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Abstract
In many domains of psychological research, decisions are subject to a speed-accuracy trade-off: faster responses are more often
incorrect. This trade-off makes it difficult to focus on one outcome measure in isolation – response time or accuracy. Here, we
show that the distribution of choices and response times depends on specific task instructions. In three experiments, we show that
the speed-accuracy trade-off function differs between two commonly used methods of manipulating the speed-accuracy trade-
off: Instructional cues that emphasize decision speed or accuracy and the presence or absence of experimenter-imposed response
deadlines. The differences observed in behavior were driven by different latent component processes of the popular diffusion
decision model of choice response time: instructional cues affected the response threshold, and deadlines affected the rate of
decrease of that threshold. These analyses support the notion of an “urgency” signal that influences decision-making under some
time-critical conditions, but not others.
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Introduction

Decision-making has been a focus of psychological research
for decades. In many decision-making contexts, time pressure
is of critical importance. A well-studied decision outcome of
time pressure is the speed-accuracy trade-off (SAT): a
decision-maker can improve the accuracy of their decisions
at the expense of taking longer to respond, or they can make
very quick decisions that are more likely to be erroneous
(Schouten and Bekker 1967; Wickelgren 1977). This pattern

of results produces the trade-off between speed and accuracy,
and it is the task of the decision-maker to balance the relation-
ship between accuracy and speed to achieve their desired level
of performance (cf. Bogacz et al. 2006).

A range of experimental manipulations have been used to
elicit the SAT in previous research (see Heitz 2014 for an
overview). Cue-based SAT is arguably the most frequently
used speed-accuracy manipulation. The cues are typically ver-
bal prompts instructing participants to focus on responding
correctly or responding speedily (Hale 1969; Howell and
Kreidler 1963). Another common SAT manipulation uses re-
sponse deadlines (Ratcliff and Rouder 2000; Van Zandt et al.
2000). Response deadlines usually involve a visual or audito-
ry message following each trial if the participant did not re-
spond sufficiently fast. In most cases, the deadline is pre-
specified by the experimenter. Recently, some authors have
combined the two SAT manipulations into one design (e.g.,
Forstmann et al. 2008; Mulder et al. 2013;Wagenmakers et al.
2008). Although both manipulations produce a manifest SAT
in behavioral data,1 we hypothesize that the cognitive process-
es invoked by the two manipulations differ. In the current

1 SAT refers here to the empirical phenomenon of lower accuracy when speed
is emphasized (and vice versa). This is not to be confused with the use of SAT
to describe the latent psychological mechanisms that underlie or cause the
observed pattern in data.
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paper, we test this hypothesis in three experiments and show
that choices and response times differ between cue-induced
SAT conditions and deadline-induced SAT conditions. We al-
so show that these differences can be attributed to different
latent component processes of the popular diffusion decision
model (DDM) of choice response time (Forstmann et al. 2016;
Ratcliff 1978; Ratcliff and McKoon 2008; Ratcliff and
Rouder 1998).

A standard practice in perceptual decision-making research
has been the application of sequential sampling models, also
known as evidence accumulation models, to draw inferences
about the cognitive processing mechanisms underlying
decision-making (Forstmann et al. 2016; Gold and Shadlen
2007; Mulder et al. 2014; Ratcliff and McKoon 2008;
Ratcliff et al. 2016).2 These models hypothesize that decisions
involve accumulation of sensory information in favor or
against certain choices at hand. Accumulation stops when
enough information has been collected to support some spe-
cific choices. The stopping point represents the uncertainty
that the decision-maker is willing to accept on the correctness
for this particular choice: more lenient stopping points corre-
spond to greater uncertainty.

Within the class of sequential sampling models, the DDM
(Ratcliff 1978; Ratcliff and McKoon 2008) is an important
tool for isolating and understanding the cognitive processes
that underlie decision behavior, because of its demonstrated
ability to provide a quantitatively precise account of the re-
sponse time (RT) distributions of correct/error responses in
two-alternative forced choice tasks (Ratcliff and McKoon
2008; Ratcliff and Rouder 1998; Ratcliff and Smith 2004;
Ratcliff et al. 2016). To account for time pressure in deci-
sion-making, the DDM assumes a set of two thresholds, one
for each of the possible response options (Fig. 1, left panel).
The decision-maker’s willingness to commit to decisions with
greater uncertainty is translated into thresholds that are close
to the starting point of the accumulation process (green lines).
This response regime means that the accumulation process
often reaches one of the two thresholds before much accumu-
lation has even taken place; this leads to fast responses that are
often erroneous. Conversely, thresholds that sit further from
the starting point (blue lines) represent a more conservative
decision strategy whereby the decision-maker accumulates a
greater amount of evidence before committing to a decision;
this leads to slower but more accurate responses. Such chang-
es between low and high thresholds have provided a good
explanation of SAT behavior across a range of contexts
(Bogacz et al. 2010; Forstmann et al. 2008; Ratcliff and
McKoon 2008; Ratcliff and Rouder 1998; Voss et al. 2004;
Wagenmakers et al. 2008), although the link between the

computational explanation of SAT and its low-level neural
implementation is still a matter of active research (e.g., Heitz
and Schall 2012; Reppert et al. 2018).

In contrast to the fixed-threshold adjustment explanation of
the cue-used SAT, Frazier and Yu (2008), Cisek et al. (2009),
and Thura et al. (2012) gave different but converging expla-
nations about the cognitive processes involved when decision-
makers are faced with deadlines (see also Malhotra et al.
2017). According to Frazier and Yu (2008), a stopping rule
in the form of thresholds that dynamically move toward one
another (decline) throughout the course of a decision provides
a mechanism that ensures the decision-maker responds before
a deadline, whether that deadline is internally or externally
imposed, in the most efficient way (Fig. 1, right panel).
Frazier and Yu (2008) argue that in the presence of response
deadlines, thresholds that monotonically and nonlinearly col-
lapse over time is the optimal decision-making strategy (i.e.,
the decision policy that maximizes reward over a series of
trials). In a similar vein, Cisek et al. and Thura et al. proposed
a decision-making model that incorporated an urgency signal
that increases with elapsed decision time; this can be viewed
as an internally imposed deadline, as the urgency signal
monotonically increases the probability of committing to a
choice as decision time increases.3

Given that the collapsing thresholds and urgency signal
models on the one hand, and DDMs with fixed thresholds
on the other, make different quantitative behavioral predic-
tions about choice and RT distributions (for a review see
Hawkins et al. 2015b), the empirical validity of these contrast-
ing theoretical accounts have been systematically studied by a
variety of researchers (Evans et al. 2017; Ratcliff and Smith
2004; Van Zandt et al. 2000; Winkel et al. 2014). Although
previous research has shed light on the way deadlines and cues
affect core empirical measures of decision-making, such as the
shape of RT distributions, and how these may be attributed to
different psychological processes (Evans et al. in press), to our
knowledge, the empirical effects of cue-based and deadline-
based manipulations of the SAT have not been directly com-
pared within the same experimental design. Such a direct
comparison would make it possible to control for both
SAT manipulations (cue, deadline) and to generalize
their effects across different tasks. Furthermore, directly
comparing these manipulations within the same design
would allow us to propose a model-based account for
the differential effects of the two SAT manipulations on
the choice-RT distributions. This will contribute to the
debate surrounding the nature of response thresholds
(fixed vs. decreasing) in evidence accumulation models
of decision-making under time pressure.

2 Similar models have also been used to explain preferential decision-making
(e.g., Bhatia 2013; Busemeyer et al. 2019; Roe et al. 2001; Trueblood et al.
2014; Turner et al. 2018).

3 Beyond the SAT, collapsing thresholds might arise for different reasons. For
example, there may be limited capacity for evidence to become saturated over
time, as in recognition decisions (e.g., Cox and Shiffrin 2017).
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To that goal, we performed three behavioral experiments
that each factorially crossed cue-based and deadline-based
manipulations of the SAT in a within-subject design to deter-
mine whether they led to differential effects on observed
choices and response times. Our central aim was to examine
the cognitive processes that distinguish performance in cue-
based and deadline-based SAT manipulations (Section 5). In
particular, we accounted for decision processes in terms of
evidence accumulation, where the threshold of the accumula-
tion process was expected to discriminate between the two
forms of SAT manipulation, by attributing the differential ef-
fects of cues and deadlines to distinct components of strategic
adjustments to response caution. Our analyses included a sys-
tematic model comparison of DDMs with fixed and decreas-
ing threshold parametrizations encoding different ways of
adjusting response caution to establish which adjustment
mechanisms better explain decision processes under different
forms of time pressure.

Methods

Participants

Twenty-four participants affiliated with the University of
Amsterdam participated in Experiments 1 and 2 (mean age =
23.45, SD age = 7.86, 58% female) in the same experimental
session. A different sample of twenty-four participants affili-
ated with the University of Amsterdam participated in
Experiment 3 (mean age = 22.75, SD age = 3.40, 62% fe-
male). All participants provided informed consent prior to
participation and chose between a monetary or research credit
reward at will.

Design and Procedure

Experiment 1

Participants made motion direction judgments about random-
dot kinematograms (Ball and Sekuler 1982). In a random dot
motion task, participants are presented with a cloud of dots, a
subset of which move coherently in a particular direction,
while the remaining dots move in random directions. The
participant’s task is to determine the direction of the coherent-
ly moving dots. The experiment was implemented with the
default version of the Random dot motion task in PsychoPy
(Peirce 2007) for which the default random dot kinematic
component was used (Scase et al. 1996). The settings were
dot life-time of 5 frames, dot size of 4 pixels, cloud-size of 400
dots, and speed of dots of 0.5% of monitor dimensions per
frame and the so-called position movement algorithm from
PsychoPy. The experiment was conducted on a desktop com-
puter with stimuli presented on a 21-in. monitor set at 60 Hz
frame rate.

The task consisted of two phases: training and test. The aim
of the training phase was to familiarize participants with the
task and to establish settings for the test phase. Task instruc-
tions were provided on screen with participants briefly intro-
duced to the structure of the task and given instructions to
focus on the accuracy of their responses. Keyboard keys were
used to make a response (“f” to indicate the dots move left, to
the “j” to indicate dots move to the right). A trial finished with
the participant’s response and feedback was given based on
response accuracy.

In the training phase, participants made decisions across 6
difficulty levels where difficulty was manipulated by chang-
ing the percentage of coherently moving dots: 3%, 7%, 11%,

Fig. 1 Different assumptions in diffusionmodels. Left panel: the standard
diffusion decision model (DDM) assumes thresholds that are fixed
throughout the course of a decision and only vary with respect to the
distance between lower and upper threshold. Green thresholds indicate
a speedy response regime; blue thresholds indicate a more accurate

response regime. Right panel: DDM with collapsing thresholds where
the slope indicates the amount of evidence required to make a decision
as a function of elapsed decision time, and distance between the thresh-
olds at time 0 indicates the initial response caution
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15%, 19%, and 23%. There were 40 trials for each difficulty
level for a total of 240 trials. Following completion of the
training phase, a single difficulty level was selected separately
for each participant for use in their test phase. This value was
selected as the lowest motion coherence at which a participant
scored above 80% in the training session.

The test phase had a 2 × 2 within-subjects design. The first
factor was whether participants were cued to respond fast or
accurately. The second factor was whether there was a re-
sponse deadline (i.e., an upper limit on the available decision
time) or not. This produced four conditions in the experiment:
speed cue with deadline, speed cue without deadline, accuracy
cue with deadline, and accuracy cue without deadline. The
four conditions were presented in separate blocks with block
order counterbalanced across participants. Table 1 shows the
task instructions given at the beginning of each block for the
four conditions. There were 200 trials in each of the 4
conditions/blocks for a total of 800 trials in the test phase.

The cue-based SAT manipulation was operationalized by
giving instructions prior to each block (Table 1). The deadline
manipulation was operationalized as a trial cut-off at 1.35 s,
which was selected based on pilot data. If a response had not
been registered by the time of the deadline, then the stimulus
was removed from the display, and responses were no longer
accepted. No trial cutoff was present in blocks without
deadlines.

The pre-stimulus period (fixation cross, 250 ms) directed
focus to the center of the screen, after which the stimulus was
presented. The stimulus duration then depended on the condi-
tion. In the no-deadline condition, the stimulus remained on
the screen until the participant gave a response. In the deadline
condition, the stimulus was presented at most for 1.35 s,
which was the deadline cut-off. If participants missed the
deadline, the trial was terminated immediately. Otherwise,
by giving a response, the participant ended the trial.

To increase the likelihood that participants followed the
block-based instructions, they received feedback following
each trial tailored to the pair of conditions in the current block.
The text that was given as feedback is shown in Table 1. In the
deadline condition, feedback was based on whether the re-
sponse was prior to the deadline or not. In the condition with-
out a deadline, there was no feedback. In the accuracy cue
condition, the feedback focused on whether the response
was correct or not. In the speed cue condition, to ensure that

participants did not associate feedback related to the cue with
a specific cut-off value (i.e., as a deadline), we used a proba-
bilistic feedback method. The feedback stated whether the
response was fast or not fast. The probability of “not fast”
feedback increased with the trial RT, according to a cumula-
tive Gamma distribution fit to each participant’s RT data from
the training phase. Thus, the slower a response, the more like-
ly it was the participant would receive “not fast” feedback, but
in an individualized fashion. Because feedback was probabi-
listic, there was no duration after which participants were
guaranteed to receive “not fast” feedback, which would essen-
tially implement a response deadline. For all conditions, the
feedback duration varied with respect to being positive or
negative; positive feedback was shown for 250 ms, and neg-
ative feedback was shown for 1 s.

Experiment 2

To generalize the results of Experiment 1 to a different deci-
sion environment, we used a rapid expanded judgment task
where participants were presented with two flashing circles
and they were asked which of the two circles has the higher
flashing rate (cf. Brown et al. 2009; Hawkins et al. 2012;
Smith and Vickers 1989); we refer to this as the flash task.
The flash task that externalizes to the stimulus display a dis-
crete and explicit evidence process, which we assume gives
rise to a corresponding internal evidence accumulation pro-
cess. This contrasts to the internalized evidence accumulation
process that is assumed in most perceptual decision-making
tasks, such as random dot motion in Experiment 1 (for a
discussion of the differences, see Ratcliff et al. 2016). The
flash and random dot motion tasks necessarily draw upon
different perceptual processes, because the perceptual display
qualitatively differs between tasks, yet this is not to say that
the two tasks lead to different cognitive processes including
(but not limited to) strategic adjustments to response caution.

All details of the flash task in Experiment 2 were the same
as the random dot motion task in Experiment 1 with the ex-
ception of the manipulation of difficulty. There were 6 diffi-
culty levels: 55%–45%, 60%–40%, 65%–35%, 70%–30%,
75%–25%, and 80%–20% frequency rate, where the percent-
age indicates the probability of a circle flashing on each frame
rate of the task, and the first percentage represents the rate of
one circle and the second of the other. The 6 difficulty levels

Table 1 Instructions and feedback given to participants in the test phase

Factor Level Instruction Feedback

Cue Speed “Focus on being as speedy as possible” “Good time!” (if fast enough) or “Faster!” (if too slow)

Accuracy “Focus on giving as many accurate responses as possible” “Correct!” (correct) Or “Be more accurate!” (incorrect)

Deadline Deadline “Strict deadlines will apply” “You missed the deadline!” (no response before deadline)

No deadline “There will be no deadline for your answer” (nil)
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and the circle with the faster flash rate (left or right) was
randomized for each trial. As in Experiment 1, the difficulty
level for the test phase was selected as the smallest difference
in flash rate at which a participant scored above 80% in the
training session.

Experiment 3

As we show below (see Results), the deadline used in
Experiment 2 might have been too slow; few responses
in the deadline condition cell received “you missed the
deadline!” feedback, suggesting participants did not ac-
tually experience the time pressure of a response dead-
line. To address this concern, in Experiment 3, we mod-
ified the flash task to include an additional earlier dead-
line. The experiment had a 2 × 3 within-subjects design
with two levels for cue-based SAT and 3 levels for
deadline-based SAT (early, late, and no deadline). The
late deadline was set equal to the deadline in
Experiment 2, namely, 1.35 s, while the early deadline
was set at 683 ms. The early deadline was selected as
the 75% percentile of the aggregate RT distribution in
the deadline conditions from Experiment 2. The addi-
tional deadline achieved two goals: to set a deadline
that would be early enough to induce the experience
of a response deadline in the flash task but not so early
as to induce chance-level accuracy and to replicate and
extend the findings of Experiment 2.

Most of the presentation settings were retained from
Experiment 2, with the following exceptions. The number of
training trials was reduced to 30. A lower difficulty level was
selected during the training period to make the task easier
since it had been found too difficult in Experiment 2. The level
of difficulty selected for each participant was the hardest one
at which they scoredmore than 90% during the training phase.
The task was counterbalanced, and all participants saw all
combinations of conditions. The combinatorial method used
was Latin-Graeco square, because of the difficulty of present-
ing all possible permutations to all participants. To keep the
duration of Experiment 3 similar to the duration of
Experiments 1–2, the number of trials was initially set to
150 for each of the 6 blocks. After the first 5 participants
had participated, it was clear that the experiment was too long.
For that reason, the rest of the participants were tested for 130
trials per block (780 trials in total).

The instructions were as described in Experiment 1
and 2 with the exception of the new conditions. Unlike
Experiment 1 and 2 which provided accuracy feedback
only in accuracy conditions, we generalized accuracy
feedback for every trial. This was done to ensure the
increase of the overall level of performance. The RT
comparison procedures and feedback text were as de-
scribed in the previous two experiments.

Results and Discussion

We present the statistical results combined across experiments
in text; E1–3 denotes Experiments 1–3. Descriptive statistics
for mean RT and accuracy are shown in Table 2.

Mean RT was significantly faster in trials with deadlines
than trials without deadlines (E1–F(1,23) = 22.14, p < 0.001,
η2G = 0.09; E2–F(1,23) = 16.66, p < 0.001, η2G = 0.12; E3–

F(2,46) = 72.77, p < 0.001, η2G = 0.43).4 Mean RT was also
faster in speed-focused relative to accuracy-focused trials
(E1–F(1,23) = 18.42, p < 0.001, η2G = 0.08; E2–F(1,23) =
29.13, p < 0.001, η2G = 0.19; E3–F(1,23) = 27.95, p < 0.001,

η2G = 0.13). There was a significant interaction between the
cue-based and deadline-based manipulation on mean RT (E1–
F(1,23) = 8.89, p = 0.006, η2G = 0.02; E2–F(1,23) = 13.86,

p < 0.001, η2G = 0.09; E3–F(2,46) = 10.91, p < 0.001, η2G =
0.09). In each experiment, the interaction was due to re-
sponses showing greater speeding from the no-deadline to
the deadline conditions in the “accuracy” regime as opposed
to the “speed” regime.

Accuracy was significantly greater in trials without
deadlines compared to trials with deadlines (E1–
F(1,23) = 14.87, p < 0.001, η2G = 0.04; E2–F(1,23) =
14.36, p < 0.001, η2G = 0.04; E3–F(2,46) = 58.93,

p < 0.001, η2G = 0.30). Accuracy was also significantly
greater in accuracy-focused trials compared to speed-
focused trials (E1–F(1,23) = 18.30, p < 0.001, η2G =

0.16; E2–F(1,23) = 41.83, p < 0.001, η2G = 0.20; E3–

F(1,23) = 20.81, p < 0.001, η2G = 0.08). There was a sig-
nificant interaction between the cue-based and deadline-
based manipulation on accuracy in Experiments 2 and 3
(E2–F(1,23) = 10.54, p < 0.003, η2G = 0.04; E3–F(2,46) =
8.81, p < 0.001, η2G = 0.04). The nature of the interac-
tion on choice accuracy was similar to the interaction
on RT: accuracy decreased to a larger degree between
the no-deadline to the deadline conditions when given
accuracy-emphasis cues compared to speed-emphasis
cues. The interaction was not significant in Experiment
1 (F(1,23) = 0.17, p = 0.678, η2G < 0.01; BF10 = 0.29),
suggesting that the interaction between speed-accuracy
trade-off manipulations on decision accuracy may be
dependent on the decision task (random dot motion task
vs flash task).

The analysis of mean RT and accuracy confirm that a
SAT was induced in each experiment: participants were
able to make faster decisions at the expense of more
errors. These results were consistent across two types
of perceptual decision-making task: one where evidence

4 Throughout the text we use Bayesian analysis to support claims of no effect
established by frequentist statistics.
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accumulated in discrete fashion (the flash task;
Experiments 2 and 3) and another where evidence ac-
cumulated in a continuous fashion (the random-dot mo-
tion task; Experiment 1).

As expected, both deadline-based and cue-based ma-
nipulations of time-pressure induced a SAT, consistent
with previous studies on time pressure. Stricter deadlines
lowered choice accuracy and mean RT. Furthermore, the
presence of response deadlines in the accuracy-focused
conditions produced a larger SAT effect than those in
speed-focused conditions, as indicated by the interaction
between the two manipulations.5

The stable interaction pattern between cue-based and
deadline-based manipulations of the SAT suggests that
different latent components of processing may have
driven the effects observed in data. In the next section
we argue that cue-based manipulations affect the overall
level of cautiousness (initial threshold in Fig. 1) while
deadlines influence moment-to-moment adjustments to
response caution. We will use the popular Diffusion
Decision Model (DDM) to test this hypothesis and con-
trast it to alternative hypotheses.

Cognitive Modeling of the Differential Effects
of Deadline-Based and Cue-Based SAT
Manipulations

In Experiments 1–3 we observed that the presence and the
strictness of response deadlines during decision-making affect
mean RT and accuracy. Though both cue-based and deadline-
based manipulations led to a trade-off between speed and
accuracy, in this section, we test whether the two manipula-
tions invoked different cognitive processes. We interpret the
behavioral results in terms of a latent process of evidence
accumulation by fitting fixed and collapsing threshold
DDMs to the data from Experiments 1–3. We make the sim-
plifying assumption that the cognitive processes involved in
performing the random dot motion task of Experiment 1 and
the flash task of Experiments 2 and 3 is approximated by the
evidence accumulation process assumed in the DDM. Thus,
by comparing whether the fixed or collapsing threshold
models provide a more parsimonious account of each experi-
ment, we can identify the cognitive processes that were most
likely to have generated the data, given the set of models
under consideration.

Based on our earlier literature review, we hypothesize that
cue-based manipulations of the SAT will affect the overall
amount of evidence required by the decision-makers to com-
mit to a decision, known as boundary separation (Forstmann
et al. 2008; Ratcliff and McKoon 2008; Ratcliff et al. 2016;
Wagenmakers et al. 2008). In contrast, we expect that
deadline-based manipulations of the SAT will cause dynamic
decreases to the threshold throughout the decision process to
increase the likelihood of responding before the imposed
deadline, known as a collapsing threshold (Cisek et al. 2009;
Evans and Hawkins 2019; Miletić and van Maanen 2019;
Thura et al. 2012). This will allow us to answer the question
of whether cue-based and deadline-based manipulations of the
SAT are best explained by different parameters of the DDM,
within the same participants in the same task.

Models

We fitted the data of each experiment with a set of models that
differed in terms of which model parameters were freely esti-
mated across conditions of the experiment and which were
constrained to common values (see Table 3). To simplify the
model comparison, we note that the mean start point bias was
always set to 0, making the assumption that on average evi-
dence accumulation always begins equidistantly between the
boundaries for the two response options (e.g., see Fig. 1 where
the accumulation process starts from 0 evidence). It was not
estimated since there was no explicit bias manipulation; how-
ever we do allow for random start point biases across trials
(Sz, see below).

5 Although the two SATmanipulations showed similar patterns across the two
tasks, it is worth noting the discrepancies between experiments. Generally, the
flash task was more difficult than the random dot motion task, as indicated by
higher error rates, especially in the speed-focused trials where the presence of
the deadline did not change the effect size of performance accuracy in speed-
focused trials (cf. Table 2). We took this as an indication that, in Experiment 2,
the feedback related to the speed cue was perceived as a deadline, potentially
canceling or “blocking” the effect of the deadline manipulation. By generaliz-
ing the feedback to all conditions in Experiment 3 and reducing overall task
difficulty, we observed an effect of the early deadline on the SAT in
Experiment 3, consistent with the results of Experiment 1.

Table 2 Mean response time (RT) and accuracy in Experiments 1–3,
including standard error of the mean (SE)

Experiment Cue Deadline Mean, ms (SE) Accuracy (SE)

1 Accuracy No 784 (34) 0.89 (0.01)

Yes 564 (10) 0.84 (0.02)

Speed No 571 (16) 0.78 (0.02)

Yes 494 (10) 0.72 (0.02)

2 Accuracy No 1248 (47) 0.77 (0.03)

Yes 623 (14) 0.69 (0.03)

Speed No 514 (15) 0.64 (0.03)

Yes 473 (11) 0.63 (0.03)

3 Accuracy No 909 (35) 0.85 (0.03)

Late 613 (15) 0.76 (0.04)

Early 449 (9) 0.70 (0.04)

Speed No 647 (21) 0.76 (0.03)

Late 522 (13) 0.74 (0.04)

Early 423 (9) 0.68 (0.04)
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Table 3 shows the parameterization of all models we stud-
ied. We describe the set of models with a naming system that
loosely follows Chandrasekaran and Hawkins (2019). The
principle of the naming system is that a model is augmented
with a character for each additional parameter freely estimated
across conditions; the characters for each parameter are shown
in the notes to Table 3. Parameters that are freely estimated
from data though constrained to the same value across condi-
tions are not referred to in the model name. For illustration, the
model in the upper row of Table 3 is named f-DDM-vat-
SvStSz because it is a fixed thresholds DDM (f-DDM) that
freely estimates the base parameters of drift rate (v), threshold
(a) and non-decision time (t), and across-trial variability pa-
rameters for drift rate (Sv), non-decision time (St), and starting
point (Sz). By comparison, the model in the final row of
Table 3 is named c-DDM-a because it is a collapsing threshold
DDM (c-DDM) that freely estimates the threshold (a) and the
slope of the collapsing threshold (which is encapsulated in the
“c” of “c-DDM”).

The number of freely estimated parameters in each model
for each participant is determined by multiplying the number
of parameters listed in the “free parameters” column of Table 3
by the number of conditions in the experiment (4 in
Experiments 1 and 2, 6 in Experiment 3) plus the number of
parameters listed in the “constrained parameters” column. For
example, inmodel f-DDM-vat-Sv, there are 4 (parameters) × 4
(E1/E2) or 6 (E3) + 0 = 16 (E1/E2) or 24 (E3) parameters per
participant. For c-DDM-vat-Sv, the collapsing thresholds
equivalent, there are 20 (E1/2) or 30 (E3) parameters per
participant.

Some model parameters were of particular relevance to our
hypotheses. In the collapsing threshold DDMs, the threshold
parameter indicates the initial level of response caution

(boundary separation at time 0), and the slope indicates how
quickly this caution changes as the time since stimulus onset
increases (rate of decline). We expect that the cue-based ma-
nipulation but not deadline-based manipulation will influence
the initial threshold, and we expect that the deadline-based
manipulation but not the cue-based manipulation will influ-
ence the slope. Therefore, if both hypotheses are supported,
we expect evidence for a model with collapsing thresholds
(any of the c-DDM models). For simplicity, we assume all
collapsing thresholds decrease linearly as a function of
elapsed decision time, which is a form of collapsing thresholds
that is well-identified in data (Evans et al. 2019). For the fixed
threshold DDMs, the threshold parameter indicates the gener-
al response caution of the participant, which is independent of
elapsed decision time. Therefore, if there is support for our
hypothesis about cue-based manipulations but not deadline-
based manipulations, we expect evidence for a model with
fixed thresholds (any of the f-DDM models).

We also considered the across-trial variability parameters
of the DDM. Across-trial variability in drift rate was of par-
ticular importance as it plays an important role in allowing a
fixed-threshold DDM to capture slow errors (Ratcliff 1978)
which are also predicted by collapsing thresholds without
across-trial variability in the drift rate (Hawkins et al.
2015b). As a result, by estimating drift rate variability, we
create a level playing field in terms of the capacity for collaps-
ing and fixed threshold DDMs to account for slow errors,
which were present in the data. If across-trial variability in
drift rate is the cause of slow errors, then we expect evidence
for any of the f-DDM models with Sv, though if slow errors
are instead due to collapsing thresholds, we expect support for
any of the c-DDMmodels, which may also have an additional
contribution from variability in drift rate. We also tested

Table 3 Description of the
models fitted to Experiments 1–3 Model Free parameters Constrained parameters Fixed parameters

f-DDM-vat-SvStSz ν, Ter, α, sv, st, sz – z

c-DDM-vat-SvStSz ν, Ter, α, sv, st, sz, slope – z

f-DDM-vat-SvSt ν, Ter, α, sv, st – z, sz
c-DDM-vat-SvSt ν, Ter, α, sv, st, slope – z, sz
f-DDM-vat-SvSz ν, Ter, α, sv, sz – z, st
c-DDM-vat-SvSz ν, Ter, α, sv, sz, slope – z, st
f-DDM-vat-Sv ν, Ter, α, sv – z, sz, st
c-DDM-vat-Sv ν, Ter, α, sv, slope – z, sz, st
f-DDM-a-Sv α, sv ν, Ter z, sz, st
c-DDM-a-Sv α, sv, slope ν, Ter z, sz, st
c-DDM-a α, slope ν, Ter, sv z, sz, st

Note: Free parameters were estimated independently per condition and participant. Constrained parameters were
estimated per participant though held to the same value across conditions. Fixed parameters were not estimated
from the data. “ν” stands for drift rate, “Ter” for non-decision time, “a” for threshold, “sv” for variability in drift
rate, “z” for starting point, “sz” for variability in the starting point, “st” for variability in non-decision time, and
“slope” for the amount of decrease in thresholds
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whether the additional flexibility of across-trial variability in
starting point and/or non-decision time accounted for unique
variance in the data not already explained by fixed or collaps-
ing thresholds with or without drift rate variability. If this
additional flexibility is required to account for the data, then
we expect to support models with St and/or St.6 We also tested
much more constrained models by enforcing the same drift
rate and non-decision time across conditions (f-DDM-a-Sv, c-
DDM-a-Sv). Comparison of f-DDM-a-Sv with c-DDM-a
(without drift rate variability) allowed us to test the unique
contribution of the drift rate variability parameter and its po-
tential substitutability with the collapsing threshold parameter.

Fitting Procedure

We followed the parameter estimation routines of Hawkins
et al. (2015a). We used Monte Carlo simulation with 10,000
samples per experimental condition during parameter estima-
tion, which was conducted by quantile maximum probability
estimation. To ensure the comparison between the models was
fair, we used the same simulation-based method for parameter
fitting of the DDM with fixed thresholds. We set the diffusion
coefficient (s = .1) as a scaling parameter and fitted the DDM
to RT in seconds. In addition, we verified that the fixed and
collapsing threshold models recovered almost all of the esti-
mated parameters well (yet, the drift rate variability parameter
recovered less well than other parameters). For details of the
parameter recovery, see Supplementary Materials, and for a
more complete treatment of parameter recovery in collapsing
threshold models, see Evans et al. (2019).

The best-fitting parameters for all models listed in Table 3
were independently estimated for each participant in each ex-
periment, which makes the model application consistent with
the within-subject design of the three experiments. Parameters
were estimated through the Differential Evolution optimiza-
tion algorithm (Ardia et al., 2011) with a maximum of 1000
iterations.

Model Comparison and Model Fit

To assess which models provided the most parsimonious ac-
count of the data – that is, the best balance between goodness-
of-fit to data and model flexibility – we used the Akaike
Information Criterion (AIC), along with its correction for
small samples (AICc), and the Bayesian Information
Criterion (BIC). These three metrics are used as a standard
practice in model comparison (Akaike 1974; Schwarz 1978;
see also Heathcote et al. 2015). The three measures are based
on the quantile maximum log-likelihood of the fitted models

and reward goodness-of-fit but penalize for extra free param-
eters, with different complexity penalties across the three met-
rics. Lower values indicate more parsimonious accounts of
data than higher values.7

Table 4 shows the model comparison outcomes. All three
experiments provided the most support for the same model:
collapsing thresholds with across-trial variability in drift rate
(c-DDM-vat-Sv). For models that did not include across-trial
variability in starting point and non-decision time, the collaps-
ing thresholds version of each model tended to provide the
best explanation of the data, though not in all cases. However,
for models that did include those sources of additional vari-
ability, the fixed thresholds models tended to outperform the
collapsing thresholds models, though again not in all cases.
Nevertheless, there was no combination of the variability pa-
rameters in the fixed thresholds model that provided a better
explanation of the data than the best collapsing thresholds
model. Generally, the models that allowed drift rates and
non-decision times to vary across conditions showed a much
better performance than those in which these parameters were
constrained to the same value across conditions, in spite of the
increased number of free parameters. Interestingly, omitting
drift rate variability in c-DDM-a substantially worsened per-
formance of the collapsing model, which underscores the fact
that drift rate variability makes a unique contribution to the
model and cannot be substituted by the slope parameter.8 For
the remainder of the results, we explore the performance of the
best performing collapsing threshold model (c-DDM-vat-Sv)
and best performing fixed threshold model (f-DDM-vat-Sv).
For simplicity, we refer to these models simply as the collaps-
ing and fixed threshold models rather than repeatedly naming
their precise parameterizations.

To provide absolute model fit diagnostics, the fit of the
preferred collapsing threshold model is shown in Figs. 2 and
3, taking Experiment 2 as an example. The model provides a
very good account of the data, with correlations between ob-
served and predicted data (RT quantiles and accuracy) greater
than 0.97. The fit of the same model to Experiments 1 and 3
was equally good (see Supplementary Materials: Figs. 3–6).
In Experiment 1, the model fit strongly correlated with ob-
served data in correct responses (above 0.97), but error re-
sponses exhibited higher variability, especially in the condi-
tions without a deadline (correlations above 0.70). Higher
variability in fitting error responses is expected because of
the fewer errors made in no-deadline conditions; a

6 When interpreting these results, the reader should take into account that
estimation of across-trial variability parameters can be challenging in some
contexts (see for example: Boehm et al. 2018).

7 We arrived at the same conclusions by performing chi-square tests on model
deviances based on average log-likelihoods.
8 Another way to establish the unique contribution of the slope parameter is to
look at correlations among the estimated model parameters. For example, in
Experiment 3, the slope parameter did not correlate with the drift rate variabil-
ity parameter; a finding which points to the unique contribution of each of
these two parameters in explaining the data (see Supplementary Materials:
Figure 15 and Table 1).
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phenomenon observed in model fits of other tasks as well
(Palminteri et al. 2017). In Experiment 3, the collapsing
threshold model slightly underestimated accuracy in the early
deadline condition though all correlations between observed
and predicted values were above 0.95 for both error and cor-
rect responses.

To understand why the collapsing threshold model was
preferred over its nearest fixed thresholds competitor (f-
DDM-vat-Sv), we explored which quantitative patterns in da-
ta the fixed thresholds model missed. The goodness of fit to
data of the fixed threshold model had some similar strengths
and weaknesses to the collapsing threshold model: higher

variability in error responses and underestimation of the ob-
served accuracy in the early deadline condition of Experiment
3 (see Figs. 7–12 of Supplementary Materials). However, the
fixed threshold model also tended to underestimate the RT
distributions in all quantiles, especially in Experiments 1 and
3. This result is shown more completely in Fig. 4. The fixed
threshold model underestimates the central body of the RT
distributions (0.3 and 0.5 quantiles) but heavily overestimates
the tails (0.9 quantile 0.9). This happens because the fixed
threshold model predicts heavier-tailed distributions thanwhat
was observed in data. To predict shorter-tailed distributions,
the fixed thresholds model underpredicts the main body of the

Table 4 Model comparison
between fixed and collapsing
threshold DDMs

Experiment Model # of parameters AIC AICc BIC

Experiment 1 f-DDM-vat-SvStSz 576 (24) 86,179 86,215 90,704

c-DDM-vat-SvStSz 672 (28) 87,075 87,124 92,354

f-DDM-vat-SvSt 480 (20) 85,905 85,930 89,676

c-DDM-vat-SvSt 576 (24) 87,092 87,128 91,617

f-DDM-vat-SvSz 480 (20) 86,912 86,937 90,683

c-DDM-vat-SvSz 576 (24) 87,035 87,071 91,560

f-DDM-vat-Sv 384 (16) 87,028 87,045 90,045

c-DDM-vat-Sv 480 (20) 85,805 85,831 89,577

f-DDM-a-Sv 240 (10) 343,907 343,911 345,869

c-DDM-a-Sv 336 (14) 161,917 161,929 164,557

c-DDM-a 264 (11)_ 457,219 457,177 459,293

Experiment 2 f-DDM-vat-SvStSz 576 (24) 92,089 92,125 96,613

c-DDM-vat-SvStSz 672 (28) 92,520 92,569 97,797

f-DDM-vat-SvSt 480 (20) 91,991 92,016 95,761

c-DDM-vat-SvSt 576 (24) 92,349 92,385 96,873

f-DDM-vat-SvSz 480 (20) 92,658 92,683 96,428

c-DDM-vat-SvSz 576 (24) 92,309 92,345 96,833

f-DDM-vat-Sv 384 (16) 92,417 92,433 95,433

c-DDM-vat-Sv 480 (20) 91,661 91,685 95,430

f-DDM-a-Sv 240 (10) 228,937 228,943 230,822

c-DDM-a-Sv 336 (14) 204,389 204,401 207,028

c-DDM-a 264 (11) 477,437 477,445 479,511

Experiment 3 f-DDM-vat-SvStSz 864 (36) 88,386 88,471 95,143

c-DDM-vat-SvStSz 1008 (42) 89,081 89,198 96,964

f-DDM-vat-SvSt 720 (30) 88,125 88,184 93,755

c-DDM-vat-SvSt 864 (36) 88,801 88,886 95,557

f-DDM-vat-SvSz 720 (30) 89,538 89,597 95,169

c-DDM-vat-SvSz 864 (36) 88,885 88,971 95,642

f-DDM-vat-Sv 576 (24) 89,147 89,184 93,651

c-DDM-vat-Sv 720 (30) 87,800 87,859 93,431

f-DDM-a-Sv 336 (14) 148,968 148,981 151,596

c-DDM-a-Sv 480 (20) 134,873 134,899 138,627

c-DDM-a 360 (15) 490,338 490,338 493,153

Note: Models that are preferred according to each model selection metric are presented in bold per Experiment.
The number of parameters refers to the total number estimated across all participants (in parentheses, the number
of estimated parameters per participant is also given). Raw AIC, AICc, and BIC values are given rounded to
nearest whole number
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RT distributions. The collapsing threshold model appears to fit
the data better. Similar patterns were observed in the other two
experiments; see Supplementary Materials Figs. 13–14.

Model Parameters

We now evaluate how the parameters of the best model of the
data (i.e., the collapsing threshold model) changed across the
conditions of the three Experiments. Figures 5 and 6 provide a
graphical presentation of the model parameters. Figure 5 pre-
sents the model parameters of greatest interest to our hypoth-
eses: the initial value of the response threshold and the rate of
decline in that threshold as the time from stimulus onset in-
creases. Figure 6 presents the rest of the parameters: drift rate,
drift rate variability, and non-decision time.

Across all experiments, the response thresholds declined to
a significantly greater extent in trials with deadlines than trials
without deadlines (E1–F(1,23) = 9.97, p = 0.004, η2G = 0.05;

E2–F(1,23) = 5.20, p = 0.032, η2G = 0.04; E3–F(1,46) =
58.75, p < 0.001, η2G = 0.45). In contrast, the thresholds de-
clined at different rates for speed-focused relative to accuracy-

focused trials only in Experiment 2 (F(1,23) = 5.75, p = 0.024,
η2G = 0.04), not Experiments 1 or 3 (E1–F(1,23) = 1.33, p =
0.260, η2G = 0.01; BF10 = 0.43; E3–F(1,23) = 0.13, p = 0.718,

η2G < 0.01; BF10 = 0.18). There was also no interaction be-
tween the cue-based and deadline-based manipulation on the
slope parameter in Experiments 1 and 3 (E1–F(1,23) = 3.97,
p = 0.058, η2G = 0.02; BF10 = 0.99; E3–F(1,46) = 1.10, p =
0.339, η2G = 0.01; BF10 = 0.24), though there was a significant

interaction in Experiment 2 (F(1,23) = 6.19, p = 0.020, η2G =
0.03). As seen in Fig. 5, this interaction was driven by the
shallow decline in the threshold in the accuracy – no-
deadline condition compared to the steeper decline in the re-
maining three conditions. It is worth noting that a similar trend
was present in Experiment 1 though the pattern was not sta-
tistically significant.

In contrast, the initial value of the threshold – an indicator
of the overall level of response caution – was significantly
greater in accuracy-focused compared to speed-focused trials
across all three experiments (E1–F(1,23) = 5.63, p = 0.026,
η2G = 0.01; E2–F(1,23) = 12.16, p = 0.001, η2G = 0.10; E3–

F(1,23) = 12.65, p = 0.001, η2G = 0.07). The initial threshold

Fig. 2 Fit of model c-DDM-vat-
Sv to the correct responses of
Experiment 2. Observed vs. pre-
dicted accuracy and quantile RTs
per participant and condition are
shown. RTs are given for the 0.1,
0.3, 0.5, 0.7, and 0.9 quantiles.
Lines represent the identity
function
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was also greater in trials without a deadline compared to with
a deadline in Experiments 1 and 2 (E1–F(1,23) = 7.27, p =
0.012, η2G = 0.02; E2–F(1,23) = 6.60, p = 0.017, η2G = 0.05),

but not Experiment 3 (F(1.46) = 2.61, p = 0.084, η2G = 0.03;
BF10 = 0.65). The interaction followed a similar pattern; not
significant in Experiments 1 and 2 (E1–(1,23) = 0.34, p =
0.563, η2G < 0.01; BF10 = 0.30; E2–F(1,23) = 3.38, p =
0.078, η2G = 0.02; BF10 = 0.92) though significant in

Experiment 3 (F(1,46) = 5.78, p = 0.005, η2G = 0.06). The in-
teraction was driven by the early deadline – speed condition,
which showed higher levels of threshold than expected. This
was likely because this condition had a very large slope rela-
tive to the other deadline conditions, so to compensate the
initial threshold was set to a higher value.

For the rest of the model parameters (Fig. 6), we observed
that the parameter of non-decision time was slower in the
accuracy-focused trials than in speed-focused ones in
Experiments 1 and 2 but not in Experiment 3 (F(1,23) =
11.41, p = 0.002, η2G = 0.07; E2–F(1,23) = 10.05, p = 0.004,

η2G = 0.07; E3–F(1,23) = 2.66, p = 0.116, η2G = 0.02; BF10 =
0.60). In addition, non-decision time was faster in deadline

conditions but only in Experiment 3 while the rest of the
Experiments did not show significant differences (E1–
F(1,23) = 2.14, p = 0.156, η2G < 0.01; BF10 = 0.25; E2–

F(1,23) = 0.46, p = 0.502, η2G < 0.01; E3–F(1,46) = 25.85,

p < 0.001, η2G = 0.16). No interaction was observed (E1–

F(1,23) = 0.13, p = 0.719, η2G < 0.01; BF10 = 0.30; E2–

F(1,23) = 1.25, p = 0.274, η2G < 0.01; BF10 = 0.31; E3–

F(1,46) = 0.38, p = 0.680, η2G < 0.01; BF10 = 0.14).
The drift rate parameter – the rate perceptual information is

accumulated by the decision-maker – showed a clear pattern
according to which it was higher in across accuracy-focused
than speed-focused trials (E1–F(1,23) = 20.85, p < 0.001, η2G
=0.12; E2–F(1,23) = 14.34, p < 0.001, η2G = 0.07; E3–

F(1,23) = 4.28, p = 0.049, η2G = 0.01) as well as in trials with-
out deadlines than in trials with deadlines in two out of the
three Experiments (E1–F(1,23) = 10.67, p = 0.003, η2G = 0.03;

E2–F(1,23) = 0.02, p = 0.870, η2G < 0.01; BF10 = 0.21; E3–

F(1,46) = 15.53, p < 0.001, η2G = 0.12). Additionally, no inter-
action was observed between these two factors (E1–F(1,23) =
0.15, p = 0.700, η2G < 0.01; BF10 = 0.29; E2–F(1,23) < 0.001,

Fig. 3 Fit of model c-DDM-vat-
Sv to the error responses of
Experiment 2. Observed vs. pre-
dicted quantile RTs per participant
and condition are shown. RTs are
given for the 0.1, 0.3, 0.5, 0.7, and
0.9 quantiles. Lines represent the
identity function
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p = 0.992, η2G < 0.01; BF10 = 0.29; E3–F(1, 46) = 0.37, p =
0.691, η2G < 0.01; BF10 = 0.13).

On the other hand, the drift rate variability parameter
showed mixed results (for a relationship between the drift rate
and drift rate variability see Fig. 6: last right column); it was
higher in conditions without deadlines in Experiment 1, but it
was lower for deadline conditions in Experiment 2, while no
significant difference was found for Experiment 3 (E1–
F(1,23) = 5.27, p = 0.031, η2G = 0.13; E2–F(1, 23) = 5.35,

p = 0.029, η2G < 0.02; E3–F(1,46) = 0.16, p = 0.850, η2G <
0.01; BF10 = 0.13). Furthermore, that model parameter did
not significantly change across speed-focused vs. accuracy-
focused trials (E1–F(1,23) = 0.03, p = 0.866, η2G < 0.01;

BF10 = 0.21; E2–F(1,23) = 2.17, p = 0.154, η2G < 0.01;

BF10 = 0.49; E3–F(1,23) = 1.94, p = 0.176, η2G = 0.01;
BF10 = 0.51). No interaction between the two factors was ob-
served in the drift rate variability parameter (E1–F(1,23) =
0.03, p = 0.856, η2G < 0.01; BF10 = 0.29; E2–F(1,23) = 0.11,

p = 0.734, η2G < 0.01; BF10 = 0.30; E3–F(1,46) = 1.94, p =
0.176, η2G = 0.01; BF10 = 0.26).

Taken together, the deadline-based manipulations were
most consistently associated with the slope parameter of

the collapsing threshold model such that response dead-
lines induced steeper slopes than no-deadline conditions
in Experiments 1 and 2, with the same pattern observed
across the three deadline levels in Experiment 3. The
threshold parameter, on the other hand, was most consis-
tently associated with the cue-based manipulation such
that speed-focused trials reduced the response threshold
relative to accuracy-focused trials. This result aligns with
a large body of literature (Evans et al. in press;
Forstmann et al. 2008; Frazier and Yu 2007; Hawkins
et al. 2015b; Rae et al. 2014; Ratcliff and McKoon
2008; Van Maanen et al. 2011; Wagenmakers et al.
2008). In addition, trials with deadlines and with speed-
focused instructions produced lower drift rates than trials
without deadlines or with accuracy-focused instructions.
However, we found mixed results for the association of
the non-decision time parameter with deadline conditions
(the non-decision time parameter was faster in conditions
with deadlines only in Experiment 3 in line with previ-
ous studies, e.g., Murphy et al. 2016) or the association
of the drift rate variability with deadline conditions (drift
rate variability was higher for trials with deadlines only
in Experiment 2).

Fig. 4 Deviation between
observed and predicted RTs for
the 0.1, 0.3, 0.5, 0.7, and 0.9
quantiles of the RT distribution
separately for each condition in
Experiment 2, averaged across
participants. Continuous lines
indicate the fixed threshold
model, and dashed lines indicate
the collapsing threshold model.
Bars represent standard errors
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General Discussion

We have provided evidence that deadline-based and cue-
based manipulations of the speed-accuracy trade-off have dif-
ferent psychological effects on latent decision-making pro-
cesses. Our results indicate that cue-based manipulations af-
fect the general level of response caution with which people
make perceptual decisions. Throughout the course of a deci-
sion, this overall level is subject to dynamic changes due to a
potential pressure to respond. Such time pressure can be ex-
perimentally induced through deadlines but is less sensitive to
pre-stimulus cues. These results are in line with previous em-
pirical investigations of deadline and instruction effects on
human RT and accuracy data (Forstmann et al. 2010, 2008;
Frazier and Yu 2007; Karşılar et al. 2014; Miletić and van

Maanen 2019; Pike 1968; Pike and Dalgleish 1982; Van
Maanen et al. 2011; Van Zandt et al. 2000).

The differences between the overall level of caution and
how it changes throughout the course of a decision are well-
explained within the theoretical framework of evidence accu-
mulation models (such as the DDM) that incorporate collaps-
ing thresholds. We found that the best explanation of the data
assigned the effect of a cue-based manipulation of the SAT to
the overall level of the decision threshold and the effect of a
deadline-based manipulation of the SAT to dynamically col-
lapsing thresholds. The model also assumed that mean drift
rate, drift rate variability, and non-decision time changed
across conditions. This model is preferable for three reasons.
First, it provides a coherent conceptual account of the cogni-
tive mechanisms triggered by time pressure manipulations

Fig. 5 Mean slope and threshold parameters of the collapsing thresholds
model. Top row: Experiment 1. Middle row: Experiment 2. Bottom row:
Experiment 3. Means are given with standard errors. “AC” and “SP”

stands for “accuracy” and “speed” respectively. The right-hand column
provides a mean representation of the threshold and slope parameters
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during perceptual decision-making. Second, it is consistent
with the differential effects of cue-based and deadline-based
manipulations observed in the behavioral data. Third, it is able
to better capture the choice and RT patterns in the behavioral
data.

An alternative to a collapsing threshold model that is some-
times tested is the so-called fast guess model by Ollmann
(Falmagne 1968; Ollman 1966; van Maanen et al. 2016; van
Maanen et al. 2014). This model proposes that participants
might switch to a guessing strategy to make faster responses.
Such a strategy would indeed speed up behavior at the ex-
pense of accuracy, thus explaining the SAT. If participants
guessed on a higher proportion of trials when they are cued
for speed than when they are cued for accuracy, the response
time distributions should show signatures of mixture distribu-
tions. In previous work, we found no evidence for the fast
guess model in cue-based SAT data (van Maanen 2016).
Reanalyzing the data of Experiment 3 of the current paper
confirms this result for deadline-based SAT (see

Supplementary mMterials). A change in the proportion of
guess responses due to a deadline therefore does not seem
likely. For this reason, we did not explore this class of models
further. Nevertheless, for future research, it may be worth
investigating the issue of mixtures of decision-making pro-
cesses in the context of the DDM (cf. Ratcliff, 2006).

There are a number of practical and theoretical implications
of our results. First, we showed that deadline-based and cue-
based manipulations do not induce a speed-accuracy trade-off
in the same way. Because the two manipulations target qual-
itatively different cognitive processes, the experimenter’s
choice between the two methods should be carefully consid-
ered in studies aimed at experimentally inducing a speed-
accuracy trade-off. Second, we provided evidence in favor
of the use of accumulation models with collapsing bounds
for the study of time pressure effects in perceptual decision-
making. Collapsing threshold models may provide a more
complete representation of how humans respond when faced
with particular types of time pressure. Third, we found mixed
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Fig. 6 Mean non-decision time, drift rate, and drift rate variability param-
eters of the collapsing thresholds model along with the log drift rate – log
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racy” and “speed” respectively
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support for the necessity of incorporating variability parame-
ters in the DDM to explain behavior under time pressure:
models without non-decision time and starting point variabil-
ity parameters explained our data better (in contrast to the
findings of Rae et al. 2014), but variability in the drift rate
was necessary (in line with Voskuilen et al. 2016). These re-
sults indicate the need for further research on the set of vari-
ability parameters that are necessary to explain the cognitive
processes involved in decisions under time pressure. We note
that while our results have implications for a range of tasks
and evidence accumulation models of perceptual decision-
making, future investigations should evaluate whether the
same computational principles of the SAT described in this
study generalize to more complex forms of decision-making
(e.g., value-based choices).

Our results regarding decision-making under time pressure
are in line with recent literature on the topic. First, we provide
empirical evidence supporting Frazier and Yu’s (2008) thesis,
which predicted that when humans are faced with deadlines,
decision-makers require less evidence to commit to a decision
as time passes. This is in line with previous work suggesting
that decisions for which not enough evidence can be obtained
in the allotted time are characterized by collapsing thresholds
(Boehm et al. 2016; Evans et al. in press; Hawkins et al.
2015a; Hawkins et al. 2015b; Miletić and van Maanen 2019;
Murphy et al. 2016). It is important to note, however, that our
modeling analyses did not address the question of whether
people followed an optimal or a suboptimal decision policy.
This remains a matter of research to be established in the
future, though the interested reader is referred to Karşılar
et al. (2014) for an earlier comprehensive treatment of the
topic.

In the evidence accumulation models we studied here, we
accounted for deadline-based time pressure with linearly col-
lapsing thresholds for reasons of simplicity. However, many
different functional forms of this kind of urgency signal have
been proposed, and the current study did not aim to differen-
tiate between those. In particular, some researchers have ar-
gued for an additive (Cisek et al. 2009) or multiplicative tem-
poral signal (Drugowitsch et al. 2012; Frazier and Yu 2008) on
the accumulation process (i.e., the drift rate), while others
have argued for a concave collapsing threshold (Ratcliff and
Frank 2012). However, in terms of response time and accura-
cy distributions, these proposals are difficult to disentangle,
and for that reason we chose the simplest possible functional
form with the primary aim of differentiating between condi-
tions without an urgency signal (i.e., a fixed threshold) and
conditions with urgency in a model specification that is well-
identified in data (Evans et al. 2019). Although a DDM with
linearly collapsing thresholds was able to capture many of the
empirical patterns elicited by deadline-based time pressure
(yet not perfectly, see, e.g., Fig. 4), it may be that evidence
accumulation models with more complex functional forms for

the decreasing threshold will further improve the explanation
of performance under these conditions. Therefore, further re-
search is required to establish under which conditions more
complex functional forms are necessary to explain the behav-
ioral patterns, which might also include other SAT manipula-
tions that do not explicitly use deadlines (e.g., Palestro et al.
2018).
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