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Abstract
Local scale crop yield and crop water productivity information is critical for informed decision making, crop yield forecast-
ing and crop model calibration applications. In this study, we have attempted to downscale coarse resolution primary season 
rice yield datasets to a local scale of 500 m using a minimum-median downscaling approach. Sixteen mainland countries 
in south and southeast Asia region were considered as study region to downscale global rice yield datasets for 2000–2015. 
Four medium resolution remote sensing derived vegetation indices such as Normalised Difference Vegetation Index (NDVI), 
Enhanced Vegetation Index (EVI), Leaf Area Index (LAI), and Gross Primary Product (GPP) were used to downscale 
coarse resolution global rice yield datasets. A kharif season district level rice yield data from International Crops Research 
Institute for the Semi-Arid Tropics (ICRISAT), India was used as a reference dataset to evaluate the downscaled rice yields 
at the district scale. The proposed downscaling approach performance was satisfactory with a mean absolute error (MAE) 
range of 0.85–1.2 t/ha which lies in the error range of 10–15% with respect to actual range of reference rice yield datasets. 
Furthermore, crop water productivity maps at 500 m scale were also developed with the downscaled rice yield and Moderate 
Resolution Imaging Spectroradiometer (MODIS) Evapotranspiration (ET) data products. Statistical analysis shows that the 
rice yield and crop water productivity values across different climate zones were statistically significant. Tropical zone-based 
crop yield and crop water productivity values were showing higher variation when compared to other climate zones with a 
range of 1–10 t/ha and 1–12.5 kg/m3, respectively.
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Introduction

The global population is at an increasing trend, and it is 
estimated that the world population would reach 9 billion 
by the year 2050 (Dong and Xiao 2016). In the last half-
century, there had been an increasing trend in overall agri-
cultural production (Blomqvist et al. 2020) and it is expected 
to be maintained in the similar manner. However, with finite 
resources such as water and land, any unplanned overex-
ploitation is highly challenging to cope with the increas-
ing demands for water and food in the future. This imposes 
serious problems on food security leading to a multitude of 
socio-economic problems. It is very evident in the recent 
COVID-19 pandemic periods from interconnected disrup-
tions in the food supply chain across the world (World Bank, 
2020). Besides several factors, climate-related disasters like 
floods and droughts caused by extreme events further add 
pressure on the agricultural systems (IPCC, 2019). To obtain 

 *	 S. Mohanasundaram 
	 mohanasundaram@ait.ac.th

	 K. S. Kasiviswanathan 
	 k.kasiviswanathan@wr.iitr.ac.in

	 C. Purnanjali 
	 chandrapurnanjali11@gmail.com

	 I. Putu Santikayasa 
	 ipsantika@apps.ipb.ac.id

	 Shilpa Singh 
	 shilpasingh813@gmail.com

1	 Water Engineering and Management, Asian Institute 
of Technology, Pathum Thani 12120, Thailand

2	 Department of Water Resources Development 
and Management, Indian Institute of Technology, 
Roorkee 247 667, India

3	 Hydro-climatologist IPB University Bogor, Bogor, 
West Java, Indonesia

http://orcid.org/0000-0002-3199-8403
http://crossmark.crossref.org/dialog/?doi=10.1007/s42106-022-00223-2&domain=pdf


2	 International Journal of Plant Production (2023) 17:1–16

1 3

the exact knowledge of what type of crop, where and when it 
is being grown, improved monitoring of agricultural produc-
tion is highly required. It is, therefore, important to monitor 
agricultural activities on a global, local, and regional scale 
by developing a modelling framework that inevitably inte-
grates climate change adaptation strategies with a crop fore-
casting system (Chen et al., 2017; Ghamghami & Beiran-
vand, 2022; Ghose et al., 2021; Zhang & Zhang, 2016). Crop 
yield monitoring and the related statistics of crop production 
form a core part of the information required in formulat-
ing a well-defined agricultural plan and policy design (You 
& Wood, 2006; Khan et al., 2010; Shirsath et al., 2020). 
Through these processes, a detailed map of various parame-
ters of agricultural production can be developed. These maps 
form the basis for better managing the overall agricultural 
systems.

Several different crop yield and crop-related data sources 
majorly derived from censuses and satellites have been 
developed on a global scale by numerous researchers (Iizumi 
et al., 2014; Klein Goldewijk et al., 2017; Kim et al., 2021; 
Grogan et al., 2022). In some countries, such as India, Bra-
zil, data on crop productivity statistics is available through 
institutional mechanism such as with state department 
repositories or at national scales like Food and Agriculture 
Organization and United States Department of Agriculture 
(You & Wood, 2006; Ibragimov et al., 2020; Shirsath et al., 
2020). However, the major challenge lies in the nature of 
these historical data and the global scale data on crop pro-
ductivity (Shirsath et al., 2020). These global or national 
scale datasets do not explicitly reveal profound information 
about the geographic distribution of production and land 
use pattern within the nation boundary. Furthermore, these 
data sets from higher levels of administrative units do not 
reveal much about the diversity and spatial patterns (You 
& Wood, 2006; Khan et al., 2010; Madhukar et al., 2020; 
Shirsath et al., 2020; Yu et al., 2020). Hence, it is the data 
from the lower strata of the institutional hierarchy such as 
at the district or at the sub-national levels or at the scale of 
a watershed that convey significant information about crop 
yield and productivity (You & Wood, 2006; Shirsath et al., 
2020). Furthermore, while several attempts have been made 
to compile the agriculture production data at a national and 
sub-national scale, there still exists an enormous gap in the 
finer resolution crop yield, crop coverage, availability of 
longer duration data, and information on several geographic 
locations (You & Wood, 2006).

Crop yield estimation methods can be broadly classi-
fied into four; (i) direct crop cuts, (ii) physical based crop 
modelling, (iii) statistical models, and (iv) remote sensing 
methods (Sapkota et al., 2016). Remote sensing methods are 
more popular as it has potential to map crops and to estimate 
crop yields at various spatial and temporal scales depending 
on the image characteristics of the specific remote sensed 

data products. Many studies have reported the use of these 
images singly or combinedly to map different crops and crop 
yield (Yoshikawa & Shiozawa, 2006; Li et al., 2012). The 
advancement in the optical sensors lies in having high tem-
poral resolution (daily revisits) images such as Moderate 
Resolution Imaging Spectroradiometer (MODIS), Advanced 
Very High-Resolution Radiometer (AVHRR), Système Pour 
l’Observation de la Terre (SPOT).

The remote sensing derived indices are more often used 
to relate the crop yield and biomass as they have a strong 
functional relationship with accumulated biomass and yield. 
Widely used remote sensing derived vegetation and biophys-
ical indices include Normalised Difference Vegetation Index 
(NDVI), Leaf Area Index (LAI), Green Chlorophyl Veg-
etation Index (GCVI), Enhanced Vegetation Index (EVI), 
Gross Primary Productivity (GPP), Triangular Vegetation 
Index (TVI), Green Normalised Vegetation Index (GNDVI), 
Simple Ratio (SR), Soil Adjusted Vegetation Index (SAVI), 
Normalised Difference Red Edge Index (NDREI) (Venancio 
et al., 2019; Peroni Venancio et al., 2020). The daily scale 
NDVI data which capture strong periodic characteristics of 
crop behaviour will be highly useful to closely monitor the 
relative changes in the vegetation information for establish-
ing long term trend of crop yields, land cover characteristics, 
vegetation phenology (Gu et al., 2008; Murthy et al., 2007). 
To a large extent, NDVI not only helps to prepare mapping 
of crops, but also helps in yield forecasting. However, the 
scope of this study is not predicting or forecasting crop yield 
and biomass using some of these remote sensing derived 
vegetation indices rather it is using these indices to disag-
gregate or downscale coarse resolution global crop yield 
datasets to a fine resolution for more detailed and informed 
decision making in the agricultural sector at local scales.

Downscaling or disaggregation terminology used in this 
manuscript goes alternatively for the same meaning. Statisti-
cal downscaling is the simplest process where a statistical 
relationship between dependent variable and independent 
predictor variables can be used to downscale a coarse crop 
yield data to a finer scale data (Shirsath et al., 2020). The 
predictor variables used in downscaling coarse resolution 
crop yield datasets include mainly EVI, NDVI, LAI, and 
GCVI indices (Lobell et al., 2015; Azzari et al., 2017; Lobell 
and Azzari, 2017). The study of Shirsath et al., (2020) high-
lighted the importance of accepting downscaled data from 
administrative units to have a better utility and relevance. 
They also presented a simple approach of downscaling dis-
trict level crop yield data to a local scale using EVI index. 
Yu et al., (2020) also introduced the model Spatial Produc-
tion Allocation Model, SPAM2010 which disaggregates 
crop statistics data such as the yield or harvested area by 
administrative unit levels, crop type and farming system 
from coarser to finer scales. Lobell and Azzari (2017) dis-
aggregated soybean yield for 2000—2015 in the Midwestern 
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United States at 30 m resolution using GCVI index. We have 
identified two main potential limitations of the existing dis-
aggregation methods. One is that the identified biophysi-
cal or vegetation indices to disaggregate a coarse resolution 
crop yield to a local scale not always constant across differ-
ent season. Secondly, different means of identifying anchor 
point values on the crop yield and vegetation index for the 
disaggregation functions poses different degree of bias on 
the disaggregated yield values. These two research gaps have 
been addressed in the present study by considering multi-
ple vegetation and biophysical indices for specific season 
across multiple years rather considering a single index in the 
disaggregation functions. Secondly, identifying an optimal 
threshold anchor points based on minimum, maximum, and 
median percentile values to properly disaggregate global 
crop yields within the expected or observed crop yield range.

Crop water productivity denotes crop production per unit 
volume of water applied. Achieving higher yield with less 
water consumption is the best practice specifically in water 
scarce regions. Satellite remote sensing techniques have also 
emerged as another promising field of research in crop pro-
ductivity, irrigation-water use, and crop water use efficiency 
(Cazcarro et al., 2019; Johnson & Humphreys, 2021; Safi 
et al., 2022; Zhou et al., 2021). This significant information 
assists in approaching resource concerns in agriculture with 
a sustainable perspective. In this study, we have also derived 
the crop water productivity maps at a same spatial resolution 
of crop productivity maps using the disaggregated crop yield 
and MODIS based evapotranspiration (ET) products.

Based on the above discussions, we aim to develop a fine 
resolution crop productivity and crop water productivity 
database at approximately 500 m grid scale using threshold-
based disaggregation method in south and southeast Asia 
region (SSEA). The specific objectives of this study are 
(i) to downscale coarse resolution global crop yield using 
threshold-based disaggregation functions, (ii) to assess ET 

based crop water productivity with downscaled crop yield 
and MODIS ET data products and (iii) to statistically ana-
lyse crop yield, et and crop water productivity variations 
with respect to unique climate zones in SSEA region.

We also used a reference district level rice yield dataset 
from International Crops Research Institute for the Semi-
Arid Tropics (ICRISAT), India for evaluating the perfor-
mance of different disaggregation functions with different 
biophysical and vegetation indices.

Methods

Study Area

Mainland countries in the SSEA region significantly con-
tribute in the world’s food production. The South-East Asia 
is popularly known as rice-bowl of the world contributing 
up to 40% of global export (Yuan et al., 2021). Major 16 
rice producing mainland countries of SSEA include Viet-
nam, Thailand, Sri Lanka, Philippines, Pakistan, Nepal, 
Myanmar, Malaysia, Laos, Indonesia, India, Cambodia, 
Brunei, Bhutan, Bangladesh, and Afghanistan. The study 
region spread across 60.5° E to 141° E Longitude and 38.47° 
N to—10.92° S Latitude. A wide variation in the climate, 
topography, and culture in SSEA brings unique cropping 
systems in the region. Global Food Security Support Analy-
sis Data (GFSAD) based 1 km crop mask dataset developed 
by NASA for SSEA region is shown in Fig. 1a. This par-
ticular image was developed from different satellite image 
products such as Landsat, AVHRR, SPOT, MODIS along 
with climatic datasets and other supporting ancillary country 
level statistics (Teluguntla et. al., 2010). Major irrigated area 
according to this crop extent map is located in the northern 
and central parts of India, north-eastern part of Thailand 
and central part of Myanmar while majority of the rainfed 

Fig. 1   Study area with a Crop mask for major crops and b Climate zones in the south and southeast Asia region
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areas are located in the east coast and western parts of India 
and widely across Cambodia, Vietnam, Malaysia, Indone-
sia, and Philippines. Major crops grown in the SSEA region 
include Rice, Wheat, Corn, Sugarcane, and Cassava. Differ-
ent climate zones in the SSEA as per Köppen-Geiger climate 
classification is also shown in Fig. 1b. The Köppen-Geiger 
climate classification is based on seasonal precipitation and 
temperature of the zone or region. The main climate zones 
in the Köppen-Geiger climate classified map are Tropical, 
Arid, Temperate, Continental and Polar (Beck et al., 2018). 
The subclasses of the Köppen-Geiger climate zones are fur-
ther classified based on temperature and dryness conditions 
of the region. However, we have considered only the main 
classes of the climate zones for the statistical analysis in this 
study (Fig. 1b).

The crop productivity is mainly depending on the cli-
mate, soil, topography and crop management of the region. 
The predominant soil type in SSEA is clay loam. Laterite 
soils are widespread in some parts of Myanmar, Thailand, 
and Vietnam. In general, most of the land covered by fertile 
soils than most of the tropical regions. Soil erosion also less 
severe when compared to other tropical regions (Frederick 
& Leinbach, 2020). The climate in SSEA can be classified 
broadly as monsoonal climate and an average rainfall is more 
than 1500 mm with wide variation in spatial extent over the 
study region. Five major river systems, Irrawaddy, Salween, 
Chao Phraya, Mekong, and Red Rivers, supply water for 
different sectors including irrigation (Frederick & Leinbach, 
2020).

Data

Global Crop Yield Datasets

The global dataset of historical yield (GDHY version 1.2 
and version 1.3) from 2000 to 2015 at 0.5° (~ 50 km) grid-
ded data was used in the present study. The GDHY data 
was accessed from Data Publisher for Earth and Environ-
mental Science, PANGAEA which provides authenticated 
open-source geospatial datasets for Earth and Environmen-
tal research (Lizumi 2019; Lizumi and Sakai 2020). This 
database can be accessed online at https://​doi.​panga​ea.​de/​
10.​1594/​PANGA​EA.​909132. The GDHY crop yield data-
base includes major crops such as Rice, Maize, Wheat, and 
Soybean with different seasons. However, in this study, we 
have considered only major season rice crop datasets for 
downscaling.

Satellite Data Products

Normalised Difference Vegetation Index (NDVI) and 
Enhanced Vegetation Index (EVI): MODIS vegetation data 
products version 6.1 (MOD13A1) for NDVI and EVI layers 

were accessed directly from Google Earth Engine platform. 
Spatial and temporal resolutions of this MOD16A1 products 
is 500 m and 16-day composites, respectively (Didan, 2015). 
This product can be directly accessed online at https://​
lpdaac.​usgs.​gov/​produ​cts/​mod13​a1v061/. A script in GEE 
was developed to filter and export NDVI and EVI layers 
during a major rice growing season (i.e., June 15 through 
October 15) for the years 2000–2015.

Leaf Area Index (LAI): MODIS combined LAI and 
Photosynthetically Active Radiation (PAR) data products 
(MOD15A2H) were filtered for the same period using 
GEE scripts. The spatial and temporal resolutions of this 
data products is 500 m and 8-day composites, respectively 
(Myneni et al., 2015). This product can be directly accessed 
online at https://​lpdaac.​usgs.​gov/​produ​cts/​mod15​a2hv0​06/.

Gross Primary Product (GPP): MODIS cumulative GPP 
product (MOD17A2H) was accessed for the same season 
during 2000–2015 (Running et al., 2015). This particular 
dataset is available at 500 m spatial resolution and at 8-day 
composite images. This product can be directly accessed 
online at https://​lpdaac.​usgs.​gov/​produ​cts/​mod17​a2hv0​06/.

Evapotranspiration (ET): MODIS ET data products 
(MOD16A2) was accessed for crop water productivity 
calculation over rice fields during the same season. This 
product is available at 500 m spatial resolution with 8-day 
composites temporal aggregation (Running et al., 2017). 
This data can be directly accessed online at https://​lpdaac.​
usgs.​gov/​produ​cts/​mod16​a2v006/. Cumulative ET for the 
primary rice season was calculated by aggregating all 8-day 
composite images over the season (i.e., June 15 – October 
15) for the years 2000—2015.

ICRISAT Rice Yield Data

A district level actual yield data for rice crop was accessed 
from ICRISAT, India web portal for validating disaggre-
gated global rice yield data products. The ICRISAT district 
level rice yield data was accessed for the same primary 
Kharif season for the comparison and validation purpose. 
This data was accessed directly from ICRISAT India web 
poral (http://​data.​icris​at.​org/​dld/​src/​Spati​almap.​html). All 
district level rice yield data was downloaded in the CSV file 
format and later the CSV based rice yield data was linked 
with corresponding India districts polygon shapefile layer. 
The shapefile layers of rice yield information were further 
converted to raster grids for ease of comparison during the 
validation process.

Downscaling Global Rice Yield Data

Coarse resolution global rice yield data products often 
downscaled using vegetation related indicators such as 
NDVI and EVI and biomass related indicator such as LAI 

https://doi.pangaea.de/10.1594/PANGAEA.909132
https://doi.pangaea.de/10.1594/PANGAEA.909132
https://lpdaac.usgs.gov/products/mod13a1v061/
https://lpdaac.usgs.gov/products/mod13a1v061/
https://lpdaac.usgs.gov/products/mod15a2hv006/
https://lpdaac.usgs.gov/products/mod17a2hv006/
https://lpdaac.usgs.gov/products/mod16a2v006/
https://lpdaac.usgs.gov/products/mod16a2v006/
http://data.icrisat.org/dld/src/Spatialmap.html
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and GPP (Dong et al., 2016; Gilardelli et al., 2019). In this 
study, we first analysed the correlation functions of different 
biophysical and vegetation indices with crop yield. The best 
correlated and least biased index was then used to downscale 
coarse rice yield data to local scales for the specific sea-
son (Fig. 2). As rice yield considered in this study was the 
accumulated grain yield at the time of harvest in the given 
season, NDVI, EVI, LAI and GPP were also transformed in 
such a way that these indices represent the specific season 
in the given year. The specific season rice yields equiva-
lent NDVI, EVI, LAI were obtained by calculating relative 
increase which was obtained by subtracting maximum val-
ues from the minimum values of the respective indices dur-
ing the same season. However, for GPP index, the specific 
season rice yields equivalent GPP was obtained by summing 
all 8-day composite GPP images over that season of the year. 
The downscaled rice yield at 500 m scale and MODIS ET 
data were used to calculate the cop water productivity maps 
as shown in Fig. 2.

Threshold Based Disaggregation Methods

The primary rice season GDHY datasets were only used 
in this study to downscale coarse gridded data to a local 
scale. The GDHY primary season rice yield datasets were 

at 50 km scale while MODIS derived data products such as 
NDVI, EVI, LAI and GPP were at 500 m scale. Both data 
products were filtered for the primary season which is June 
15—October 15 during 2000–2015. The GDHY rice yield 
data was in t/ha units. The MODIS based GPP was in kg 
C/m2 while NDVI, EVI, and LAI were representing veg-
etation indices with no specific units. The disaggregation 
methods proposed in the study are explained as follows,

Step 1: Global rice yield raster grids of the year 2000 
were polygonised and each polygon values were extracted 
to a list using GEE scripts.

Step 2: Extracted rice yield values were sorted in 
ascending order from which 5th (Ymin) and 95th (Ymax) 
percentile rice yield values were identified for mini-
mum–maximum (min–max) disaggregation approach. 
Similarly, 5th (Ymin) and 50th (Ymedian) percentile rice 
yield values were identified for minimum-median (min-
med) disaggregation approach.

Step 3: MODIS based NDVI, EVI, LAI and GPP data 
were aggregated to 50 km scale as the GDHY rice yield data 
was at 50 km scale for consistency in the spatial sampling.

Step 4: A binary mask layer was created based on the 
min–max and min-med threshold rice yield values. The 
binary mask created based on rice yield minimum, maxi-
mum and median threshold values were used calculate the 

Fig. 2   Methodology for downscaling crop yield and crop water productivity mapping
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respective values from aggregated NDVI, EVI, LAI and GPP 
layers.

Step 5: The min–max and min-med disaggregation func-
tions with threshold anchor points for Rice Yield-NDVI 
scatter space conceptualisation diagram is explained in 
Fig. 3 as follows,

Step 6: Identified two anchor points in the rice yield ver-
sus NDVI /EVI/LAI/GPP scatter space for min–max (Eq. 1) 
and min-med disaggregation (Eq. 2) approaches were used 
to downscale the coarse resolution rice yield data into local 
scale or original MODIS resolution using the following 
functions, respectively,

Step 7: Comparison of the disaggregated yields at 500 m 
scale with district level ICRISAT-India rice yield datasets 
were analysed and the best correlated indices (i.e., NDVI or 
EVI or LAI or GPP) from the best disaggregation approach 
(i.e., min-median or min–max) was selected based on the 
lowest root mean square error (RMSE) and mean absolute 
error (MAE) values for downscaling coarse rice yield data-
sets for the year 2000.

Step 8: Step 1 through Step 7 was repeated for subsequent 
years (i.e., 2001 -2015) and the best correlated variable from 
best disaggregation functions was identified to downscale 
the rice yield datasets from 50 km grids to 500 m grids.

(1)Ydown =

[
Ymax − Ymin

NDVImax − NDVImin

]

NDVI

(2)Ydown =

[
Ymedian − Ymin

NDVImedian − NDVImin

]

NDVI

Validation with ICRISAT‑India Rice Yield Datasets

The Kharif season (i.e., June—October) district-wise rice 
yield data from ICRISAT-India during 2000–2015 was used 
for validating disaggregation methods adopted in the pre-
sent study. The district wise kharif season ICRISAT-India 
rice yield data in the excel database was linked with India's 
district level administrative shapefile using Q-GIS software 
(QGIS Development Team, 2009). The shapefile with rice 
yield information from 2000–2015 were imported into the 
GEE Assets background from which these shapefiles were 
accessed into the GEE scripts for further processing. These 
shapefiles of ICRISAT rice yield datasets were converted to 
raster grids at the district scale. Thirty-six random districts 
were selected to extract the corresponding average down-
scaled rice yield values. The comparison and validation of 
the downscaled rice yields with ICRISAT-India rice yields 
were assessed with RMSE and MAE as follows,

where Si is the downscaled rice yield value [t/ha]; Oi is the 
ICRISAT-India observed rice yield [t/ha]; O is the mean 
value of the observed rice yield values; S is the mean value 
of the downscaled rice yield estimates; n is the total number 
of observations.

(3)RMSE =

√√√
√1

n

n∑

i=1

[
Si − Oi

]2

(4)MAE =
1

n

∑n

i=1
|
|Oi − Si

|
|

Fig. 3   Disaggregation approaches adopted in the present study to downscale rice yield datasets
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Crop Water Productivity Mapping

Crop water productivity (CWP) was estimated with crop 
productivity (kg/ha) and volume of water consumed by the 
crops (m3/ha) as per Eq. (5). To calculate crop water pro-
ductivity, we used the rice crop productivity maps gener-
ated at 500 m grid-scale from the proposed downscaling 
approach in the numerator and MODIS ET data products in 
the denominator of Eq. (5). The MODIS ET data products 
provide 8-day composites ET layers. Therefore, these 8-day 
composites were cumulated over the primary rice season to 
calculate a seasonal ET at each 500 m grid cell every year 
from 2000 to 2015. However, the MODIS-ET data products 
were in ‘mm’ of water units. Therefore, the ‘mm’ of water 
units was converted to m3/ha units with a conversion fac-
tor of 10 for the convenience of CWP calculation. On the 
other hand, the downscaled rice crop yield raster grids were 
converted from ‘t/ha’ unit to ‘kg/ha’. The crop water produc-
tivity maps were generated at 500 m resolutions with crop 
productivity and MODIS ET derived seasonal ET maps with 
the following equation,

Statistical Analysis of Rice Yield, ET and CWP

Spatially distributed rice yield, ET and CWP maps were 
analysed statistically with respect to unique climate zones 
in SSEA region. The four main climatic zones map was 
used to extract the respective rice yield, ET and CWP values 
from the all the raster layers. Two different statistical tests 
were conducted to analyse these parameters for their mean 
and variance variation with respect to the climatic zones. 
ANOVA test was used to analyse whether the mean values 
of rice yield across different climate zones are statistically 
different or not. Similarly, a paired t-test was used to analyse 
whether the paired climate zones mean are different from 
each other or not. These two statistical tests, ANOVA and 
paired t-test were repeated for ET and CWP variables as 
well.

Results

Selection of Least Biased Variable 
and Disaggregation Method

The calculated minimum, maximum, and median threshold 
values based on 5th, 95th, and 50th percentile rice yield 
and associated NDVI, EVI, LAI, and GPP values are shown 
in supplementary Tables S1, S2, S3, and S4, respectively. 

(5)

CWP [kg∕m3] =
Crop productivity [kg∕ha]

Volume ofwater consumed or ET [m3∕ha]

Based on these threshold values, the coarse gridded rice 
yield images were disaggregated to 500 m raster grids using 
disaggregated functions as given in the Eqs. (1) and (2). 
The downscaled rice yield based on NDVI, EVI, LAI, and 
GPP were compared with ICRISAT-India rice yield at 36 
randomly selected districts. The comparison of downscaled 
rice yields with ICRISAT rice yields for both min–max and 
min-med downscaling methods are shown in Fig. 4. Fig-
ure 4 clearly shows min-med method of downscaling was 
comparatively better than min–max downscaling method as 
the estimated rice yield values by earlier method show com-
paratively lower overestimation with respect to ICRISAT 
rice yield values across all the years. On the other hand, 
among all the indices, GPP was showing relatively lower 
overestimation across all the years. The calculated RMSE 
and MAE for all these indices among these two downscal-
ing methods also confirm that min-med approach with GPP 
index were consistently better across all the years. The least 
RMSE value of 1.04 t/ha was obtained by GPP based min-
med approach during 2007 while the least MAE value of 
0.81 t/ha was also obtained during the same year 2007. LAI 
was the next best performing index after GPP while NDVI 
an EVI indices were highly overestimating the rice yield 
values consistently across all the years (Tables 1 and 2).

Downscaled Rice Yield for the Year 2015

For brevity, coarse gridded rice yield map, downscaled rice 
yield map using GPP index, and the reference ICRISAT-
India rice yield map for 2015 are shown in Fig. 5. Further-
more, we have also shown the enlarged images at three ran-
dom sites in the study area for a detailed comparison among 
coarse rice yield, downscaled rice yield and ICRISAT-India 
rice yield values (Fig. 5). The coarse rice yields were vary-
ing from 0.08 to 7 t/ha from Pakistan to Indonesia. Three 
selected random sites from India, Thailand and Indonesia 
show a wide range of rice yield due to unique variation in 
the climate, water availability, and field management prac-
tices. A random site at south-eastern part of India shows 
a wide variation with 2–6 t/ha in the rice yield within the 
selected region while at other two random sites in the north-
eastern part of Thailand and southern part of Indonesia show 
a relatively lower variation in the rice yield with 4–6 t/ha and 
2–2.5 t/ha, respectively within the selected sites (Fig. 5a).

Figure 5b shows the downscaled rice yield using GPP 
variable. The downscaled rice yield map captures a simi-
lar spatial pattern of rice yield as that of ICRISAT-India 
rice yield and Global gridded rice yield layers at all 3 ran-
dom sites. This indicates that the disaggregation approach 
adopted in this study is reasonable and effective in downscal-
ing rice yield datasets. The comparison of the coarse gridded 
yield with the downscaled rice yields at three random sites 
show that the range of rice yield values were also similar at 
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Fig. 4   Comparison of min-med and min–max downscaling results for GPP, LAI, NDVI and EVI variables during a 2000–2003, b 2004–2007, c) 
2008–2011, and d 2012–2015
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all the sites. Thus, the downscaled rice yield maps preserve 
both the spatial pattern and the range of rice yield values 
similar to global gridded rice yield and ICRISAT rice yield 
values. Since ICRISAT-India rice yield was only available 
to India, the comparison of the downscaled yields was done 
at the district level yield values over India (Fig. 5c). The 
yield variation in the ICRISAT-India map was ranging from 

1 to 6 t/ha. The districts from southern Indian states such 
as Tamil Nadu, Andhra Pradesh, Telangana and Northeast 
Indian states such as Punjab were recorded with the highest 
rice yields up to 5–6 t/ha while other states were showing 
relatively lower yields (Fig. 5c). This is mainly because of 
intensive irrigation practices in these regions increase the 
rice yield comparatively higher than any other rainfed based 

Table 1   RMSE values of 
different indices used in 
the min-med and min–max 
disaggregation functions

Year RMSE (t/ha)

Min–Max approach Min-Med approach

GPP LAI NDVI EVI GPP LAI NDVI EVI

2000 1.89 2.35 4.46 4.61 1.18 2.00 2.42 3.14
2001 1.49 2.53 5.03 5.49 1.17 2.20 3.65 4.63
2002 1.99 2.54 3.71 4.16 1.14 1.89 2.58 3.29
2003 1.95 2.77 4.84 5.50 1.27 2.36 4.24 5.37
2004 1.95 2.87 4.60 4.95 1.22 2.38 3.12 3.82
2005 1.78 2.61 4.87 5.42 1.13 2.13 2.67 3.75
2006 2.25 2.81 5.26 5.78 1.33 2.33 4.05 4.99
2007 1.74 2.62 5.21 5.71 1.04 2.26 4.32 5.25
2008 2.71 2.64 5.13 5.41 1.84 2.92 3.46 4.68
2009 1.85 2.83 4.15 4.60 1.18 2.30 3.29 4.10
2010 2.33 3.04 6.34 7.66 1.35 2.54 4.83 6.84
2011 1.75 2.82 5.88 6.69 1.36 2.28 4.31 5.59
2012 1.72 2.78 4.19 4.79 1.08 2.11 2.76 3.66
2013 1.49 2.48 4.41 4.78 1.36 2.06 2.93 3.69
2014 1.81 2.85 4.28 5.01 1.49 2.36 2.66 3.26
2015 1.48 2.46 3.94 4.53 1.26 1.99 2.69 3.19

Table 2   MAE values of 
different indices used in 
the min-med and min–max 
disaggregation functions

Year MAE (t/ha)

Min–Max approach Min-Med approach

GPP LAI NDVI EVI GPP LAI NDVI EVI

2000 1.53 1.63 3.97 4.07 0.95 1.53 2.06 2.68
2001 1.11 1.81 4.48 4.98 0.90 1.66 3.19 4.16
2002 1.53 1.73 2.93 3.35 0.89 1.47 2.06 2.59
2003 1.63 1.78 4.21 4.90 0.98 1.54 3.64 4.77
2004 1.57 1.87 3.72 4.21 0.93 1.64 2.43 3.10
2005 1.49 1.76 4.27 4.77 0.86 1.52 2.30 3.20
2006 1.85 1.97 4.43 4.89 1.04 1.73 3.38 4.14
2007 1.42 1.73 4.52 5.07 0.81 1.57 3.69 4.62
2008 2.23 1.98 4.52 4.82 1.21 2.05 2.97 4.16
2009 1.49 2.02 3.51 3.86 0.96 1.74 2.78 3.40
2010 2.02 2.10 5.50 6.96 1.10 1.80 4.10 6.16
2011 1.44 2.09 4.98 5.70 1.12 1.82 3.60 4.72
2012 1.34 2.07 3.41 3.98 0.85 1.75 2.27 2.96
2013 1.24 1.85 3.84 4.20 1.06 1.66 2.49 3.19
2014 1.50 2.23 3.61 4.24 1.20 1.94 2.32 2.77
2015 1.30 1.90 3.15 3.78 1.01 1.59 2.24 2.58
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rice farming system in India. Groundwater is the source of 
irrigation in most of these districts where the yield is rela-
tively high. The comparison of downscaled rice yield and 
the ICRISAT-India rice yield at the random site in India 
show a strong similarity which indicates that the perfor-
mance of the min-med downscaling approach was effective 
and appropriate at most parts of India, Thailand and other 
SSEA countries (Fig. 5c).

Statistical Analysis of Downscaled Rice Yield

Downscaled seasonal rice yield maps for all the years from 
2000 to 2015 are given in the supplementary materials 
(Fig. S1). The four major climate zones (i.e., tropical, arid, 
temperate, cold) with 36 subregions polygon layer was used 
to extract the rice yield values. The extracted rice yield val-
ues from four major climate zones show a distinct varia-
tion from each other (Fig. 6). The tropical zone shows the 
highest variation in the rice yield values which varies from 
1.5 to 10 t/ha. Cold and temperature zones were showing 
relatively similar range of rice yield values with temperature 

zone being slightly higher yield values than cold zone. The 
arid zone shows the yield variation from 0.5 to 3 t/ha which 
is the lowest yield range among other climate zones. This 

Fig. 5   Comparison of spatially distributed primary season a global gridded rice yield, b downscaled rice yield by GPP based min-med method, 
and c ICRISAT-India rice yield for the year 2015

Fig. 6   Downscaled rice yield variation among climate zones
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is very true that the arid region lacks significant rainfall 
and moisture thus affects the crop yield (Fig. 6). However, 
the ANOVA analysis show that the mean rice yield values 
across these 4 climate zones are significantly different with 
a p-value of 2e-16 (Table 3). The paired t-test p-value matrix 
show that the mean rice yield values of cold-temperate zones 
are not significantly different from each other while the other 
paired zones such as arid-cold, arid-temperate, arid-tropical, 
cold-tropical, and temperate-tropical zones mean rice yield 
values were significantly different from each other (Table 4).

Evapotranspiration Variation and Statistical 
Analysis

MODIS ET for the year 2015 is shown in Fig. 7. The sea-
sonal ET maps for all the years from 2001 to 2015 are given 
in supplementary materials section (Fig. S2). The MODIS-
ET data products was not available for the primary season 

of the year 2000. Therefore, the ET mapping was done from 
2001 through 2015. The ET values were highly varying 
from Pakistan to Indonesia with a range of < 300 m3/ha to 
more than 1500 m3/ha, respectively. Specifically, the high-
est ET values were observed in central Thailand, northeast 
of India, southern Indonesia and northern Philippines with 
a range of 1500–4000 m3/ha. A relatively lower ET values 
in the range of 300–500 m3/ha were observed in the central 
part of Myanmar, western Thailand and Pakistan (Fig. 7a). 
The extracted ET values from four major climate zones are 
shown in Fig. 7b. Tropical zone show a huge variations in 
the seasonal ET rates which ranges from 500 to 4000 m3/ha 
while the lowest ET rates were observed in the arid climate 
which range from 100 to 1000 m3/ha. The arid zone in SSEA 
include mainly western part of India and central and south-
ern part of Pakistan. The lower ET rates in these regions due 
to lower moisture availability as these zones comes under 
great Indian desert or Thar desert. The temperate zone ET 
rates were ranging from 100 to 2000 m3/ha while cold zone 
show an ET range of 1000 to 2000 m3/ha. The ET variation 
across different climate zones were different with different 
mean values. The ANOVA test for mean ET values across 
different climate zones in SSEA region show that these mean 
values were significantly different (Table 5). However, the 
pairwise t-test statistics show that arid-cold, arid-tropical, 
arid-temperate and temperate-tropical mean ET values 
were statistically different at 100% confidence level. The 
cold-tropical mean ET values were significant only at 99% 

Table 3   ANOVA analysis for 
rice yield across climatic zones

Significance code: 0 ***; 0.001 **; 0.01 *; 0.05++; 0.1+;1NS

Degrees of 
freedom

Sum square Mean Sum 
square

F value P value Sig-
nificance 
level

Zones 3 1385 461.5 192.3  < 2e-16 ***
Residuals 500 1200 2.4

Table 4   Pairwise t-test p-value matrix for rice yield among climatic 
zones

Significance code: 0 ***; 0.001 **; 0.01 *; 0.05++; 0.1+;1NS

Arid Cold Temperate

Cold 1.10E-09*** – –
Temperate 2.00E-16*** 1NS –
Tropical 2.00E-16*** 2.00E-16*** 2.00E-16***

Fig. 7   a Spatial variation of ET over the study area during 2015, and b ET variation with respect to climate zones
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confidence level while cold-temperate mean ET values were 
not statistically significant (Table 6).

Crop Water Productivity Variation and Statistical 
Analysis

ET based crop water productivity map of 2015 is shown in 
Fig. 8a. The seasonal CWP maps for all the years from 2001 
to 2015 are given in the supplementary materials (Figure 
S3). A distinct variation on CWP was observed spatially 
across SSEA region. Similarly, seasonal variation across 
all the years in the CWP values was also observed. This 
indicates the water availability, water use, and crop pro-
duction varies with season and region. From Fig. 8a, the 
highest CWP values were observed in the northern part of 
Laos, central part of Myanmar, southern part of Indonesia 
with range of 5–7 kg/m3 while the lowest CWP values were 
observed in the north-eastern part of Thailand and southern 
India with less than 3 kg/m3. A wide range of CWP values 

with 1–12.5 kg/m3 from tropical zone indicate that this zone 
represents a mixture of crop water use and crop production 
characteristics across multiple countries that comes under 
this tropical zone such as Sri Lanka, India, Myanmar, Laos, 
Thailand, Indonesia and Philippines (Fig. 8b). It was also 
observed that arid and temperate zone CWP values were in 
the same range while cold zone CWP values were relatively 
lower than all other zones. The ANOVA based statistical 
analysis show that the mean CWP values across different 
zones in SSEA were significantly different (Table 7). A 
pairwise t-test comparison matrix show that arid-temperate 
zones mean CWP values were not significantly different. 
The arid-cold zones based mean CWP values were signifi-
cant at 99% confidence level while other combinations such 
as arid-tropical, cold-temperate, cold-tropical, temperate-
tropical zones mean values were statistically significant at 
100% confidence level (Table 8).

Discussion

Global crop yield data products at coarser spatial scales are, 
although, useful to understand a large-scale dynamic of cli-
mate on the crop productivity, the applicability of these data-
sets for the understanding of crop variability at local scale is 
limited due to heterogenous nature of the field conditions. In 
this study, we have evaluated the functional relationship and 
effectiveness of different biophysical and vegetation indices 

Table 5   ANOVA analysis for 
ET across climatic zones

Note: Significance code: 0 ***; 0.001 **; 0.01 *; 0.05++; 0.1+;1NS

Degrees of 
freedom

Sum square Mean Sum square F value P value Sig-
nificance 
level

Zones 3 1.1E + 08 36,803,193 80.22  < 2e-16 ***
Residuals 500 2.29E + 08 458,795

Table 6   Pairwise T-test p-value matrix for ET among climatic zones

Significance code: 0 ***; 0.001 **; 0.01 *; 0.05++; 0.1+;1NS

Arid Cold Temperate

Cold 3.80E-12*** – –
Temperate 9.00E-11*** 0.3048NS –
Tropical  < 2e-16*** 0.0081* 6.10E-13***

Fig. 8   a Spatial variation of CWP over the study area during 2015, and b CWP variation with respect to climate zones
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to downscale global gridded crop yield data to a relatively 
finer spatial unit. The basis of selecting NDVI, EVI, LAI and 
GPP variables for disaggregating coarse crop yield products 
to a finer resolution was mainly due to their seasonal pat-
tern strongly correlates with crop growth, biomass and yield 
(Gilardelli et al., 2019; Kang et al., 2016; Li et al., 2014; 
Machwitz et al., 2014). Nevertheless, the level of depend-
ency of each variable with crop yield on a particular season 
might differ. Therefore, a season specific correlation analysis 
of each variable on crop yield was adopted in the present 
study to identify the least biased variable for effective down-
scaling of coarse gridded datasets on a year-by-year basis. 
The accuracy of downscaled results also depends on the 
anchor points or threshold values to transform coarse grid-
ded data to finer grids. Therefore, we also investigated two 
different methods of fixing anchor points based on min–max 
and min-med threshold values from yield and biophysical 
and vegetation indices scatter space.

The GPP indices were strongly correlated with crop 
yield as they were relatively less biased when compared to 
LAI, NDVI and EVI. However, the relative bias between 
GPP and LAI indices were relatively lesser. These results 
strongly support the results from a similar study by (Jaafar 
& Ahmad, 2015) where they conclude that the variable GPP 
was strongly correlated with summer crop yields in the sem-
iarid and arid agrosystems. The threshold values used in 
the disaggregation approach could lead to systematic and 
higher bias in the results if a proper functional relationship 
with representative values was not considered. This has been 
explained in this study through demonstrating two differ-
ent downscaling methods and corresponding model perfor-
mances. Identifying the anchor point threshold values for 
vegetation indices and crop yield datasets play a significant 
role in the effective downscaling process. The min–max 

downscaling approach used 5th and 95th percentile values 
of the vegetation indices and crop yield values while the 
min-med downscaling approach used 5th and 50th percentile 
values. The min-med approach was effective in the down-
scaling of rice yield datasets when compared to min–max 
approach. The min–max approach used the extreme values 
of global rice yield data and associated biophysical and veg-
etation indices to transform the coarse yield to local scale 
which overestimates the actual field level yield values. This 
is because of higher extreme (95 percentile) global yield 
values often not matched with local scale extreme values due 
to a systematic error in the conceptualisation and modelling 
process. However, the median (50 percentile) global yield 
values were reasonably matched with local scale median 
values thus the min-med approach effectively transforms the 
coarse yield to local yield.

Performance assessment of minimum-median based 
downscaling model across all the years from 2000 through 
2015 show that the MAE values were within 0.81–1 t/ha for 
most of the years while the maximum MAE never exceeded 
beyond 1.21 t/ha. This indicates that the proposed downscal-
ing method maximum error with respect to the total range 
of actual observed yield (i.e., 0–7 t/ha) values not exceeded 
15–20%. These results also strongly support from similar 
studies in such a way that the average error with respect 
to the actual range of values was within 15–20% (Folberth 
et al., 2019; Gaso et al., 2019; Gilardelli et al., 2019). The 
crop water productivity of rice crop was mapped at 500 m 
grid scale with downscaled rice yield datasets and MODIS-
ET data sets. The equivalent ‘mm’ depth of ET units was 
transformed to ‘m3/ha’ in such a way that the crop water 
productivity was estimated in ‘kg/m3’ units. The time series 
crop water productivity maps show a unique trend in spatial 
and temporal domains in each year from 2000 through 2015. 
The mapped crop water productivity results were closely 
aligned with the results from (Morita, 2021) where Maize, 
Rice, Wheat, and Sugarcane crops crop water productiv-
ity was estimated in the south Asia and sub-Saharan Africa 
from 1980 through 2012.

The ANOVA based statistical analysis show that the 
downscaled rice yield, ET and CWP across different climate 
zones were statistically significant (Tables 3, 5, 7). Although 
these values were significantly different across different cli-
mate zones in SSEA region, specific climate zones mean 

Table 7   ANOVA analysis for 
crop water productivity across 
climatic zones

Significance code: 0 ***; 0.001 **; 0.01 *; 0.05++; 0.1+;1NS

Degrees of 
freedom

Sum square Mean Sum square F value P value Sig-
nificance 
level

Zones 3 361.6 120.55 36.14  < 2e-16 ***
Residuals 500 1667.7 3.34

Table 8   Pairwise t-test p-value matrix for crop water productivity 
among climatic zones

Significance code: 0 ***; 0.001 **; 0.01 *; 0.05++; 0.1+;1NS

Arid Cold Temperate

Cold 0.0029* - -
Temperate 1NS 1.60E-05*** -
Tropical 3.60E-08***  < 2e-16*** 2.60E-06***
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values were not statistically different from other climate 
zones from a pairwise t-test analysis (Tables 4, 6, 8). The 
temperate-cold zones mean yield values were not statisti-
cally different. Similarly, temperate-cold and arid-temperate 
climate zones mean values were not statistically different 
from other combination zones for ET and CWP variables, 
respectively. These comparison analyses help to identify 
specific zones that are more productive and efficient in crop 
water use for the crop production systems.

Conclusions

Crop productivity and crop water productivity information at 
local field scales is crucial for calibrating crop models, fore-
casting crop yields, and informed decision making in crop 
management. This study explored multiple variables and 
multi model approach to identify an appropriate downscal-
ing method to transform global scale yield values to a local 
scale at 500 m. It was found that the min-med downscaling 
approach was more effective than min–max approach. The 
min-med downscaling approach performance was satisfac-
tory with MAE range of 0.85–1.2 t/ha which lies in the error 
range of 15–20% with respect to actual range of reference 
rice yield (0–7 t/ha) datasets. It was found that the GPP vari-
able was strongly correlated with crop yield response when 
compared to LAI, NDVI and EVI indices.

A distinct variation in the crop productivity and crop 
water productivity was observed across SSEA region from 
year to year. In general, tropical zone rice yield and crop 
water productivity values were highly varying when com-
pared to temperate, arid and cold climate zones. For exam-
ple, the tropical zone rice yield and crop water productivity 
values were highly varying in the range of 1–10 t/ha and 
1–12.5 t/ha, respectively. The temperate and cold zones rice 
yield values were at par each other while arid and temperate 
crop water productivity values were at par each other.

The performance evaluation of the proposed downscal-
ing methods was successfully verified with ICRISAT based 
district level rice yield datasets. However, the extensive 
evaluation with field-based rice yield datasets across differ-
ent climatic zones would be highly recommended for robust 
validation. Moreover, in this study we have only downscaled 
the primary season rice yield for SSEA region. But a similar 
approach can be adopted to downscale multiple seasons and 
multiple crops coarse resolution global gridded datasets with 
the proposed downscaling algorithms.
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