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Abstract
People deploy top-down, goal-directed attention to accomplish tasks, such as finding lost keys. By tuning the visual system
to relevant information sources, object recognition can become more efficient (a benefit) and more biased toward the target (a
potential cost). Motivated by selective attention in categorisation models, we developed a goal-directed attention mechanism
that can process naturalistic (photographic) stimuli. Our attention mechanism can be incorporated into any existing deep
convolutional neural networks (DCNNs). The processing stages in DCNNs have been related to ventral visual stream. In that
light, our attentional mechanism incorporates top-down influences from prefrontal cortex (PFC) to support goal-directed
behaviour. Akin to how attention weights in categorisation models warp representational spaces, we introduce a layer of
attention weights to the mid-level of a DCNN that amplify or attenuate activity to further a goal. We evaluated the attentional
mechanism using photographic stimuli, varying the attentional target. We found that increasing goal-directed attention has
benefits (increasing hit rates) and costs (increasing false alarm rates). At a moderate level, attention improves sensitivity (i.e.
increases d ′) at only a moderate increase in bias for tasks involving standard images, blended images and natural adversarial
images chosen to fool DCNNs. These results suggest that goal-directed attention can reconfigure general-purpose DCNNs
to better suit the current task goal, much like PFC modulates activity along the ventral stream. In addition to being more
parsimonious and brain consistent, the mid-level attention approach performed better than a standard machine learning
approach for transfer learning, namely retraining the final network layer to accommodate the new task.
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Introduction

Imagine looking for your car keys in the kitchen. At first,
one might focus on features such as small and metallic. This
attention focus could lead one to false alarm to a stray fork
occluded by a chopping board, but should also increase the
chances of finding one’s keys. To carry out this search task,
the prefrontal cortex (PFC) exerts goal-directed pressure
on the visual system to favour goal-relevant information
(Miller and Cohen 2001). Goal-directed attention can
reconfigure the visual system to highlight task-relevant
features and suppress irrelevant features.

Recent advances in machine learning have made
it possible to investigate goal-directed attention with
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naturalistic stimuli, potentially paving the way for cognitive
models that can be applied to richer tasks and stimulus
sets (cf. Nosofsky et al. 2018; Peterson et al. 2018;
Guest and Love 2019). Here, we extend the selective-
attention mechanisms that have proven successful in
cognitive models of category learning (Nosofsky 1986;
Kruschke 1992; Love et al. 2004) so that they can apply
to photographic stimuli processed by deep convolutional
neural networks (DCNNs). We evaluate basic hypotheses
concerning the predicted performance benefits and costs
associated with goal-directed, selective attention, which we
view as distinct from bottom-up or saliency-driven capture
(Connor et al. 2004; Itti and Koch 2001; Katsuki 2014).

Attention-related approaches have met with great success
in machine learning in key applications, such as machine
translation (Vaswani et al. 2017) and image recognition
(Hu et al. 2018). Although motivated by attention in
people, attention in machine learning often misses a critical
component. Human attention is not just captured by the
current bottom-up context (e.g. a word or an image) but can
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also be driven by the current goal or expectations. Goal-
directed attention is conspicuously absent in most DCNNs.
Inspired by cognitive science and neuroscience research, our
work aims to bridge this gap by offering a simple plug-and-
play attentional mechanism that can be incorporated into
pre-trained DCNNs. Our use of existing networks follows
the intuition that the basic organisation of the visual system
does not change, while one’s goal does. Instead, the visual
system is modulated by top-down, attentional signals.

In this work, we focus on the costs and benefits of goal-
directed attention (cf. Plebanek and Sloutsky 2017). When
searching for one’s keys, goal-directed attention benefits
an agent by prioritising objects with key-like features,
resulting in more efficient search. Goal-directed attention
also exacts a cost. For example, key-like features of non-
key objects will be amplified, increasing the likelihood
of a false alarm. For example, when albedo is highly
attended, a person may mistake shiny objects for a key.
On the other hand, without goal-directed attention, the
search process may be inefficient. We hypothesise that
the intensity of goal-directed attention will alter the bias
and sensitivity of a model, which will determine whether
goal-directed attention results in a net benefit for the
agent. With the correct amount of goal-directed attention,
a model may successfully balance the costs and benefits
such that sensitivity (d ′ in signal detection terms) is
increased.

Psychologists and neuroscientists have developed models
that include goal-directed attention to explain behavioural
(Bar 2006; Itti et al. 1998; Love et al. 2004; Miller and
Cohen 2001; Nosofsky 1986; Plebanek and Sloutsky 2017;
Wolfe 1994) and neuroimaging (Ahlheim and Love 2018;
Mack et al. 2016; Mack et al. 2020) data. Algorithmically,
goal-directed attention is often modelled as a set of weights
that alter the importance of different psychological feature
dimensions. Geometrically, one can think of attention
weights as expanding and contracting the different feature
dimensions of psychological space such that the goal-
relevant dimension becomes more discriminative (Fig. 1)
(Kruschke 1992; Love et al. 2004; Nosofsky 1986).

Although the principles in these models are illumi-
nating, the models are not directly applicable to deep
learning as cognitive science researchers typically rely on
low-dimensional, hand-coded stimulus representations, as
opposed to photographic stimuli (i.e. pixel-level input). We
aim to address this limitation by incorporating goal-directed
attention mechanisms into DCNNs.

Given the success of of DCNNs, our aim of augmenting
them is sensible. DCNNs without goal-directed attention do
a good job accounting for patterns of brain activity along the
ventral visual stream in tasks that do not emphasise goal-
directed attention (Schrimpf et al. 2018). What is lacking in
these models is goal-directed attention selection, which is
modulated by brain areas such as PFC (Miller and Cohen
2001). These regional interactions allow the human brain to
retool previously acquired features for a novel task, rather
than learn new features from scratch. Our hope is that
making DCNNs more brain-like will help address cases in
which networks fall short of human performance, such as
their susceptibility to natural adversarial images (Hendrycks
et al. 2019).

Using DCNNs as a starting point, we incorporate a
simple goal-directed attention mechanism motivated by
research in psychology and neuroscience (Nosofsky 1986;
Kruschke 1992; Love et al. 2004; Mack et al. 2016; Mack
et al. 2020). We cast goal-directed attention as driven by a
top-down signal that is, in ways, separate from the visual
system (Fig. 2). For example, the goal of locating one’s keys
does not primarily arise from activity (including recurrent
activity) along the ventral visual stream. Instead, a higher
level goal, such as be on time for a morning meeting, leads
to pursuing the subgoal of finding one’s keys, which in turn
engages the visual system in this search task. Our basic
proposal differs from other attention strategies which lack
a clear goal-directed component (e.g. Bahdanau et al. 2015;
Hu et al. 2018).

We propose that an external expectation signal gives
rise to a set of attention weights that specialises the visual
system for the current goal. We implement and test this
proposal by calculating a set of attention weights for each

Fig. 1 Attention alters the importance of feature dimensions. Four
kitchen objects vary on two feature dimensions: albedo and size. In this
example, albedo is the attended dimension (hence stretched) whereas

attention to size is tuned down (hence compressed). Consequently, the
key becomes more similar to the silver toaster than to the chopping
board or salt shaker. Figure adapted from Nosofsky (1986)
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Fig. 2 Goal-directed attention signal. Goal-directed attention is a top-
down signal from outside the visual system that can reconfigure
the visual system to reflect current goals and expectations. In this
example, the absence of a strong top-down signal (left) to guide
visual processing leads to uncertainty about what this confusing
image depicts. In contrast, when there is an expectation that a dog is
present (right) the visual system is reconfigured to be more sensitive
and biased toward supporting information, which leads to successful
recognition of the dalmatian

possible goal (e.g. is a cat present in this image). Our
attention mechanism is implemented as a single trainable
layer inserted into the mid-level of a pre-trained DCNN,
permitting plug-and-play use. In accord with work in
cognitive modelling and neuroscience, this feature-based
attentional mechanism amplifies or attenuates activations
within the DCNN depending on their goal relevance. At
a very general level, our approach is in accord with
neuroscience findings, such as increased or decreased firing
rates for neurons as a function of whether the feature
is attended (Treue and Trujillo 1999) and warping of
representational spaces (Fig. 1) as revealed by the BOLD
response (Folstein et al. 2013; Mack et al. 2016).

Placing the attention mechanism at a mid-level, is in
accord with neuroimaging results demonstrating that the
dimensionality of the BOLD response in lateral occipital
cortex (LOC) varies with the number of task-relevant fea-
ture dimensions that are attended (Ahlheim and Love 2018),
as well as recent work linking individual differences in
selective attention (assessed through a fit of a cogni-
tive model to behaviour) to patterns of brain activity
(Braunlich and Love 2019). These results prompted us to
evaluate whether mid-level attention modulation could be
effective in a DCNN, as opposed to simply retraining the
most advanced network layer to meet the task demands. In
evaluating the attentional mechanism, we aimed to advance
the range of cognitive processes that DCNNs can address in
a brain consistent manner.

We aim for our approach to help explain basic
psychological phenomenon, like how identification of an

object in an image can be facilitated by a valid cue. For
example, many people cannot identify any object in the
photograph (James 1965) shown in Fig. 2. However, when
told there is a dalmatian in the photograph, the dog is
immediately discernible. As a quick demonstration, we
applied the same DCNN used in the studies reported here
to the photograph. Like most people, the DCNN could
not offer a clear interpretation of the photograph. Its top
prediction was “shower curtain” with 5% probability. In
contrast, after giving the model an external signal to look for
dalmatian (via appropriate goal-directed attention weights),
the model predicted “dalmatian” as the most likely class
with 55% probability.

Although compelling, rather than relying on anecdotal
demonstrations, we systematically evaluated our top-
down, goal-directed, selective attention mechanism by
incorporating it into a popular DCNN (Simonyan and
Zisserman 2015) that was pre-trained on ImageNet (Deng
et al. 2009). ImageNet is a large-scale dataset of naturalistic
images drawn from 1000 categories that can be divided into
training1 and test images for cross-validation2 purposes.

Our attention mechanism was also trained using that
same collection of photographic images from ImageNet’s
training set. We tested the attention mechanism in three
simulation studies that involved progressively challenging
image classification tasks (see Fig. 3 for some examples).
In experiment 1, we evaluated our approach using standard
images from ImagNet’s test set. In experiment 2, we used
blended images, where each test image is created by alpha-
blending two standard images. In experiment 3, we used
natural adversarial images that are challenging for DCNNs
to correctly classify (Hendrycks et al. 2019). All three of
our studies found that both the costs and the benefits of
attention increased as goal-directed attention for the target
increased, and that there was a net benefit of attention at
moderate levels of target focus. The mid-level attention
approach compared favourably to retraining the final fully
connected layer upon goal shifts.

Attention in Deep Learning Attention approaches are gain-
ing prominence in machine learning. We view self-attention
as a form of bottom-up attention modulated by the cur-
rent sequence of inputs rather than changes in goal-directed
expectations (Bahdanau et al. 2015; Chen et al. 2017;
Vaswani et al. 2017; Xu et al. 2015). Self-attention is driven
by the stimulus. For example, in machine translation, the
contribution of each context word changes depending on the
target word (Bahdanau et al. 2015; Vaswani et al. 2017). To
provide another example, in image classification, filters are
amplified or suppressed based on the input image (Hu et al.

1There are roughly 1300 images per category.
2There are roughly 50 images per category.

215Comput Brain Behav (2021) 4:213–230



Fig. 3 Example stimuli from three categorisation problems. (Left) A
standard image used in experiment 1 from ImageNet’s Tabby Cat cate-
gory (Deng et al. 2009). (Middle) A blended image used in experiment
2 made by alpha-blending an image of a cat and an image of a dog.

(Right) A natural adversarial image used in experiment 3 of a drag-
onfly misclassified as banana by DenseNet-121 with high confidence
(Hendrycks et al. 2019)

2018). In contrast, our work learns goal-directed attention
weights for different tasks. A second difference between
our approach and self-attention is how attention weights are
trained. Whereas self-attention is trained jointly with the
rest of the network, we train the attention component sepa-
rately from the rest of the network. Our attention mechanism
is modular and designed to operate with any pre-trained
DCNN. Unlike end-to-end fine-tuning which re-trains all
parameters of a pre-trained DCNN for a new task (Yosinski
et al. 2014), we only train the parameters associated with an
attention layer. Our approach is motivated by the idea that
the prefrontal cortex (PFC) reconfigures existing networks
to suit the current goal.

Although the notion of attention, particularly self-
attention, is popular in deep learning (see Jetley et al.
(2018) for a discussion), the distinction between bottom-
up and goal-directed attention is rarely made (Bahdanau
et al. 2015; Chen et al. 2017; Hu et al. 2018; Vaswani et al.
2017). We hope our work clarifies this distinction and is
complementary to self-attention by addressing the neglected
goal-directed component of attention.

Besides self-attention, the term goal-directed top-down
attention is often coupled with the notion of recurrent or
iterative processing. In our definition, a goal-directed signal
must originate from outside the system, which is different
from the following work. In Wang et al. (2014)’s attentional
neural network, a top-down biasing signal is iteratively
updated to facilitate feature selection. This iterative process
involves consulting the input stimulus, whereas in our
work the top-down signal is input independent. Similarly,
Stollenga et al. (2014) adopts a reinforcement learning
framework to achieve feature selection through an iterative
process. And yet, multiple passes have to be made over
the same input stimulus to achieve the optimal feature
weighting.

There are other lines of work touching on goal-directed
tuning, which have important theoretical and engineering
differences from ours. Miconi et al. (2016), Chikkerur et al.
(2010) and Perez et al. (2018) studied feature-wise attention,

but only our work considered training a single layer to
facilitate easy network reuse. Perez et al. (2018) feature-
wise transformation is the closest to our implementation
and yet they did not define their feature-wise weighting
as goal-directed attention and allowed the weightings to
be negative, which is not in agreement with non-negative
modulation from the neuroscience literature. Wang et al.
(2014) discuss that a wrong top-down bias could astray the
model to make a false alarm. However, we investigate this
issue systematically by evaluating the effect with respect
to the intensity of goal-directed bias using signal detection
framework. Moreover, a single-layer attention mechanism
in our work is more interpretable than their generative set-
up because our attention layer has a direct correspondence
to entire feature maps.

Cao et al. (2015) and Zhang et al. (2018) studied
the top-down goal-directed effect in the context of object
localisation. Using the target class as a prior, they eliminate
neurons in the model that do not contribute to the target
response, resulting in spatial attention. In both of their
work, the weighting on neuron activations cannot go beyond
one, which departs from neuroscientific findings that neural
activities can be turned up. The top-down modulation in
their work is adjusted to different target images. In other
words, unlike our model that has a generic attention tuning
for images of the same class, their network reconfiguration
is specific to each input image.

Thorat et al. (2018) studied the impact of a cue-based
feedback approach on visual processing systems via
manipulating the neural and representational capacity of
the network. Our contribution and Thorat et al. (2018) are
very different. For example, we use a DCNN as a model
of visual processing, whereas Thorat et al. (2018) used a
shallow fully connected network. DCNN use is important
due to its proposed relation to the ventral visual stream and
their performance qualities. We also explore the impact of
attention at different intensity levels. Our main focus is the
costs and benefits of top-down attention. Finally, our range
of tasks and model evaluation is very different.
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In many ways, our work is most similar to Lindsay and
Miller (2018) in that they are informed by a neuroscience
perspective and incorporate goal-directed attention into an
existing DCNN. However, there are some key differences
between these two efforts. Our key intuition is that the
basic representations of the visual system are task-general
and only reconfigured when receiving a top-down goal.
The structure of the original network should not be
permanently altered, much like how the human brain does
not radical change structure after performing a task. In
contrast, Lindsay and Miller (2018) tuned each DCNN as a
binary classifier rather than preserving the original 1000-
way output. Learning binary classifiers in this way is
subject to fewer constraints on how the features should
be reconfigured. This is more than a technical detail as
we seek to parallel how we believe the brain deploys top-
down attention, namely to reconfigure an existing network
to tune it to the task at hand. Finally, one of our key
aims is to trace out the costs and benefits of attention
systematically as attention intensity varies. The way we
incorporate attention strength into the loss term is in ways
more straightforward and interpretable than the method
used in Lindsay and Miller (2018).

Methods

In our approach, we add an attention layer to a pre-trained
DCNN to modulate its activity according to the present goal,
akin to how attention weights warp the representational
space in cognitive models (Fig. 1). As discussed below,
we calculated a set of attention weights for each target
class (i.e. the current classification goal, such as detecting
whether a cat is present in an image) at each attention
intensity level.

Our attention layer can be incorporated into any DCNN.
In this contribution, we used a pre-trained version of
VGG-16 (Simonyan and Zisserman 2015). VGG-16 is a
well-known, yet relatively simple architecture that scores
well in benchmarks concerned with characterising both
behaviour and brain response along the ventral visual stream
(Schrimpf et al. 2018).

VGG-16 is a feed-forward DCNN model consisting of
23 layers with 138,357,544 trainable parameters. A subset
of these layers can be grouped into five convolutional
blocks. Each convolutional block consists of a series of
convolution layers, pooling layer, and non-linear activation
function. The convolutional blocks are trained to extract
and construct complex features from the raw input image.
The last two layers of the network are fully connected
layers that are trained to sort stimuli into 1000 predefined
categories based on features extracted from the preceding
layers.

VGG-16 was pre-trained on ImageNet (Deng et al. 2009),
a large-scale dataset of naturalistic images drawn from 1000
categories based on the WordNet ontology (Miller 1995).
ImageNet is a popular benchmark in the computer vision
community. As detailed below, we used ImageNet’s training
set (around 1.3 million images) to train our attention layer.

Goal-Directed Attention Layer A goal-directed attention
layer can be inserted between any two layers of a pre-
trained DCNN. Here, we inserted the goal-directed attention
layer after VGG’s fourth convolutional block, resulting in
an attention layer of size 512, corresponding to the 512
filters of the preceding layer’s output (see Fig. 4 for more
details). The shape of the attention layer is equal to the shape
of its preceding layer. The attention layer is connected in
a one-to-one fashion to the filters of the preceding layer.
These connections are referred to as attention weights and
modulate the activations of the preceding layer. We define
this modulation as the Hadamard product (i.e. element-wise
multiplication) between the preceding layer’s activations
and the attention weights.

In this work, we limit the flexibility of the attention
layer by using a single weight to characterise all weights

Fig. 4 Integration of attention layer with VGG-16. The top panel
represents the architecture of VGG-16. An image will be processed
from left to right and sorted into 1000 categories. The layer
preceding the attention layer (pre-attention activations) has an output
representation with the shape of height×width× filters. The attention
layer is constructed with the same shape as the output representation
but constrained such that a single filter value is used across all
spatial locations. The attention operation is carried out as a Hadamard
product between the pre-attention activations and attention weights.
The post-attention activations have the same shape as the previous
representation. The Hadamard product effectively re-weights the pre-
attention activations using the corresponding attention weights. As the
bottom panel shows, previously highly activated filter can be tuned
down by a small attention weight (colour from dark to bright) whereas
previously barely activated filter can become highly activated due to
attention re-weighting (colour from bright to dark)
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belonging to a particular filter, resulting in filter-wise
attention weights. Filter-wise attention weights embody the
assumption that the attention weight for a particular filter
should be spatially invariant. The attention weights are
initialised to 1.0 and constrained to be between [0, + inf].
During training, the attention weights are learned while the
remaining network parameters are kept fixed, which we
describe in more detail below.

Target Class A target class T , is the set of all ImageNet
classes that an attention network should focus on mastering.
The remaining ImageNet classes are referred to as non-
target classes. In general, a target class can be composed
of multiple ImageNet classes. In this work, a target class
is composed of a single ImageNet class. A different target
class implies a different task.

Attention Intensity The attention intensity is a hyper-
parameter in our model that reflects the level of top-down
pressure of attention. It directs the formation of goal-
driven attention weights via manipulating the loss term.
Concretely, attention intensity (α ∈ [0, 1]) determines the
degree that the model should focus on mastering the target
class at the expense of other non-target classes. Formally,
this is captured by weighting the contribution of each image
to the loss term based on whether the image belongs to the
target class or a non-target class (see the “Model Training”
section).

In this work, we consider five different intensity levels
parameterised by α and N , where N is the total number of
classes in the categorisation task (Table 1). Since we use all
ImageNet classes, N is fixed at 1000 throughout all studies.

When there is no selective attention, all N classes are
weighted equally, which means α = 0.001. This intensity
level exhibits no goal-directed attention and primarily acts
as a control model. There is very weak attention given to
the target class when α = 0.002. When α = 0.5, the
target class is weighted equally as all the non-target classes
combined. When α = 0.999, the target class receives almost
all the attention from the network. When α = 1, the network

Table 1 Sampled α values and meaning

α Meaning α (N = 1000)

(N , total number of classes)

1
N

No selective attention 0.001

2
N

Weak attention 0.002

0.5 Balanced attention 0.5

N−1
N

Strong attention 0.999

1 Complete target focus 1

focuses exclusively on mastering the target class and non-
target classes make no contribution to the loss term. We do
not consider the case where α < 0.001 because that would
represent a model that does not attend to the target class
which is beyond the scope of our studies.

Each level of intensity implies a trade-off between target
and non-target performance. Re-weighting target and non-
target classes can be likened to training on an imbalanced
dataset. When α = 1, the learned attention weights will
overfit to the target class given the absence of non-target
classes. When α = 0.5, a balance is struck between target
and non-target classes. We hypothesise that the largest net
benefit will be achieved around this level. In addition to
overall performance, the level of intensity should influence
the distribution of learned attention weights. We expect that
higher intensity levels will result in a larger number of filters
being turned off.

Model Training The attention layer is trained using
ImageNet-2012 (Deng et al. 2009), the same dataset that
was used to train the pre-trained network.

In our work, we randomly sample 90% of the training
set images from each category as our training set. The
remaining 10% of the images are used for validation. We
use the white-listed version of the validation set as our test
set. We use the Adam optimiser (Kingma and Ba 2015)
with a learning rate of 0.0003 and a batch size of 16. The
training data are preprocessed and augmented according
to Krizhevsky et al. (2012) and Simonyan and Zisserman
(2015).

Given a target class (T ) and an attention intensity (α), the
attention weights are trained on a 1000-way classification
problem, while keeping all other parameters fixed. The
training objective is to minimise the standard multi-class
cross-entropy (CE) loss over 1000 classes. The contribution
of each stimulus to the loss term is determined by whether it
belongs to the target class. Stimuli that belong to the target
class are weighted by α. Stimuli that do not belong to the
target class are weighted 1−α

N−1 .
Formally, given a training image xi and its true class label

yi , the model outputs the probability for the true class p(xi).
The α-weighted cross-entropy lossi associated with image
xi is defined in Eq. 1:

lossi =
{

αCE(yi, p(xi)), if xi ∈ T
1−α
N−1CE(yi, p(xi)), otherwise.

(1)

where CE for a given image xi can be formally defined
as:

CE = −
M∑

c=1

yi log(p(xi)) (2)

M is the number of classes (i.e. 1000).
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Given that we train many attention models, it is
computationally expensive to use the entire training set at
each epoch. The computational cost is reduced by using a
subset of the training set during each epoch. Each epoch
uses all of the images belonging to the target class and
a random 10% of the images from each non-target class.
The non-target samples change every epoch. The non-target
samples are up-weighted in the loss term to adjust for the
imbalanced sampling. The end result is that interpretation
of attention intensity is unaffected by the sub-sampling
procedure.

Models are trained using an early stopping criterion
with a maximum of 5000 training epochs. The early
stopping criterion is based on the relative improvement
in validation loss. Validation loss is computed using
the weighted cross-entropy (1) and all of images from
the validation set. Relative improvement is computed
between every other epoch. Training terminates when the
relative improvement is less than 0.1% at two consecutive
checks.

Experiments

The proposed goal-directed attention mechanism was
evaluated using three experiments that used a shared
training procedure. All experiments used the same set of
trained models. One attention model was trained for each
of the five attention intensities (Table 1) and each of 200
different target classes, yielding 1000 different attention
models. Each target class corresponds to one of the classes
defined in the natural adversarial dataset, a set of 200 classes
which overlap with the ImageNet classes (Hendrycks et al.
2019). Although all three experiments involve using the
same target classes for testing, the specific test images that
define the classes within each experiment are different.
Experiment 1 used standard ImageNet images. Experiment
2 used blended images that are made from two alpha-
blended standard images. Experiment 3 used natural
adversarial images, taken from the natural adversarial
dataset.

Performance on each experiment was analysed using
standard signal detection framework (Macmillan and
Douglas 2005). Firstly, we examined how attention intensity
affects the hit and false alarm rates when tested on held out
items. We consider the model makes a correct classification
(i.e. true positive) when the correct class is the most likely
prediction. In other words, we apply a max decision rule
to the network’s output. Similarly, a false alarm occurs
when the model mistake when the class that the current
model corresponds to (e.g. a Chihuahua attention model) is
predicted the most likely class (e.g. predicting Chihuahua
when there is no Chihuahua in the image).

Secondly, we evaluated changes in model sensitivity
and criterion due to goal-directed attention. We use the
criterion location defined in Macmillan and Douglas (2005)
as our measure of criterion. We expected a consistent
pattern across all experiments such that increasing attention
intensity would lead to higher benefits of goal-directed
attention coupled with higher costs. The largest net benefit
should be achieved when the target class and non-target
classes are balanced (α = 0.5) or nearly balanced. We also
expected that as attention intensity increases, more DCNN
filters connected to the attention layer will be switched off
(i.e. have an attention weight of 0).

Experiment 1: Standard Images

Standard images from ImageNet are the most straightfor-
ward tests that can be used to analyse the costs and benefits
of the proposed goal-directed mechanism under normal
conditions.

Testing Procedure Each trained attention model was tested
using an equal number of target and non-target test images.
All target class images and a random sample of non-target
class images were used during testing. Using an equal
number of target and non-target class images facilitates
signal detection analyses.

Results Consistent with our hypothesis about the costs and
benefits of attention, one might expect attention weights to
become more extreme as attention was increased. Indeed,
the variance of the attention weights increased as attention
intensity increased and more filters were completely turned
off due to zero attention weights (Fig. 5). Although the
system is nonlinear, the filters emphasised with increasing
attention were largely consistent. Spearman correlations
between adjacent α intensity values (0.001 to 0.002, 0.002
to 0.5, 0.5 to 0.999, 0.999 to 1.0) yield correlations of 0.99,
0.62, 0.63 and 0.87, respectively.

Both the hit rate and false alarm rate of the attention
model increased as attention intensity increased (Fig. 6).
Model sensitivity (d ′) peaked near the balanced value of α =
0.5. Sensitivity differences across five attention intensities
were significant, F(4, 995) = 410.9, p < .001. The atten-
tion model with α = 0.5 had the highest sensitivity among
sampled attention intensities and the difference to the sec-
ond highest sensitivity was significant, t (199) = 10.2,
p < .001. The model criterion monotonically decreased
as α increased (Fig. 6). See Appendix for Top-5 results.

Discussion The results from experiment 1 were consistent
with our predictions in regard to the costs and benefits
of attention. As attention intensity increased, attention
weights became more extreme. Correspondingly, hits and
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Fig. 5 Attention weight distributions for experiment 1. As atten-
tion intensity increased, attention weights became more extreme (i.e.
the variance of weights increased). Furthermore, increasing attention

resulted in more filters being turned off (i.e. the initial attention weight
goes from 1 to 0)

false alarms both increased with increasing attention
intensity. Sensitivity peaked near a moderate attention
intensity that successfully balanced these benefits and
costs. A sweet spot of attention intensity was shown
around α = 0.5 from the sensitivity analysis when target
and non-target classes were balanced. Decreasing model
criterion suggests that as attention intensity increased,
the model was more biased in favour of a target class
response, which was more likely to result in a false
alarm. Results on standard images demonstrated initial
success of the proposed mechanism. Harder images
with degraded features were used in experiment 2 to
further our understanding of the goal-directed attentional
mechanism.

Experiment 2: Blended Images

Psychophysicists often use challenging visual tasks to
probe important properties of the human visual system (Yi
et al. 2004). This experiment extended Lindsay and Miller
(2018), which also used blended images to tax a goal-
directed attentional mechanism. Blended images are harder
tests for the model in that when two images are merged into
one, features become overlaid and degraded.

Testing Procedure This experiment used the same attention
models from experiment 1, only the testing procedure
differed. Blended images were created from the test set used

Fig. 6 Main results from experiment 1. Goal-directed attention with
varying degrees of intensity across all target classes were tested. As
attention intensity increased, goal-directed attention had increasing
benefits (higher model hit rates) as well as costs (higher model false
alarm rates). With increasing attention intensity, model sensitivity (d ′)
first increased and then decreased. Model was more biased towards

making a false alarm (criterion decreased). A sweet spot for maximal
net benefit of goal-directed attention was achieved with the highest
model sensitivity (α = 0.5). At this intensity, attention on the target
class was equal to the attention on non-target classes combined. Each
violin plot represents an estimated probability distribution based on
200 target classes tested
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in experiment 1 (Fig. 7) by combining images from two
classes (e.g. Japanese Spaniel and Tabby Cat). There are two
ground truth labels given one blended image. Upon testing
an attention model for a given target class, it is considered
a hit when the model correctly classifies the test image
with the ground truth label that matches the target class
of this model. For example, when we test a model with
Japanese Spaniel attention, we consider the model makes
a hit when it predicts Japanese Spaniel as the most likely
class when Japanese Spaniel is one of the ground truth
classes in the image. Similarly, we compute false alarm of
an attention model by using blended images whose neither
ground truth matches the target class of this model. For
example, Japanese Spaniel attention model would make a
false alarm when it predicts Japanese Spaniel as the most
likely class but there is no Japanese Spaniel in the image.
For each testing model, we make sure there is an equal
number of blended images that have and do not have the
corresponding target class as its components. By doing so,
we can further conduct signal detection analyses.

Results We observed a similar pattern of results (Fig. 8)
as previous experiments. As attention intensity became
stronger, the model hit rate and false alarm rate both
increased. The sensitivity of the attention model increased at
first and then decreased after balanced attention (α = 0.5).
The overall sensitivity difference across the five levels of
intensity was significant, F(4, 995) = 121.4, p < .001.
The highest net benefit was achieved when there was a
moderate level of attention (α = 0.5) and was significantly
higher than the next highest sensitivity, t (199) = 5.3, p <

.001. Additionally, model criterion dropped as attention
intensity grew. See Appendix for Top-5 results.

Discussion Classifying blended images is a more difficult
problem than classifying standard images because the
features of one class are superimposed on the features of
another class. The difficulty of this experiment can be seen
by comparing the results between the current experiment
and experiment 1 when no goal-directed attention was
present (α = 0.001). The current experiment had a much
lower baseline hit rate. It is a stronger demonstration that
the proposed goal-directed mechanism was effective in
selectively processing stimulus features in a task-specific

manner. There is a consistent pattern to the previous
experiment that increasing attention intensity improved the
hit rate and increased false alarm rate, which suggests a
clear trade-off between costs and benefits of attention. It is
consistent with our hypothesis that the largest net benefit
was achieved when target and non-target classes were
balanced (α = 0.5). As target and non-target classes became
more imbalanced (increased α), model criterion decreased,
which indicates the model is more biased towards making a
target class prediction over any test images.

Experiment 3: Natural Adversarial Images

The final experiment uses natural adversarial images to
evaluate the efficacy of goal-directed attention. The natural
adversarial dataset is composed of 200 classes of real-
world, unmanipulated images collected from the Internet
(Hendrycks et al. 2019). The classes have been intentionally
selected to overlap with 200 classes from ImageNet. These
images can reduce DCNN performance drastically by
exploiting the vulnerabilities of these networks such as
their colour and texture biases (Guest and Love 2019; Hu
et al. 2018). Although adversarial attacks have been heavily
studied (Goodfellow et al. 2015; Nguyen et al. 2015; Song
et al. 2018), these works use synthetic or unrealistic images
that are carefully designed to defeat advanced DCNNs.
Natural adversarial images offer an opportunity to test the
proposed model with stimuli that humans would plausibly
encounter in the environment.

Testing Procedure The same attention models were used,
only the testing procedure differed. Each model was tested
using an equal number of target and non-target images from
the natural adversarial dataset. The same analyses were
carried out on the test results.

Results The same pattern of results was observed (Fig. 9)
as in experiments 1 and 2. Increasing the attention intensity
led to greater benefits (e.g. higher hit rate) and costs
(e.g. higher false alarm rate). As in the previous studies,
model sensitivity peaked for a moderate value of attention
intensity. Model criterion decreased (biasing towards
the target class) as intensity increased. The difference
across models’ sensitivities was significant, F(4, 995) =

Fig. 7 An example of how
blended images are created.
Images from two categories are
alpha-blended—each
component image’s pixel value
is reduced by 50% and added
into one image
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Fig. 8 Main results from experiment 2. Goal-directed attention with
varying degrees of intensity across all target classes was tested on
blended images. Blended images were made of different classes of
standard images that were hard for DCNNs to classify due to overlaid
features. As attention intensity increased, goal-directed attention had
increasing benefits (higher model hit rates) as well as costs (higher
model false alarm rates); model sensitivity (d ′) first increased and then
decreased. Model criterion was always decreasing, which suggests

the model was increasingly biased to favour a target class prediction.
A sweet spot for maximal net benefit of goal-directed attention was
achieved when model sensitivity was the highest (α = 0.5), which was
exactly the point where attention on the target class was equal to the
attention on all non-target classes combined. Each violin plot repre-
sents an estimated probability distribution based on 200 target classes
tested

88.2, p < .001. Model sensitivity was the greatest when
α = 0.5, t (199) = 4.4, p < .001. See Appendix for Top-5
results.

Discussion Like the previous two experiments, the pro-
posed goal-directed mechanism achieved higher hit rates

with higher false alarm rates as attention intensity increased.
The optimal model sensitivity was found when attention
intensity was α = 0.5. Model criterion shared the same
pattern to previous studies, which suggests it was shifting
to favour the target class responding as attention intensity
becoming more extreme. There is a clear trade-off between

Fig. 9 Main results from experiment 3. Goal-directed attention with
varying degrees of intensity across all target classes was tested on
natural adversarial images. Natural adversarial images are unmodi-
fied natural images but challenging for DCNNs to classify correctly
due to DCNNs’ over-reliance on colour and texture, as well as back-
ground cues. As attention intensity increased, goal-directed attention
had increasing benefits (higher model hit rates) as well as costs

(higher model false alarm rates); model sensitivity (d ′) first increased
and then decreased. Model criterion decreased consistently, which
means the model was becoming more likely to make a target class
response regardless of images. A sweet spot for maximal net benefit of
goal-directed attention was achieved when model sensitivity was the
highest (α = 0.5). Each violin plot represents an estimated probability
distribution based on 200 target classes tested
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costs and benefits of attention at different intensity levels.
Unlike blended images, natural adversarial images exploit
DCNNs’ biases towards colour, texture and background
cues. Although the goal-directed attention mechanism did
not tackle these issues directly, the simple approach substan-
tially improved performance.

A Non-attentional Model Comparison

The proposed attention mechanism has demonstrated its
ability of reconfiguring a large network to better fit the
current task goal. In machine learning, a different strategy
of retraining the final network layer is commonly used to
transfer knowledge from one task to a related task (Yosinski
et al. 2014).

This alternative retraining approach is inconsistent with
our theoretical aims. The mid-level attention mechanism
is intended to reflect how the brain reconfigures aspects
of processing along the ventral visual stream. Attention
effectively repurposes a large existing network through
a relative small change (i.e. how the 512 filters are
weighted by attention). In contrast, the retraining approach
involves updating every single weight on the final fully
connected layer. Given the DCNNs are typically trained
towards thousands of classes, the exhaustive connections
between the penultimate and final layers will amount to
a huge quantity of weights. Even in our simulations, each
task context requires 4,096,000 specialty weights in the
retraining approach.

Nevertheless, the retraining approach offers a useful
yardstick against which to measure the performance of
the attentional model. Given that retraining the final
network layer is a popular and successful machine learning
method for transfer learning, even nearing its performance
levels would cast the attentional approach in a positive
light.

To compare these two approaches, we used the same
DCNN model for the retraining approach (absent the
attention layer) and retrained the final layer using the
same loss (i.e. goal) term that was used to train the
attention weights. All the training and testing procedures
were matched for both models. We compared the attention
model and non-attention model at α = 0.5.

Results The results across three experiments indicate a
consistent performance boost when training an attention
layer compared to training the last fully connected layer
under the same training regime (Fig. 10). In particular,
models trained with an attention layer result in a larger
increase in hit rates relative to false alarm rates, resulting in
a higher d ′ measure. See Appendix for Top-5 results.

Discussion Although the attentional model was conceived
to advance and evaluate theory, surprisingly it performed
better overall than a standard and successful approach to
transfer learning from machine learning. One explanation
for this success is that by the final layer it is too late
for the model to modify stimulus representations to meet
the task goal. In contrast, the attention layer interacts with
subsequent network layers as the effects cascade through the
network, which may provide additional flexibility to match
the current task goal.

General Discussion

Motivated by research in psychology and neuroscience,
we set out to test whether goal-directed attention could
be successfully incorporated into pre-trained DCNNs for
object recognition as a plug-and-play additional layer. Our
aim was to extend attentional mechanisms found in category
learning models from psychology to DCNNs that can take
naturalistic stimuli as inputs. The theoretical idea evaluated
was that goal-directed expectations (not driven by recent
inputs) could reconfigure the existing network to specialise
for the current task. In humans and non-human primates,
this type of attention is thought to rely on goal-directed
influences from prefrontal cortex.

We evaluated some general hypotheses about how goal-
directed attention should impact network performance. We
predicted that as attention intensity (a hyper-parameter
in our model) increased, both the costs and benefits of
attention should increase. We evaluated this hypothesis
across three computational experiments, involving either
standard images, blended images or natural adversarial
images. The basic prediction was that both the costs and
benefits of attention should increase as attention intensity
increases. We also predicted that there should be a sweet
spot at moderate attention intensity where these benefits and
costs would successfully balance. Indeed, out of the five
levels of attention intensities tested, an intermediate value
of 0.5 achieves the best performance across the experiments
we conducted.

All predictions held across all studies. We evaluated
network performance in signal detection terms. Benefits,
measured in terms of hit rate (e.g. responding Tabby
Cat with Tabby Cat attention weights when a Tabby Cat
is present), increased with increasing attention intensity.
Likewise, costs, measured in terms of false alarm rate (e.g.
responding Tabby Cat with Tabby Cat attention weights
when a Tabby Cat is not present), increased with increasing
attention intensity. Overall benefits, measured in terms of
sensitivity (i.e. d ′), peaked for moderate levels of attention.
We predicted the location of this peak as it was for
an attention intensity setting that effectively balanced the
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Fig. 10 Main results of comparing the attention approach to the non-
attentional retraining approach. The proposed attention model and
non-attention model trained at α = 0.5 were tested on regular images
(a), blended images (b) and adversarial images (c). In the attention
model, the attention layer is trainable. In the non-attention model,
the attention layer is removed and the last fully connected layer is

retrained according to the task goal. Both models were trained using
the same procedures. Overall, the attention model performed better
with a higher d ′ and lower criterion than the non-attention model. Each
violin plot represents an estimated probability distribution based on
200 target classes tested
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Fig. 11 Top-5 results from experiment 1. Goal-directed attention with
varying degrees of intensity across all target classes was tested. As
attention intensity increased, goal-directed attention had increasing
benefits (higher model hit rates) as well as costs (higher model false
alarm rates). With an increasing attention intensity, model sensitiv-
ity (d ′) first increased and then decreased. Model was more biased

towards making a false alarm (criterion decreased). A sweet spot for
maximal net benefit of goal-directed attention was achieved with the
highest model sensitivity (α = 0.5). At this intensity, attention on the
target class was equal to the attention on non-target classes combined.
Each violin plot represents an estimated probability distribution based
on 200 target classes tested

importance of target and non-target items when training
the attention weights. Bias towards the target category
also increased with increasing attention intensity. Attention
intensity can be viewed as a combination of the expectation
and importance of detecting a member of the target category.
It affects both bias and sensitivity, which seems consistent
with human behaviour—people have a tendency to both

see what is expected and to perform better when focused
appropriately.

Goal-directed attention appeared to reconfigure the
network to specialise it for detecting the target class,
much like how goal-directed attention reconfigures the
human visual system when searching for a particular target
(e.g. one’s keys). Consistent with this notion, increasing

Fig. 12 Top-5 results from experiment 2. Goal-directed attention with
varying degrees of intensity across all target classes was tested on
blended images. Blended images were made of different classes of
standard images that were hard for DCNNs to classify due to overlaid
features. As attention intensity increased, goal-directed attention had
increasing benefits (higher model hit rates) as well as costs (higher
model false alarm rates); model sensitivity (d ′) first increased and then
decreased. Model criterion was always decreasing, which suggests

the model was increasingly biased to favour a target class prediction.
A sweet spot for maximal net benefit of goal-directed attention was
achieved when model sensitivity was the highest (α = 0.5), which was
exactly the point where attention on the target class was equal to the
attention on all non-target classes combined. Each violin plot repre-
sents an estimated probability distribution based on 200 target classes
tested
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attention intensity had the effect of increasing the variance
of attention weights, which reweights filter responses, and
turning off filters not relevant for detecting the target
class (see Fig. 5). One possible view is that the pre-
trained DCNN effectively contains numerous subnetworks,
many of which are not relevant to the current task and
add unhelpful noise to the network response. Attention
weighting could help by silencing irrelevant aspects of
the network and amplifying relevant aspects. However,
unlike hand-crafted features in cognitive models in which
stimulus representations are intuitive, simple, and at a
single level, it remains an open question whether filter
representations in DCNNs correspond to our existing
notions of psychological dimensions. In addition to
considering behavioural measures, model representations
can be evaluated against high-quality neuroimaging studies
in which participants view naturalistic images (e.g. Hebart
et al. 2019).

Although not a theoretical competitor, we compared
the attention model’s performance to a standard machine
learning approach to transfer learning in which the
final network layer is retrained for the current task.
Unexpectedly, the attention model generally outperformed
the machine learning approach. One explanation is that
even though the attention layer had relatively few tunable
parameters, the cascading effects through subsequent
network layers provided the needed flexibility to match the
task goal.

We set out to evaluate basic theoretical principles by
evaluating attention weights trained for specific target

classes. Although that satisfied our aims, successful systems
and more encompassing models of humans may instead
generalise across attention sets. For example, knowing
what is relevant to attend when searching for a cat should
overlap more with what is relevant when searching for
a dog than for a truck. One solution is for the goal-
directed signal itself to be a trained network that configures
the attention weights for the current task goal. Such
networks could also be endowed with the capability to
search for conjunctions and disjunctions of target classes.
We hope our results on target specific attention sets
provide a solid foundation for future progress on this
path.

Our goal-directed filter-based attention is distinct from
work in spatial attention, though it could be related. For
example, an attentional spotlight could move to areas of an
image most responsible for driving goal-directed attention-
weighted filters’ responses. Likewise, our work could be
extended to characterise the interplay of bottom-up saliency
driven attentional capture with goal-directed goal-directed
attention.

Neuroscience and machine learning have been enjoying a
virtuous cycle in which advances in one field spur advances
in the other. For example, DCNNs were loosely inspired
from the structure of the ventral visual stream and in turn
have proven useful in understanding neuroscience data from
these same brain regions. We hope that our work hastens
this virtuous cycle by begetting more useful machine
learning models that in turn inform our understanding of the
brain.

Fig. 13 Top-5 results from experiment 3. Goal-directed attention with
varying degrees of intensity across all target classes was tested on
natural adversarial images. Natural adversarial images are unmodi-
fied natural images but challenging for DCNNs to classify correctly
due to DCNNs’ over-reliance on colour and texture, as well as back-
ground cues. As attention intensity increased, goal-directed attention
had increasing benefits (higher model hit rates) as well as costs (higher

model false alarm rates); model sensitivity (d ′) first increased and
then decreased. Model criterion decreased consistently, which means
the model was becoming more likely to make a target class response
regardless of images. A sweet spot for maximal net benefit of goal-
directed attention was achieved when model sensitivity was the highest
(α = 0.999). Each violin plot represents an estimated probability
distribution based on 200 target classes tested
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Fig. 14 Top-5 results of comparing the attention approach to the non-
attentional retraining approach. The proposed attention model and
non-attention model trained at α = 0.5 were tested on regular images
(a), blended images (b) and adversarial images (c). In the attention
model, the attention layer is trainable. In the non-attention model,
the attention layer is removed and the last fully connected layer is

retrained according to the task goal. Both models were trained using
the same procedures. Overall, the attention model performed better
with a higher d ′ and lower criterion than the non-attention model. Each
violin plot represents an estimated probability distribution based on
200 target classes tested
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Appendix 1: Top-5 Results of All Experiments

In the main text, we applied a max decision rule to the
network’s outputs such that the most likely class was
taken as the network’s response. In machine learning,
this is referred to as top 1. Another common measure of
performance is top 5. In top 5, the model is assumed to be
correct when the correct label is within the top 5 most likely
classes. Here, we report top-5 results. The top-5 results
show the same pattern as the top-1 results reported in the
main text, which indicates that our results are robust to
common choices of decision threshold (Figs. 11, 12, 13, 14).

All experiments were evaluated using the same signal
detection framework with the only difference that top-5 hit
rate and top-5 false alarm rates were used to compute d ′ and
criterion. Top-5 hit rate is simply a special case of hit rate
where we consider the model makes a correct classification
(i.e. true positive) so long as the correct class is among
the top-5 predictions. Similarly, top-5 false alarm means
we consider the model has made a false positive mistake
when the class that the current model corresponds to (e.g. a
Chihuahua attention model) appears in the top-5 predictions
(e.g. predicting Chihuahua when there is no Chihuahua in
the image).
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