0017) as the hypothesis we
actually want to test, for H0 : θ = θ0 to be a reasonable
approximation. Thus, even for moderate samples sizes like
n = 50, the innocuous looking approach to approximate
a realistic interval hypothesis via a precise hypothesis can
become untrustable unless one has extremely good reasons
to assume a tiny interval hypothesis. In the majority of
research, we will not be willing to accept such a precise
interval hypothesis. Thus, as the point null approximation is
rarely justifiable for large n, it matters little that the Jeffreys-
Lindley paradox is observed. In these situations, we will
already hesitate to trust the test of a precise hypothesis
because the approximation has become unreliable.

The reason that the FBST does not suffer from the
paradox is simply due to the fact that it does not make
use of an approximation. Whereas the prior probability
� > 0 in the mixture prior used for a Bayes factor test is
conceptualized as the prior probability assigned to the more
realistic interval hypothesis H0 : θ ∈ (θ0 − b, θ0 + b),
the FBST does not assign mass to H0 : θ = θ0. However,
the prior probability of the more realistic interval hypothesis
H0 : θ ∈ (θ0 − b, θ0 + b), of course, has positive prior
probability under the absolutely continuous prior Pϑ (with
respect to the Lebesgue measure λ) which is employed in
the FBST. Thus, no paradox occurs.19

19Importantly, the paradox also does not occur when the approxima-
tion is checked in a Bayes factor test. As outlined above, when the
approximation imposes an unrealistically high precision for H0 : θ ∈
(θ0−b, θ0+b), the paradox blends in. However, then one would not be
willing to trust a Bayes factor test because the approximation becomes
unreliable.
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Admittedly, the FBST cannot make it easier for an
a priori highly unprobable hypothesis to be rejected. In
contrast, the Bayes factor approach allows to balance the
prior probability � > 0 accordingly to incorporate such
a priori scepticism.20 However, while the FBST does not
allow for such a straightforward incorporation of lower prior
probability, modifying the prior distribution Pϑ which is
used for the FBST allows for such a Bayesian calibration. In
fact, in a variety of situations the modification of the prior
probability (e.g. assigning the bulk of the mass to values
inside [0.4, 0.6] for the parameter θ of a newborn being
a boy) is straightforward and under the FBST this prior
perspective holds both when opting for Bayesian parameter
estimation and hypothesis testing. Also, the modification
of the reference function r(θ) allows to incorporate such a
priori beliefs in a second step.

Conclusion—the Validity of Precise
Hypotheses

In this paper, it was shown that the problems identified by
Ly and Wagenmakers (2021) are mostly consequences of
making the measure-theoretic premise of assigning positive
probability � > 0 to a point null value of a precise
hypothesis H0 : θ = θ0. Thus, they hold only under a
perspective which is required to apply a Bayes factor test,
but not under the absolutely continuous priors available
for use with the FBST. An important lesson from the
analysis of Ly and Wagenmakers (2021) is that absolutely
continuous priors could be preferred in the FBST to avoid
these problems. Whenever a prior is chosen which assigns
positive probability mass � to the null value, sampling to a
foregone conclusion as well as the asymptotic relationship
to the p-value could hold. However, as discussed in this
paper, due to the requirements of the Bernstein-von-Mises
theorem and unless � = 1, they will not hold in practice.
Also, improper priors are questionable when the Jeffreys-
Lindley paradox and predictive matching are considered.

Importantly, the mathematical arguments brought for-
ward by Ly and Wagenmakers (2021) and in this paper hold
depending on which prior beliefs are held, and not depend-
ing on whether one wants to be able to only reject or to both
reject and confirm a statistical hypothesis. For example, we
could hold the prior beliefs that data are normally distributed

20Three examples illustrate this scepticism, see Savage (1961). A
musician states he can tell whether a sheet of music is from Mozart or
Haydn and succeeds in ten out of ten cases. A lady drinking tea states
she can tell whether the tea or the milk was filled in the cup first and
she succeeds in ten out of ten cases. A drunken friend states at 3 p.m.
that he can tell the result of a flipped coin and succeeds in ten out of
ten cases. In the last case, the prior probability of H0 : θ = 1 will be a
priori smaller than in cases one and two for most people.

as N (μ, σ 2), but we are not willing to assign positive mass
� > 0 to a point null value θ0. Thus, we cannot employ a
Bayes factor, and we need to use the FBST. Alternatively,
we could have prior beliefs which are reflected by a mixture
prior that assigns mass � > 0 to the theoretically interest-
ing value θ0 as proposed by Ly and Wagenmakers (2021).21

Then, the more natural choice is the Bayes factor. Thus, our
prior beliefs determine whether we can only reject or both
reject and confirm a hypothesis. In contrast, our desire to
be able to either only reject, or both reject and confirm a
hypothesis should not determine our prior beliefs.22 Impor-
tantly, the deficits which are brought forward by Ly and
Wagenmakers hold under the latter prior beliefs where we
use a mixture prior, and as shown in this paper no mixture
prior is needed when employing the FBST.

However, the discussion puts the magnifying glass onto a
more important problem. Are point null hypotheses realistic
for scientific research? Both the BF and the FBST test a
precise hypothesis, and criticisms on the appropriateness of
such hypotheses range back at least to Good (1950). The
validity of point null hypotheses was challenged seriously
the first time by Hodges and Lehmann (1954), and the
more realistic test of small interval hypotheses H0 : θ ∈
[θ0 − b, θ0 + b] versus H1 : θ /∈ [θ0 − b, θ0 + b] was
termed the Hodges-Lehmann paradigm consequently. Good
(1992,1993,1994), Anderson and Hauck (1983), Berger and
Delampady (1987), and Rao and Lovric (2016) challenged
the appropriateness of precise hypotheses, and Rousseau
(2007) showed that the approximation of interval BFs —
see Morey and Rouder (2011) — through precise BFs
does hold only under very small intervals and is unreliable
for large sample size n, see also Berger (1985), Bernado
(1999), and Sellke et al. (2001, p. 64). A shift towards
the Hodges-Lehmann paradigm may improve the reliability
of research while simultaneously removing most of the
measure-theoretic bypasses which become necessary for
precise hypothesis testing. For the BF, this bypass is the
assignment of arbitrary probability mass to a Lebesgue-null-
set which can be seen as the price which is paid to be able
to confirm H0. For the FBST, the bypass is the resulting
inability to confirm H0 because no such assumption is
made. An important open problem is to clarify the “vexing
issue of the relevance of point null hypotheses” (Robert,
2016, p. 5), which is neither achieved by the BF nor
the FBST. I agree with Ly and Wagenmakers (2021) that

21In any case, we should then interpret the assignment of mass � > 0
to H0 : θ = θ0 as a proxy for the assignment of � > 0 to H0 : θ ∈
(θ0 − b, θ0 + b) and check the quality of this approximation.
22Note that for any small interval hypothesis H0 : θ ∈ (θ0 −b, θ0 +b),
the prior probability is implied by the choice of prior distribution Pϑ

and the width b when Pϑ is absolutely continuous with respect to λ,
and we do not need to explicitly assign a prior probability to H0.
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whenever there are strong a priori grounds to believe in
the point null value (e.g. when testing a general law),
testing a point null hypothesis is reasonable. Also, testing
a point null hypothesis is reasonable when interpreted as
an approximation to a small interval hypothesis. However,
whenever there is suspicion about the validity of such an
approximation, the FBST may be an attractive alternative
because it does not assign positive prior mass � > 0 to
the null value θ0. Thus, checking the approximation which
conceptualizes � as the mass which should actually be
assigned to the more realistic small interval hypothesis H0 :
θ ∈ (θ0 − b, θ0 + b), and which fails for n → ∞ becomes
obsolete when using the FBST (which was one reason for
the Jeffreys-Lindley paradox not to occur under the FBST
as shown above).

In fact, a shift to the Hodges-Lehmann paradigm is
mostly a sociological contribution to statistical science.
When conducting a precise hypothesis test, the statistician
(whether frequentist or Bayesian) in the majority of cases
must check the quality of the approximation of the more
realistic interval hypothesis by the point null hypothesis.
However, “it is usually easier for a Bayesian to deal directly
with the interval hypothesis than to check the adequacy of
the approximation.” (Berger, 1985, p. 149). More impor-
tantly, “there are many (...) problems that would lead to a
hypothesis of the above interval form with large b, but such
problems will rarely be well approximated by testing a point
null.” (Berger, 1985, p. 149), where b is the width of the
interval hypothesis around the point null value θ0 ∈ Θ .
Thus, shifting to a Hodges-Lehmann test of an interval
hypothesis requires first to elicit the interval hypothesis
boundaries, and in a second step hypothesis testing is
performed. Importantly, performing a test without checking
the quality of the approximation becomes impossible.

As Alan Birnbaum stressed in Savage et al. (1962,
p. 322), “each scientist and interpreter of experimental
results bears ultimate responsibility for his own concepts of
evidence and his own interpretation of results.”, and which
method to choose needs to be decided by practitioners
themselves. However, I suspect both the BF and FBST to
provide similar conclusions in the majority of cases, and
a shift towards the Hodges-Lehmann paradigm would be
beneficial in a variety of situations.
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