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Abstract

Multidimensional scaling (MDS) models represent stimuli as points in a space consisting of a number of psychological
dimensions, such that the distance between pairs of points corresponds to the dissimilarity between the stimuli. Two
fundamental challenges in inferring MDS representations from data involve inferring the appropriate number of dimensions
and the metric structure of the space used to measure distance. We approach both challenges as Bayesian model-
selection problems. Treating MDS as a generative model, we define priors needed for model identifiability under metrics
corresponding to psychologically separable and psychologically integral stimulus domains. We then apply a differential
evolution Markov-chain Monte Carlo (DE-MCMC) method for parameter inference, and a Warp-III method for model
selection. We apply these methods to five previous data sets, which collectively test the ability of the methods to infer an
appropriate dimensionality and to infer whether stimuli are psychologically separable or integral. We demonstrate that our
methods produce sensible results, but note a number of remaining technical challenges that need to be solved before the
method can easily and generally be applied. We also note the theoretical promise of the generative modeling perspective,
discussing new and extended models of MDS representation that could be developed.

Keywords Multidimensional scaling - Bayesian model selection - MDS dimensionality - Separable and integral stimuli -

Warp-III bridge sampling

Introduction

Multidimensional scaling (MDS) was developed in the
1950s in cognitive psychology as a statistical method for
making inferences about human mental representations
(Shepard 1957, 1962; Kruskal 1964) MDS models the
similarities or psychological proximities between pairs
of stimuli, representing each stimulus as a point in a
multidimensional space, such that more similar stimuli are
nearer each other. The core psychological motivation is
that the similarities reflect the basic cognitive process of
generalization. Generalization can be thought of as the
ability to treat two stimuli as being the same, and has been
argued to serve as a basis for the mental organization of
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knowledge, and the capability of the mind to make adaptive
predictions about properties and consequences (Shepard
1987). For these reasons, mental representations found
via MDS methods have been and remain widely used in
cognitive process models of identification, categorization,
and decision making (e.g., Nosofsky 1992).

Soon after its development in cognitive psychology,
however, MDS algorithms found application as a statistical
method that produces a low-dimensional representation of
a set of objects, based on a measure of the similarities
between them. As a data-reduction or visualization method,
MDS has been applied in the natural, biological, and human
sciences, with application areas as diverse as representing
the similarities of skulls in archaeology, the tastes of
colas in marketing, and the voting patterns of senators in
politics (e.g., Borg and Groenen 1997; Cox and Cox 1994;
Schiffman et al. 1981).

Whether viewed as a model of psychological represen-
tation or a data-reduction method, a foundational challenge
in MDS modeling is determining the dimensionality M of
the representational space. In his 1974 Presidential Address
to the Psychometric Society, Roger Shepard identified six
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Fig.1 MDS representations
with integral and separable
metric structures
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basic challenges for MDS, the third of which was “The
problem of determining the proper number of dimensions
for the coordinate embedding space” (Shepard 1974, p.
377). A number of methods for solving the problem of
MDS dimensionality have been developed in both statistics
and psychology. The most common approach is a scree test
that aims to identify an “elbow” in the goodness-of-fit as
dimensionality increases (Cox and Cox 1994; Kruskal 1964;
Schiffman et al. 1981). Steyvers (2006) suggests the use of
cross-validation methods, although this approach does not
seem to be widely used.

Since choosing the correct dimensionality of an MDS
is naturally regarded as a model-selection problem—
that is, choosing between a one-dimensional versus two-
dimensional versus three-dimensional representation, and
so on—the statistically principled approach offered by
Bayes factors should provide a solution (Kass and Raftery
1995). Along these lines, Lee (2001) implements an
approach based on the Bayesian Information Criterion
(BIC). The difference between BIC values for representa-
tions with different dimensionality provides a crude approx-
imation to the Bayes factor. Oh and Raftery (2001) provide
a different approach to approximation by computing the
marginal likelihoods of different representations using plug-
in point estimates for the stimulus locations. This is an
approximation because the exact Bayes factor requires an
integration across the stimulus location parameters. Oh
(2012) developed a method based on spike-and-slab priors,
in which the dimensionality is determined by the marginal
posterior probabilities for each dimension that the coordi-
nate locations are not zero for all stimuli.

From the perspective of MDS as psychological models
however, none of these approaches qualifies as being
principled and complete. The key issue is that the theory of
mental representation developed by Shepard (1957, 1987,

1991) emphasizes the role that the metric structure of
the space plays in capturing key psychological properties
of the stimuli. In particular, the idea is that different
metrics capture the theoretical and empirical distinction
between separable and integral stimuli (Attneave 1950;
Garner 1974). Separable stimuli are those for which the
component dimensions can be attended to separately. An
example is different shapes of different sizes, since it is
possible for people to attend selectively to either shape or
the size. Integral stimuli, by contrast, are those for which the
component dimensions cannot be attended to independently.
The standard example is color, since it is typically not
possible for people to attend selectively to the underlying
hue, saturation, and brightness components.

Figure 1 shows how different metric structures are used
to represent integral and separable stimuli. In the left
panel, there are four stimuli, represented by the points
Pi, ..., Ps. The pairwise distances between these points,
such as djp between the first point and the second point,
are modeled using the Euclidean metric, and so correspond
to standard straight lines. In the right panel, there are
three stimuli, and the pairwise distances between them are
modeled according to the city-block metric. Intuitively, this
corresponds to comparing the stimuli on each underlying
dimension independently, then adding those dissimarilities
to get an overall measure of dissimilarity.

Admittedly, this account of integrality and separability
is a theoretical and empirical caricature, and much more
nuanced and detailed accounts are possible (Shepard 1991;
Tversky and Gati 1982). The point is that psychological
representations based on MDS need to make assumptions
about the metric structure of the space, and use metrics
other than the Euclidean metric. As Jékel et al. (2008, p. 2)
point out, from the origins of MDS as a psychological
model, “There was no a priori reason to believe that mental
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representations should be Euclidean.” Previous methods
for determining the dimensionality of MDS representations
using Bayesian model selection, however, have either been
insensitive to the metric structure of the representation (Lee
2001) or have focused on the Euclidean metric (Oh 2012;
Oh and Raftery 2001).

The use of non-Euclidean metrics raises another chal-
lenge, related to inferring MDS representations themselves.
There is evidence that it can be computationally difficult
to find multidimensional city-block MDS representations
(Groenen et al. 1998; Hubert et al. 1992), as well as find-
ing unidimensional MDS representations (Mair and Leeuw
2014). Given that these difficulties stem from basic geomet-
ric properties of the MDS representations, it seems likely
they will continue to present an issue for Bayesian methods
of inference.

Finally, there is the challenge of inferring the appropriate
metric structure for an MDS representation. Shepard (1991)
reviews the original statistical approach to this problem,
which involved applying non-metric MDS algorithms for
a large number of different metrics, and choosing the one
with the best goodness-of-fit. As Lee (2008) pointed out,
this approach neglects to account for the component of
model complexity that arises from the functional form
of parameter interaction (Pitt et al. 2006), which is
often the only difference between MDS models using
different psychologically interpretable metrics. Lee (2008)
developed a Bayesian approach in which the possible
metrics correspond to a parameter that is inferred jointly
with the coordinate location parameters that represent the
stimuli. Okada and Shigemasu (2010) developed and tested
this approach further, and showed it is capable of recovering
the correct metric in simulation studies. Both the Lee (2008)
and Okada and Shigemasu (2010) methods, however, failed
to resolve basic challenges in model identifiability that arise
from treating the choice of metric structure as a parameter
inference problem. It is possible these identifiability issues
could be addressed by considering the choice as a model-
selection problem, and restricting the set of possibilities to
a few interpretable metrics.

Accordingly, the goals of this article are to examine the
implementation of MDS models that use psychologically
interpretable metrics, including both the Euclidean and a
non-Euclidean metric, and explore the possibility of infer-
ring the appropriate dimensionality and metric structure
of these representations using Bayesian model-selection
methods. The structure of the remainder of the article is
as follows. In the next section, we define MDS models,
and address the issue of model identifiability under differ-
ent metrics. Consistent with previous literature, we argue
that the city-block metric presents fundamental problems
in making MDS representations identifiable. This leads to
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the development of joint prior distributions on the stimulus
location parameters for the Euclidean metric, and non-
Euclidean metrics other than the city-block metric. With
these priors established, we apply an approach to Bayesian
inference using differential evolution Markov-chain Monte
Carlo (DE-MCMC) computational sampling methods. The
DE-MCMC method helps address the difficulties inher-
ent in inferring MDS representations, which are especially
evident in non-Euclidean cases. We then use the Warp-
IIT bridge sampling method to approximate the marginal
densities needed to determine Bayes factors. We apply the
method to five previously studied data sets, differing in
the type of stimuli and expected dimensionality of their
MDS representation. For all five applications, the method
makes sensible inferences about dimensionality, and pro-
duces interpretable stimulus representations. We conclude
with a discussion of remaining statistical and computa-
tional challenges, and potential directions for refining and
extending the approach.

MDS Model Identifiability
The Identifiability Problem

Formally, suppose there are N stimuli to be represented,
based on observed proximity data from P participants,
with d; j; measuring the proximity between the ith and jth
stimulus provided by the kth participant. We assume these
observed proximities are normalized to lie between 0 and 1.
The point representing the ith stimulus in a M-dimensional
space is p; = (pi1,..., pim) and the distance between
points p; and p; is measured by the Minkowski metric with
metric parameter r, SO that

M

1/r
dijk = (Z | Pim — ij|r> : (1

m=1

The Minkowski metric has special cases of the city-block
metric when » = 1 and the Euclidean metric when r = 2.
Values of r between 1 and 2 can potentially be interpreted
as intermediate assumptions about the independence of
stimulus dimensions between the end point of complete
separability and complete integrality.

The goal of MDS is for the modeled distances ﬁi ik to
correspond to the observed proximities d;jx. We use the
probabilistic model

A 1
d;ix ~ Gaussian | d;ir, —= |, 2
ijk < ijk O‘2> 2
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where o is the standard deviation with which the observed
proximities are measured.! It is assumed to be the same for
all of the proximities, and is given a prior

o ~ TruncatedGaussian (0.15, 0—122) T (0,), 3
where the T (0, ) indicates the sampled value is truncated to
be a positive real number. This is an informative prior (Lee
and Vanpaemel 2018), consistent with previous data and
modeling. Intuitively, o corresponds to the average standard
deviation of different individual ratings of the same pair
of stimuli. Empirical estimates of this standard deviation
in previous data tend to range from about 0.1 to about 0.2
(Lee 2001; Lee and Pope 2003).> Accordingly, the prior is
centered on 0.15, but allows a wide range of possibilities.

We note that this MDS model does not incorporate
individual differences. It is assumed that the same point
p; represents the ith stimulus for all participants. We also
emphasize, however, that individual-level proximity data
d;j are modeled, rather than averaged or aggregated data
across participants. The problems inherent in averaging
data have long been understood (Estes 1956), and have
been studied in the specific cognitive modeling context
provided by MDS representations (Lee and Pope 2003).
Our approach is to require the same underlying MDS
representation to provide an account of each individual
proximity matrix.

To complete the generative model, a straightforward
approach would be to give all of the coordinate locations
for the representational points uniform priors p;, ~
Uniform(—1, 1). These priors, however, made the model
non-identifiable, because the distances between points
are invariant under transformations (Borg and Groenen
1997, Ch. 2). The distances between points are preserved
under translation, reflection, axes permutation (for non-
Euclidean metrics), and rotation (for the Euclidean metric).
A principled Bayesian approach for controlling these
invariances to ensure model identifiability constrains the
coordinate location parameters through a joint prior
distribution that depends on the assumed metric.

Previous Approaches

Existing MDS modeling methods that use Bayesian
inference almost always rely on post-processing to address
the issue of identifiability. The method developed by Lee
(2008) post-processes posterior samples of the coordinate

'We parameterize the Gaussian distribution in terms of mean and
precision parameters, for consistency with the JAGS graphical
modeling language.

2See also the data repository at https://osf.io/ey9vp/

location parameters to control for translation, reflection,
and permutation. For example, to control for translation,
the method zero centers every posterior sample of the
sets of coordinate location. The Lee (2008) method does
not control for rotation, which is problematic, because the
method also attempts to infer the r metric parameter, and
so the inferred representational space can have a Euclidean
metric, which requires rotational invariance.

Most other methods, in contrast, assume the MDS
space is Euclidean. The post-processing of the coordinate
location parameters used by both Oh and Raftery (2001)
and Oh (2012) assumes a Euclidean space and controls for
translation, reflection, and rotation. Okada and Mayekawa
(2018) extend the approach developed by Okada (2012),
which relies on Procrustes analysis. Their post-processing
uses a loss function to align posterior samples of the
coordinate location, but again assumes a Euclidean space.

Besides the lack of flexibility in the nature of the
distance metric, post-processing methods have the effect
of implementing modeling assumptions without explicitly
specifying those assumptions as part of the model. While
this is often practical, it is theoretically inelegant, and
contrary to the goals of generative modeling. Ideally, the
constraints required for model identifiability should be part
of the model itself. In the case of MDS models, these
constraints are naturally imposed through the specification
of a joint prior over the coordinate location parameters
that addresses the transformational invariances, removes
the need for post-processing, and makes bridge sampling
feasible.

This generative approach is used by the ‘“parameter
fixing” method considered by Okada and Mayekawa
(2018), who evaluate it as a contrast with the Procrustes
methods that are their focus. Parameter fixing corresponds
to setting a structured joint prior over the coordinate
location parameters. Okada and Mayekawa (2018) define
the appropriate prior for a Euclidean space using results
provided by Bakker and Poole (2013), which were derived
using an analytic method based on matrix properties.

Our goal is to extend this approach to include non-
Euclidean representations. We start by considering one-
dimensional MDS representations, before considering mul-
tidimensional representations in both Euclidean and non-
Euclidean metric spaces. We take a geometric approach
to identifying the required joint priors for invariance con-
straints, complementing the non-geometric approach of
Bakker and Poole (2013) for the Euclidean metric.

One-dimensional Representation

For a one-dimensional representation, all of the psycho-
logically interpretable metrics we consider give the same

@ Springer
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Fig.2 Identification constraints p =0

for a one-dimensional

representation P2 >0
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distances. The required constraints on the points are shown
in Fig. 2, with one point fixed at the origin to control
translation, and second point restricted to be positive to
control reflection.

These constraints can be formalized by a joint prior with

p1 =0
p2 ~ Uniform(0, 1)
P3,..., DN ™~ Uniform(—l, 1). 4)

Euclidean Multidimensional Representations

Figure 3 shows the constraints needed to identify Euclidean
MDS representations in two and three dimensions. In
the two-dimensional case, the first point p; is fixed at
the origin, to control translation, the second point p, is
constrained to the positive x-axis, to control reflection in
the y-axis and rotation, and the third point p5 is constrained
to have a positive y-value to control reflection in the x-
axis. The same logic is applied in the three-dimensional
case, with p; controlling translation, p, and p5 controlling
reflection and rotation in successive axes, and p, controlling
the final reflection.

These are the first two cases of a general pattern, clear by
induction, that applies to a M-dimensional representation,
and corresponds to the matrix result provided by Bakker
and Poole (2013). An intuitive presentation of the inductive
pattern is shown below, where “0” denotes fixing a

pi1 =0, p2=0
po1 >0, p2a =0 P
p32 >0 ° p32 >0, p33 =0
o pa3 >0
o
o) P1 P2 y
o
o
o

O O Oo—e Oo—0—

coordinate location to zero, “+” denotes constraining it to be
positive, and “R” denotes imposing no constraint.

- AN ™M < Q
EEEE E
[ayapaiya) o
pt 0000 ...0
p 000 ...0
p3 R+00 ...0
ps RR+0...0
ps RRR+...0

Formally, these constraints in D dimensions correspond
to the joint prior

,pip = 0

pa1 ~ Uniform(0, 1)
,p2p = 0

p31 ~ Uniform(—1, 1)

plls
p22,...

p32 ~ Uniform(0, 1)
p33,---»p3p = 0
Pal, a2~ Uniform(—l, 1)
D43~ Uniform(O, 1)
P44, ... pap = 0

o)

pi1 =0, pr2=0, p13=0
o pa1 > 0, pa2 =0, pa3 =0 P4

o

Fig.3 Identification constraints for Euclidean representations in two dimensions (left) and three dimensions (right)
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Non-Euclidean Multidimensional Representations

r=2.0

&
N

Fig.4 The nature of iso-distance curves and the identifiability of mid-points for the three Minkowski metrics corresponding to r = 2 (Euclidean),

r = 1 (city-block), and r = 1.5

Non-Euclidean Multidimensional Representations

Finding constraints for invariance in non-Euclidean metrics
is more complicated, and is especially difficult for the
city-block metric. The basic geometric problem was noted
as early as Arnold (1971), and discussed in Shepard’s
(1974) presidential address. A simple demonstration of the
fundamental problem is provided by Fig. 4. The three panels
correspond to Euclidean (r = 2), city-block (r = 1), and
a general non-Euclidean (r = 1.5) metric, and show unit
iso-distance contours around the same two points in each
metric, shown as black dots. These iso-distance contours are
the “unit circles” of each metric, showing all the points in
the space that are the same distance from the two points.
For the Euclidean metric, these contours are familiar circles,
and coincide at only one point, shown by the white dot. This
means that there is a unique point in the space that is equally
distant from the two points shown by black dots. In the
context of an MDS representation, a stimulus that is equally
different to both of the points can be uniquely identified.
For the city-block case, however, the iso-distance
contours are diamonds, and there are infinitely many points
that are equally different. Three specific possibilities are
shown by white dots, but clearly any point along the line
where the iso-distance contours coincide is possible. In the
context of an MDS representation, this means that there is
a fundamental difficulty in identifying a stimulus that is
equally different to both of the points. This basic problem
is not, in general, solved by the introduction of additional
stimuli that provide additional constraints. Indeed, the
problem compounds for potential city-block representations
with many stimuli. Bortz (1974, see, especially, Figures 2
and 3) provides compelling examples, and the same point is

emphasized in the seminal text by Borg and Groenen (1997,
pp. 369-372).

Figure 5 provides a concrete example, based on the
more general configuration examined by Borg and Groe-
nen (1997, Figure 17.6). Each panel shows a representa-
tion of six fictitious people in terms of two underlying
dimensions. The city-block distance between each pair of
people is identical in both configurations. This means,
of course, that this proximity matrix is equally consis-
tent with both representations, and either could be inferred
from the data. But, the two representations are substan-
tively different, in non-trivial ways. The representations
do not differ simply by changing the axes, and have
basic structural differences. For example: Cedric, Ding-
bats, and Ethelred are co-linear in the first representation,
but not in the second, where Dingbats, Ethelred and Fiona
become co-linear; the ordering of Albert and Beowulf
changes on both dimensions between the configurations;
and so on. In fact, once the lack of invariance revealed
by the Borg and Groenen (1997, Figure 17.6) analysis is
understood, it is clear that many additional representations
for the proximity between the six people could be con-
structed, supporting a wide range of different meaningful
interpretations.

A practical approach for identifying city-block repre-
sentations, used by Nosofsky (1985), relies on determining
the values of some stimuli on some dimensions, by means
external to the MDS modeling. Ultimately, this strategy
can solve the problem, if it is possible to find the val-
ues of every stimulus on every dimension. But, Fig. 5
suggests the strategy may not be effective in situations
where the identification of just a few stimuli is possible.
In both representations, Dingbats is at the same location,
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Fig.5 Two city-block representations of six fictitious people in terms of two dimensions. Both representations have identical proximity matrices

consistent with values on dimensions having been exter-
nally determined, yet the locations of the remaining stimuli
are under-determined. In addition, if, for example, Albert
was additionally identified as being located in the position
shown in the first representation, that would constrain the
inference about Beowulf and Cedric, but would not con-
strain Ethelred and Fiona, who could still be inferred to be at
either of the possibilities shown in the two representations.
Thus, while the addition of stimuli, or the identification of
dimension values for some stimuli, may work in some spe-
cific circumstances, we do not believe either represents a
general approach to making city-block MDS representations
identifiable.

We do not know how to solve the problem of MDS
model invariance for the city-block metric. As the right-
most panel of Fig. 4 makes clear, however, the problem
does not occur for Minkowski-metric parameters r > 1.
For the r = 1.5 metric, the iso-distance contours again

p11 =0, po=0 P
p21 >0, 0 < pyp < pay

p1i1 =0, p2=0, p13=0
P21 = 0, 0 < p2a < a1, 0 < po3 < pao

coincide at only one point. The asymmetry of these contours
makes clear they do not have the rotational invariance of the
Euclidean » = 2 metric. In this way, general non-Euclidean
metrics, such as r = 1.5, capture the psychological
idea that the dimensions in an MDS representation have
meaning and allow selective attention, while avoiding the
degenerate lack of identifiability inherent in the city-block
metric.

Figure 6 shows the constraints needed to identify these
sort of non-Euclidean MDS representations in two and three
dimensions. In the two-dimensional case, the first point p,
is once again fixed at the origin, to control translation, the
second point p, is constrained to the positive quadrant to
control reflection. In addition, the constraint that py> < po;
is imposed, requiring the value of the second stimulus on
the y-axis not to be larger than its value on the x-axis.
This constraint controls for axis permutation, preventing the
two dimensions from being swapped, and so allocates a

Fig.6 Identification constraints for non-Euclidean representations in two dimensions (left) and three dimensions (right)
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specific underlying stimulus dimension to each axis. The
three-dimensional case extends this logic by requiring that
the z-axis value of the second point be positive, to prevent
reflection, and be less than the value of the second point on
the y-axis, to prevent permutation.

These first two cases once again make clear a general
pattern, in which the coordinate values of the second
point are positive and order constrained.’> Formally,
the constraints for non-city-block but non-Euclidean D
dimensions are

DPils---» PID 0

P21, ..., P2D ™~ Uniform(O, 1) P21 =...=ZPpP2p

pP31,---sP3D ™ Unifom(—l, 1)
(6)

Bayesian MDS Inference via DE-MCMC

When posterior samples for MDS models are obtained
using conventional Markov-chain Monte Carlo algorithms
(MCMC; e.g., Gamerman & Lopes, 2006), it can occur
that chains get stuck in local maxima. In our experience,
the reason is typically that the stimuli that are constrained
are similar to each other. To prevent local maxima, we
implemented a heuristic to order the stimuli in a way that
those defining the constraints are dissimilar. We motivate
and describe this heuristic in detail in Appendix 1. In
addition, to improve sampling, we used the differential
evolution Markov-chain Monte Carlo algorithm (DE-
MCMC; e.g., Heathcote et al. in press; Turner et al. 2013)
that helps to guide the chains to regions of high posterior
density.

DE-MCMC is a population-based MCMC algorithm that
generates efficient proposals via a population of interacting
chains (Turner et al. 2013). One strength of the algorithm
is that it works well for highly correlated target distri-
butions. However, we used DE-MCMC primarily for the
reason that the interacting chains can guide each other to
regions of high posterior density which helps to avoid the
issue of chains getting stuck in local maxima. Specifically,
during burn-in, we used a migration step that remedies
the problem of outlier chains in an effective manner (for
details, see Turner et al. 2013, Appendix 2). We found that
the combination of the ordering heuristic and DE-MCMC
provides effective sampling consistently for the Euclidean
metric, and is partially effective for non-Euclidean
metrics.

3These order constraints can be imposed either in decreasing manner,
as shown in Fig. 6 for easier visualization, or in an increasing manner,
as they are in our code.

Bayesian Model Comparison via Bridge
Sampling

Marginal Likelihood

Comparing MDS models with different dimensions and
metrics via Bayes factors and posterior model probabilities
requires the computation of the marginal likelihood for all
of the models, M,, ., being considered where m denotes
the dimensionality and r the metric. Let D denote the
observed data (i.e., the pairwise dissimilarity ratings d; ;)
and P denote the N x m matrix with the latent stimulus
coordinates for each stimulus. The marginal likelihood for
model M,, , corresponds to the normalizing constant of the
joint posterior distribution for § = (P, 0):

pD | Mm.r):f‘I(a | D, My, ) do
=ffP(D|Ps o, Mm,r) p(P‘Mm.r> p(ale,r) dPdo,
_—

Likelihood

_Joint Prior on Prior on
Stimulus Locations  Imprecision

)

where ¢(@ | D, M,,,) denotes the unnormalized joint
posterior density.

Bridge Sampling

Since the marginal likelihood in Eq. 7 is not available
analytically, we use Warp-IIIl bridge sampling (Meng
and Schilling 2002) to estimate this potentially high-
dimensional integral. Bridge sampling (Meng and Wong
1996; for a recent tutorial, see Gronau et al. 2017) is based
on the following identity:

E0) [1(0) (0 | D, My )]
Ep©p.M,,,) [1(0) g(0)]

where the numerator is an expected value with respect
to a proposal distribution g(6), the denominator is an
expected value with respect to the parameter posterior
distribution p(@ | D, M,, ), and k(@) is a function such
that 0 < |[[h(0) p(d | D, M, ,)g®)d0| < oco. The
bridge sampling estimate is obtained by sampling from
the proposal distribution g(#) and the posterior distribution
p@ | D, M,, ,) to approximate the two expected values.
Meng and Wong (1996) showed that the optimal choice for
h(0) is given by

P(D | Mm,r) =

; ®)

ho(®) o [51G(0 | D, My) + 52 p(D | M) g@®)]
)

where s; = n;/(n1 + nz), i € {1,2}, n; denotes the

number of samples from the posterior p(8 | D, My, ,),

and n; denotes the number of samples from the proposal
g(0). The optimal choice for #(#) depends on the marginal
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likelihood of interest. Therefore, in practice, the bridge
sampling estimate is obtained via an iterative scheme,
presented below, that updates an initial guess of the marginal
likelihood until convergence.

The variability of the bridge sampling estimate is
governed not only by the number of samples but also,
by the overlap between the proposal and the posterior
distribution. To obtain estimates with low variability, it
is therefore prudent to maximize the overlap between
these two distributions. The Warp-III approach attempts to
create a large overlap by fixing the proposal to a standard
multivariate Gaussian distribution and then manipulating
(i.e., “warping”) the posterior in a way that matches the
first three moments of the two distributions.* Crucially, the
warping procedure retains the normalizing constant of the
posterior (i.e., the marginal likelihood of interest).

A prerequisite for the warping procedure is that all
elements of the parameter vector are allowed to range
across the entire real line. This can be achieved via a
change-of-variables of the form ¢ = f(0), where f
is a suitable> vector-valued function that transforms the
constrained elements of @ so that all elements of ¢ are
unconstrained.® The Warp-III procedure is based on the
following stochastic transformation of the unconstrained
parameter vector {:

n=bC"" ¢ -p), (10)

where b ~ Bernoulli (0.5) on {—1, 1}, x denotes the
expected value vector of the posterior samples, and £ =
CCT denotes the posterior covariance matrix (ie., C is
obtained via a Cholesky decomposition).

Figure 7 illustrates the warping approach for the
univariate case. In the upper-left panel, the solid line
corresponds to the standard Gaussian proposal distribution
and the gray histogram depicts synthetic posterior samples.
Subtracting the posterior mean from all samples matches the

4Note that other proposal distributions are conceivable. The only
constraints are that the proposal has a zero mean vector, an identity
covariance matrix, and exhibits no skewness.

SThe function f needs to be one-to-one and its inverse f~! needs to
have a well-defined Jacobian.

SWe use a function f that applies a log transformation to o and
(scaled) probit transformations to the non-zero elements of P. The
transformation for the ordered coordinates of the second stimulus for
the non-Euclidean case is described in Appendix 2. Note that it is
irrelevant whether the coordinates are ordered as decreasing, as shown
in Fig. 6 for easier visualization, or increasing, as implemented in
our code. The transformation described in the appendix assumes the
latter. These transformations can be applied after having obtained
posterior samples for #. Furthermore, where necessary, the expressions
are adjusted by the relevant Jacobian term |det 7 -1 ©)].
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first moment of the proposal and the posterior distribution,
as shown in the upper-right panel. Dividing all samples by
the posterior standard deviation matches the second moment
of the two distributions, as shown in the lower-right panel.
Finally, attaching a minus sign with probability 0.5 to the
posterior samples achieves symmetry and thus matches the
third moment of the proposal and the posterior distribution,
as shown in the lower-left panel.

The Warp-III bridge sampling estimate based on %,(6)
is computed via an iterative scheme where the value of the
estimate at iteration ¢ is given by (for more details see,
Gronau et al. 2019):

n

1 by
ny Z s1lp.i+s2 p(DI My )

~ ~
]J(D | Mm’r)(t+l) = lnl s (11)
1 3 1
n s I1,j+s2 p(D| My, )®
with
|%|[Q(Zﬂ—ile,Mm_,-)-i-q({j‘-\D,Mm,r)}
l])j = — ’ (12)
o€ (¢5-1))
and
Ii;|I:‘I(IAL—éf?i|D,./Vlmvr)+q(,14.6‘;,[,|D’/\/[m’r):|
hi= (13)

g(;)
In Egs. 12-13, g(- | D, M, ) denotes the unnormalized
posterior density with respect to the unconstrained parame-
ter vector ¢, {;’f, ;;, e, ;‘Zl} denote n| posterior samples,
and {5, 15, - - -, 77,,2} denote n, samples from the standard
multivariate Gaussian proposal distribution. To compute the
Warp-III estimate, one obtains 2n; posterior samples: the
first half of these samples is used to approximate g and
C with their sample versions ft and C, the second half
of the posterior samples is used in the iterative scheme
(i.e., Eq. 11). We use the bridgesampling R package
(Gronau et al. in press) to compute the bridge sampling
estimate in Eq. 11.

Applications

In this section, we present applications of our method to
five existing data sets. For each application, we describe the
stimuli and the nature of the data, as well as make clear
our expectations about the MDS representation that will be
inferred. In particular, we state our expectations about both
the dimensionality and metric structure of the representation
whenever possible. The results we present are based on
considering MDS models up to and beyond this expected
dimensionality, so that the inference our method makes
is clear. Where possible, we apply our method under the
assumption that the metric space is both Euclidean (r = 2)
and non-Euclidean (r = 1.5) so that an inference can also



Comput Brain Behav (2020) 3:322-340

331

0.5 0.5
Warp-0 Warp-I

0.4 - 0.4
2 031 _ 2 03 )
(2] (2]
[ M [
[0 [0 .
O 0.2 A 0.2 -

0.1 1 0.1 1 |

mean =0
0.0 - 0.0 - —4
I T T T 1 I T T T 1
-10 -5 0 5 10 -10 -5 0 5 10
variance = 1
0.5 0.5
Warp-lll - Warp-Il

0.4 - [) 0.4 - 7
2 0.3 2 0.3 I
(7)) 7] .
C C
(0] (0] N
Q 0.2- Q 0.2-

0.1 1 0.1 1

symmetry
0.0 - 0.0 - [
I T T T 1 I T T T 1
-10 -5 0 5 10 -10 -5 0 5 10

Fig.7 Illustration of the Warp-III procedure. The black solid line shows the standard Gaussian proposal distribution and the gray histogram shows
synthetic posterior samples. Available at https://tinyurl.com/y7owvsz3 under CC license https://creativecommons.org/licenses/by/2.0/

be made about the integrality or separability of the stimulus
domain. For some applications, we were unable to generate
samples with acceptable convergence for the r = 1.5 metric.
In those cases, we only report results assuming the r = 2
metric.

Line Length

Our first application involves the similarity judgments
between nine lines of equally increasing length provided
by 27 participants, as reported in Cohen et al. (2001).
We expect these stimuli to have a one-dimensional MDS
representation, corresponding to line length. Because the
Minkowski metrics are all equivalent in a one-dimensional
space, we do not have any expectations about the metric
structure. Thus, we applied our method to these data by

assuming a Euclidean metric.” As for all of our applications,
we used 15 chains and 500 burn-in samples. During burn-
in, the probability of a migration step was set to 0.05. After
burn-in, migration was switched off, and the algorithm was
run for 9000 iterations. We only retained every third sample
so that we ended up with 3000 samples per chain for further
use (i.e., a total of 45,000 samples collapsed across chains).

The left panel of Fig. 8 shows posterior model
probabilities, assuming equal prior probabilities, for one-,
two-, and three-dimensional MDS representations. To
assess the stability of the posterior model probability
estimates, we ran the Warp-III procedure five times based on
new samples from the proposal distribution (we always used

"We note, however, for completeness that we had difficulty with
convergence using the r = 1.5 metric for these data.
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Fig.8 Results for line-length similarity data from Cohen et al. (2001).
The left panel shows the posterior model probabilities for one- through
three-dimensional MDS representations. The right panel shows the

the same set of posterior samples). These five repetitions
are drawn as separate lines but, in this case, the results are
so similar that they are visually indistinguishable. Because
of the assumptions of equal prior probabilities, the ratio of
any pair of posterior probabilities is naturally interpreted
as a Bayes factor. The key result is that the expected
one-dimensional representation is inferred, with a posterior
probability near one.

The right panel of Fig. 8 shows the inferred one-
dimensional MDS representation. The black lines show
the stimuli in terms of their physical line lengths,
located at the posterior mean of their location in the
psychological space. The blue histograms show the
marginal posterior distributions for each line stimulus. The
MDS representation arranges the line stimuli in order of
their length, but they are not evenly spaced, despite the
lines increasing in constant physical increments. Instead,
the psychological representation shows compression for the
longer lines, consistent with basic psychophysics (Fechner
1966). This compression is large enough that the posterior
distributions begin to overlap for the longest line stimuli.

Colors

Our second application considers classic data reported
by Helm (1964), involving the similarities between ten
colors. The experimental procedure involved trials in which
participants were presented with physical tiles of three
different colors, and moved one of the tiles to reflect their
perceived overall similarity of the color of this tile to the
colors of the other two tiles. Based on these responses, Helm
(1964) calculated measures of pairwise similarities between
the colors, and the resulting proximity data have previously

@ Springer

inferred one-dimensional representation with black lines showing the
line stimuli at their inferred locations and blue histograms showing the
marginal posterior distributions for these locations

been considered in the MDS literature (e.g., Borg and
Groenen 1997; Carrol and Wish 1974). We consider only
the data from the ten participants with normal color vision.

We expect the MDS representation to use the Euclidean
metric, consistent with the integral nature of the color
stimulus domain. We also expect a two-dimensional
representation, following the color circle found by previous
MDS analyses of these and other color similarity data,
such as the Shepard (1962) original MDS analysis of data
reported by Ekman (1954).

Figure 9 shows the results of applying our method,
assuming a Euclidean metric. This was a case in which
we were unable to generate samples with acceptable
convergence for the r = 1.5 metric. For the Euclidean
metric, there is uncertainty regarding the dimensionality,
with a three-dimensional representation having probability
a little over 0.6 and a two-dimensional representation having
almost all of the remaining probability. The inferred three-
dimensional representation is shown by pairing the first two
dimensions as a two-dimensional plot in the center of Fig. 9,
and showing the remaining third dimension separately to
the right along an axis. Because of our ordering heuristic,
the yellow and purple-blue stimuli were fixed at the origin
and on the first axis. These assignments mean that the
first two dimensions effectively represent the expected color
circle that “bends” the visible physical spectrum from red
to purple colors into a circle that reflects the psychological
similarity between the end points. The third dimension,
which we did not expect, could correspond to something
like luminance, since low luminance purple-like colors are
generally located at one end of the dimension and high
luminance yellow-like colors are generally located at the
other end.
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Fig. 9 Results for color similarity data from color-normal subjects
reported by Helm (1964). The left panel shows the posterior proba-
bilities for one- through four-dimensional MDS representations. The
right panel shows the inferred three-dimensional representation, with
two dimensions shown as a two-dimensional plot in the center, and the

Rectangles with Line Segments

Our third application involves data reported by Kruschke
(1993) involving the similarity between eight geometric
stimuli. These stimuli consisted of rectangles with interior
line segments, and varied in terms of the height of the
rectangle and the horizontal location of the line segment. A
total of 50 participants provided similarity ratings on a nine-
point scale for all 28 stimulus pairs. Based on the original
(Kruschke 1993) and subsequent (e.g., Lee 2001, 2008)
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Fig. 10 Results for rectangles with interior line segments data reported
by Kruschke (1993). The left panel shows the posterior probabilities
for one- through three-dimensional MDS representations, for both the
Minkowski metrics with r = 1.5 and r = 2. The right panel shows

third dimension shown along an axis to the right. Circular markers and
labels show the inferred locations of each stimulus and error bars show
95% credible intervals for the marginal posterior distribution for each
dimension

analyses of these data, we expect a two-dimensional MDS
representation. We also expect the two stimulus dimensions
to be psychologically separable.

Figure 10 shows the results of applying our method
assuming both the r = 1.5 and r = 2 metrics. It is clear
that a two-dimensional representation with the separable
1.5 metric is inferred. It has essentially all of the
posterior probability, with one- and three-dimensional r =
1.5 representations, and all of the r = 2 representations
having essentially no posterior probability. The inferred

r =

the inferred two-dimensional representation. The stimuli are shown at
their inferred locations and error bars show 95% credible intervals for
the marginal posterior distribution for each dimension
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Fig. 11 Results for the Shepard circles data collected by Treat
et al. (2001). The left panel shows the posterior probabilities for
one- through three-dimensional MDS representations, for both the
Minkowski metrics with r = 1.5 and r = 2. The right panel shows

representation closely matches the ways in which the stimuli
physically vary, with each psychological axis corresponding
to an interpretable stimulus dimension. The horizontal axis
corresponds to the position of the line segment and the
vertical axis corresponds to the height of the rectangle.

Shepard Circles

Our fourth application involves data collected by Treat et al.
(2001), involving the similarity between nine geometric
stimuli known as “Shepard circles.” These stimuli consist
of a closed semi-circle with an interior ray from the
center to the perimeter. The nine stimuli are constructed
by exhaustively varying three different radius lengths and
three different angles for the internal ray. As for the
rectangles with line segments, we expect a separable two-
dimensional MDS representation. For these stimuli, we
expect the dimensions to correspond to the radius and angle
dimensions.

Figure 11 shows the results of applying our method
assuming both the r = 1.5 and r = 2 metrics.® It is
clear, once again, that a two-dimensional representation
with the separable r = 1.5 metric is inferred. The
inferred representation also again closely matches the ways
in which the stimuli physically vary, with the horizontal
axis corresponding to the radius of the semi-circle and the
vertical axis corresponding to the angle of the ray.

8For these stimuli, we did not have access to information about the
precise physical values of the radius and angles, and so the depictions
in Fig. 11 are approximate.

@ Springer

the inferred two-dimensional representation. The stimuli are shown at
their inferred locations and error bars show 95% credible intervals for
the marginal posterior distribution for each dimension

Colored Shapes

Our final application considers similarity data for nine
colored shape stimuli collected by Lee and Navarro (2002).
The stimuli were circles, squares, and triangles that were
colored red, green, and blue. The data were collected from
20 participants, each of whom rated the similarity of each
pair of stimuli on a five-point scale.

Following the previous analysis in Lee and Navarro
(2002), we expect a four-dimensional representation. This
representation is best understood as being the product
of a pair of two-dimensional representations, with one
representing the similarities between the shapes, and the
other representing the similarities between the colors. There
are only three shapes and three colors, and neither set of
three has a natural ordering. Instead, the circle, square, and
triangle are all approximately equally different from one
another, and the same is true of the red, green, and blue
colors. These equal similarities are naturally represented by
two-dimensional approximately equilateral triangles. The
four-dimensional representation we expect is simply the
independent combination of these two two-dimensional
subspaces.

Our expectations for the metric structure of the MDS
representations are less straightforward. Theoretically, the
interaction between the shape and color dimensions is a
classic example of a separable relationship. The metric
structure within the color subspace, however, is theoretically
integral, as for the previous application. Countering these
theoretical expectations is the fact that there are only three
values for the color and shape dimensions present in the
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Fig. 12 Results for colored shapes data reported by Lee and Navarro
(2002). The left panel shows the posterior probabilities for one-
through five-dimensional MDS representations for the Euclidean met-
ric. The middle and right panels show the inferred four-dimensional

stimulus set. The corresponding approximately equilateral
triangles could be equally well accommodated by any of
the Minkowski metrics we are considering. Thus, from
a statistical perspective—without regard to the theory of
separable and integral stimuli—we expect the simplest
metric to be inferred. Since all metrics should be able
to fit the data, the one with the smallest functional form
complexity should be preferred.

We found that this was a third case in which we were
unable to generate samples with acceptable convergence for
the r = 1.5 metric. Accordingly, Fig. 12 shows the results
of applying our method assuming the Euclidean metric.
A four-dimensional representation is clearly favored. This
representation is shown in terms of two two-dimensional
subspaces, and has the expected structure. The middle panel
of Fig. 12 shows a subspace that captures the similarity
relationships between the red, green, and blue colors. The
right panel shows a subspace that captures the similarity
relationships between the circle, square, and triangle shapes.
These subspaces were found using an orthogonal Procrustes
method (Borg and Groenen 1997, p. 162). In particular,
we solved for the orthogonal transformation matrix that
most closely mapped the inferred coordinate locations
to the expected representational structure, defined as the
product of two subspaces each with an equilateral triangle
configuration.

Discussion

Collectively, the five applications demonstrate that our
method is able to make reasonable inferences about MDS
representations. The inferred number of dimensions, and the
inferred stimulus locations, generally matched theoretical

representation, with two dimensions shown in each panel. The col-
ored shapes show the inferred locations of each stimulus and error bars
show 95% credible intervals for the marginal posterior distribution for
each dimension

expectations, with the exception of the color application.
In addition, where inferences about whether a Euclidean or
non-Euclidean metric structure were made, they matched
theoretical expectations. It is interesting to note that all
of the applications for which non-Euclidean metrics made
inference difficult involved stimulus domains for which the
expectation was that the Euclidean metric was appropriate.

We also think that the five applications serve to
demonstrate the usefulness of our approach to determining
dimensionality and metric structure. Our approach is to
treat these determinations as Bayesian model-selection
problems and use Bayesian posterior probabilities to make
inferences. Complete Bayes posterior probabilities have
not been used in this way previously to determine either
dimensionality or metric structure, and our introduction of
the Warp-III method to solve the difficult computational
approximation problems involved represents progress on
these long-standing challenges in MDS modeling.

Despite this progress, we think the greatest contribution
of the current work is to highlight fundamental challenges
in MDS models of mental representation, and suggest new
avenues for theoretical development. The challenges largely
stem from our insistence on fully Bayesian inference,
which has enormous advantages in terms of reaching
complete, coherent, and principled conclusions, but also
raises technical hurdles. The opportunities largely stem
from our adoption of a generative modeling approach (Lee
2018). In particular, we think there are many remaining
possibilities relating to the use of different metrics in MDS
representations, and that there is an opportunity to extend
the generative approach to develop more complete cognitive
process models for inferring MDS representations. We
conclude by discussing some of these challenges and
opportunities.
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Technical Challenges

Developing a generative MDS model in a Bayesian setting
required the key issue of identifiability and invariance to
be solved in terms of prior information, rather than more
heuristically through post-processing. We used an exist-
ing solution to this challenge for the Euclidean metric,
and proposed a solution for psychologically interpretable
non-Euclidean metrics with 1 < r < 2. We also high-
lighted, however, the fundamental intractability of MDS
representations using the city-block metric. This intractabil-
ity has been documented before (Bortz 1974; Frank 2006,
Figure 5.4; Shepard 1974, Figure 11), but has not pre-
vented the use of MDS representations inferred based on the
city-block metric in the cognitive modeling literature (e.g.,
Kruschke 1993; Lee and Wetzels 2010).

Our current approach to determining the appropriate
metric treats this inference as a model-selection problem,
and only considers the possibilities r = 1.5 and r =
2. Allowing for other metrics is theoretically interesting,
but computationally difficult. One obvious cost is the
need to generate posterior probabilities across a larger set
of candidate models. But it also seems likely that some
models will be difficult to make inferences about. We
tried our DE-MCMC approach for r = 1.1 on a number
of data sets, and were not able to achieve satisfactory
convergence. Furthermore, as explained above, for a few
of the applications, we were also not able to achieve
satisfactory convergence for » = 1.5. These challenging
cases involved stimulus domains for which the expectation
was that the Euclidean metric was appropriate, which
leads to a speculative suggestion that failure is related
to model mis-specification. This is a potential example
of a general aspect of Bayesian model comparison that
can be computationally challenging: in order to rule out
models that are likely mis-specified, one needs to be able
to infer them well enough that they can be part of the
model comparison. Although we believe that DE-MCMC
is a powerful sampling algorithm which substantially helps
alleviate the issue of non-converging chains, future research
should explore different sampling algorithms that may
perform better, particularly for non-Euclidean metrics.

Collectively, these technical challenges mean that our
approach cannot currently be applied to large naturalistic
stimulus domains. For example, Nosofsky et al. (2018)
consider MDS representations based on sparse matrices
of pairwise similarity judgments for a set of 360 images
of rocks, and Hebart et al. (2020) report extensive
crowd-sourced triadic comparison similarity data for 1854
images of real-world objects. Being able to determine
the dimensionality, metric structure, and psychological
representations of MDS representations of these domains
using the Bayesian framework would potentially offer deep
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insight into how people represent the real-world stimuli.
The successful applications we presented—in which there
were clear expectations about dimensionality, metric, and
representational structure—provide a basis for believing the
Bayesian framework can provide this insight to situations
where, because there are no clear theoretical expectations,
answers must be inferred from data, if and when the
computational technical hurdles are overcome.

Other Representations

We did not consider Minkowski metrics with r < 1. This
possibility has been proposed as a way of representing
stimulus domains in which the component dimensions
compete for attention (Shepard 1987, 1991; Tversky and
Gati 1982). The identifiability constraints for this metric
present an open research challenge, and it is not clear
how well DE-MCMC sampling methods will perform in
inferring representations.

There is also the possibility of moving beyond the
Minkowski family of metrics. In his presidential address,
Shepard (1974, Figure 11) presented a taxonomy of
metric spaces, each of which makes different fundamental
representational assumptions that could be appropriate for at
least some stimulus domains. There has been relatively little
work in exploring these possibilities. Lindman and Caelli
(1978) investigated MDS representations using Riemannian
spaces with constant curvature, and Cox and Cox (1991)
presented compelling applications for a special case of this
approach involving MDS representations on a sphere.

A new idea raised by our application to the colored shape
stimuli involves the possibility of different metric structures
within the same representation. These stimuli involved
two sorts of stimulus dimensions: those representing color,
which are usually considered to be integral, and those
representing qualitatively different shapes, which seems
more separable. Certainly the interaction between the color
dimensions and the shape dimensions would be expected
to be separable, since it seems likely people can selectively
attend to either the color or the shape of a stimulus,
depending upon the cognitive context. This suggests a
generalization of the MDS models in which each pair of
dimensions is associated with a metric.

Finally, there are alternative representational models,
which do not assume stimuli are represented by values on
dimensions, that can compete with or complement MDS
models. These alternatives include feature-based represen-
tations (Tversky 1977), such as those found by additive
clustering and related methods (Shepard and Arabie 1979)
and special cases such as tree-based models (Corter 1996;
Shepard 1980). One attraction of the Warp-III approach
we used is that it could estimate Bayes factors between
fundamentally different sorts of representations—such as
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comparing dimensional and featural representations—since
it operates directly on posterior samples for each model
applied independently to the data. Even further, Navarro and
Lee (2003) proposed a hybrid model of stimulus represen-
tation that combined both dimensions and features, and it
would be conceptually elegant to choose between all of the
candidate models, with various combinations of dimensions
and features, using our methods. Navarro and Lee (2003)
used an approximate analytic approach for this purpose,
which would be significantly improved by an approach
based on Bayes factors.

MDS Cognitive Process Models

Our modeling approach is generative, but is based
on an extremely simple cognitive model. In essence,
we assume that all participants have the same MDS
representation, and produce dissimilarity judgments for
pairs of stimuli that directly reflect the distances between
those stimuli in the representation. It is likely that much
better generative models can be developed by considering
more realistic processing assumptions, and especially by
including individual differences.

One example, involving the line-length application, was
presented in a preliminary form by Lee (2014). A simple
plot of the raw behavioral data suggests that one of the
27 participants appears to have reversed the scale that was
used to judge similarity. This means that their judgments
contaminate the inference of the MDS representation. Lee
(2014) used a simple latent-mixture model extension of the
basic MDS generative model, in which either the scale was
used correctly or reversed. One participant was inferred
to have reversed the scale, as expected. Perhaps more
importantly, however, the resulting inference about the one-
dimensional MDS representation was shown to have less
uncertainty than the one shown in Fig. 8. In this way,
the introduction of individual differences in the cognitive
process of similarity judgment helped decontaminate the
inference about the representation of stimuli.

The same basic generative approach could support much
more general cognitive process modeling using MDS rep-
resentations. The hierarchical, latent mixture, and common
cause model structures advocated by Lee (2018) could allow
for rich accounts of individual differences in judgment
processes or stimulus representations, and allow for mod-
els that extend beyond the judgment of similarity to other
cognitive capabilities like categorization and inference. As
one example, Ennis (1992) considers extended assump-
tions about MDS representations that allow for the noisy
representation of perceptual stimuli, which could be incor-
porated by adding hierarchical structure to the coordinate
locations. As another example, there are extensions of the
basic MDS model we considered that allow for structured

individual differences, such as INDSCAL (Carroll and
Chang 1970; Carroll 1972). These would be easy to imple-
ment within our generative modeling framework. A model
like INDSCAL, which assumes individuals weight the latent
stimulus dimensions differently, relies on the appropriate
number of dimensions being inferred, and evidence that the
stimulus domain is separable. In this way, the potential of
our method to make these inferences is especially important.
As a final example, the rectangle and line segment stim-
uli are used by Kruschke (1993) to study category learning,
but the similarity data and category learning data are ana-
lyzed independently. In effect, the similarity data are used to
generate the MDS representation, and that representation is
then assumed to provide the fixed basis for category learn-
ing. An alternative approach would be to infer the MDS
representation jointly from both the similarity judgments
and the category learning choices. This sort of flexibility
raises the possibility of tackling more complicated cogni-
tive phenomena, such as the ability to adapt representations
in response to changes in the external environment, or the
current context or goals.

Conclusion

We adopted a Bayesian model-selection approach to the
problem of determining the dimensionality and metric struc-
ture of MDS representations, while considering psycholog-
ically interpretable Euclidean and non-Euclidean metrics.
Our methods for inferring the representations and choosing
their dimensionality and metric structure show the promise
of the approach, but computational challenges remain a
barrier in terms of an easy-to-use general capability. Our
methods and applications also show the promise of plac-
ing MDS representations in a generative cognitive modeling
framework, offering the possibility of new models of how
people represent stimuli, and how those representations help
guide behavior.
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Appendix 1. The ordering heuristic

Figure 13 provides a concrete example to motivate the
need for the ordering heuristic. It is clear this is an
inferior representation to the one presented in Fig. 8. In
Fig. 13, the first- and second-line stimuli, which are the two
shortest, are located at almost the same point, rather than
being appropriately spaced to reflect their psychological
dissimilarity. Consistent with this intuition, the posterior
density is worse for the representation in Fig. 13 than the
representation in Fig. 8.

This suboptimality is caused by the naive application of
the constraints identified in Fig. 2 for a one-dimensional
representation. The first stimulus is fixed at the origin, and
the second stimulus is constrained to be positive. It is clear
from Fig. 13 that the second stimulus is indeed inferred to be
positive, but is extremely close to zero, with the remaining
longer line stimuli “flipping” to negative values in the MDS
space. This configuration still satisfies the proximity data
reasonably well, because the required distance between the
first two stimuli is small, and the distances from the first
and second stimuli to all of the others is approximately
conserved. Thus, it is the choice of the two similar stimuli
as those that are constrained that leads to this potential for a
local maximum and suboptimal representation.

Accordingly, we developed an ordering heuristic to try
and assign the constraints for the various dimensionalities
and metrics to stimuli that are sufficiently dissimilar.
Because higher dimensionalities place constraints on more
than two stimuli, the general approach is to order all of the

stimuli. Our heuristic for doing this is based on the across
participants averaged pairwise dissimilarity ratings. The
first two stimuli are chosen to be the ones with the largest
averaged pairwise dissimilarity. The remaining stimuli are
chosen, one at a time, by considering the minimum averaged
pairwise dissimilarity to the already selected stimuli.
Specifically, the next stimulus is always chosen to be the
one with the maximum value for the minimum averaged
pairwise dissimilarity to the already selected stimuli.

We used this ordering heuristic for the colors and colored
shapes applications. For the line-length application, we used
the heuristic as described but then, in an additional step,
switched the first stimulus with the second stimulus. This
switch helped prevent the posterior for the ninth stimulus,
corresponding to the longest line, push against the upper
bound of 1. For the rectangles with interior line segments
and Shepard circles applications, we used the heuristic as
a starting point, but we then reordered some of the stimuli
manually since it seemed to help with convergence.

Appendix 2. Transformation ordered vector
(0-1 bounded)

The constrained vector x, 0 < x; < x3 < ... <xg <1,
can be transformed to an unconstrained vector y € RX as
follows:

d)_l (xk) ifk = 1,
k= g (—"f‘xk*l) ifl1 <k <K,
—X—1

where ®~1(-) denotes the inverse of the normal CDE. The
inverse transformation is given by:

o) ifk=1,
Tl + A —xen @) ifl <k <K,

Fig. 13 A suboptimal one-dimensional representation of the line-
length similarity data from Cohen et al. (2001), motivating the
need for the ordering heuristic. The black lines show the stimuli

@ Springer
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at their inferred locations in the representation, and the blue
histograms show the marginal posterior distributions for these
locations
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where ©(-) denotes the normal CDF. Note that x is a func-
tion of yi, y2, ..., ¥k (the dependence on yy, y2, ..., Vk—1
is “hidden” in x;_;). Crucially, x; does not depend
on Yi+1, Yk+2, - - - » Yk - Consequently, the Jacobian matrix
J of the transformation is lower triangular so that its
determinant | 7| is obtained by multiplying its diagonal
entries. The diagonal entries are given by:

jkkz{qs(yk) ifk=1,
Rl —me g0 ifl <k <K,

where ¢ (-) denotes the normal PDF. Hence, the determinant
of the Jacobian matrix is given by:

K
IT1=¢ O[]0 =x-¢ 0]

k=2
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