Skip to main content

Advertisement

Log in

Evaluation of Carrier- and Liquid-Based Bioinoculant as a Promising Approach to Sustain Black Gram (Vigna mungo L.) Productivity

  • Research
  • Published:
International Journal of Plant Production Aims and scope Submit manuscript

Abstract

The use of rhizobia and phosphorus solubilizing bacteria (PSB) as an alternative source to improve soil nutrition is necessary to promote sustainable gram production. In this study, the efficacy of rhizobia (Bradyrhizobium japonicum- BR3267) and PSB (Pseudomonas striata) in liquid form and on carrier material was investigated in a Randomized Complete Block Design. Their effects on root nodulation, nutrient uptake, growth phenology, and yield of black gram were evaluated. Recommended fertilizer dose (RDF)- 200 kg ha−1 N P K (12:30:17) + 0.4 Zn was set as the control and common factor. Integration of Rhizobia + RDF increased plant height, dry matter, leaf chlorophyll, and leaf area index compared to PSB + RDF. The liquid inoculants influenced root nodulation, N and P uptake, growth phenology, and yield more than the carrier-based. Root nodule number plant−1 was highest with Rhizobia + RDF, but root nodule volume and weight increased when PSB was integrated. Nitrogen uptake correlated positively with nodule number (R2 = 0.64) and dry weight (R2 = 0.75). The integrated liquid-based Rhizobia + PSB + RDF produced the highest yield (1268.31 kg ha−1) and was 35% higher than the non-inoculated plot. The higher RDF + Rhizobium + PSB (LB) + RDF trend resulted in a significant aggregate mean of 21.5%, and protein yield (272.77 kg ha−1). The study addressed the hypothesis that rhizobia and PSB in liquid form have a stronger effect on nodulation, which positively affects nutrient uptake capacity and overall crop productivity, so their dual inclusion with RDF in cropping systems is recommended.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source: Meteorological Services Department, Tamale, Ghana

Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbamondi, G. R., Tommonaro, G., Weyens, N., Thijs, S., Sillen, W., Gkorezis, P., Iodice, C., Rangel, W. M., Nicolaus, B., & Vangronsveld, J. (2016). Plant growth-promoting effects of rhizospheric and endophytic bacteria associated with different tomato cultivars and new tomato hybrids. Chemical and Biological Technologies in Agriculture, 3, 1–10. https://doi.org/10.1186/s40538-015-0051-3

    Article  CAS  Google Scholar 

  • Abbas, M., Shah, J. A., Irfan, M., & Memon, M. Y. (2018). Remobilization phosphorus in wheat cultivars under induced phosphorus deficiency. Journal of Plant Nutrition, 41, 1–12. https://doi.org/10.1080/01904167.2018.1458871

    Article  CAS  Google Scholar 

  • Abebe, B. (1979). Agricultural field experiment management manual Part III, Institute of Agricultural Research, Addis Ababa, Ethiopia.

  • Adjei-Nsiah, S., Kumah, J. F., Owusu-Bennoah, E., & Kanampiu, F. (2019). Influence of P sources and rhizobium inoculation on growth and yield of soybean genotypes on ferric lixisols of Northern Guinea Savanna Zone of Ghana. Communications in Soil Science and Plant Analysis, 50, 853–868. https://doi.org/10.1080/00103624.2019.1589489

    Article  CAS  Google Scholar 

  • Adnan, M., Shah, Z., Fahad, S., Arif, M., Alam, M., Khan, I. A., et al. (2017). Phosphate-solubilizing bacteria nullify the antagonistic effect of soil calcification on bioavailability of phosphorus in alkaline soils. Scientific Reports, 7, 1–13. https://doi.org/10.1038/s41598-017-16537-5

    Article  CAS  Google Scholar 

  • Afzal, A., & Bano, B. (2008). Rhizobium and phosphate solubilizing bacteria improve the yield and phosphorus uptake in wheat (Triticum aestivum L.). International Journal of Agriculture And Biology, 10:85–88. http://www.fspublishers.org/

  • Albareda, M., Rodrigues, D. N., & Temprano, F. J. (2009). Soybean inoculation: Dose, N fertilizer supplementation and rhizobia persistence in soil. Field Crops Research, 113, 352–356. https://doi.org/10.1016/j.fcr.2009.05.013

    Article  Google Scholar 

  • Asei, R., Ewusi-Mensah, N., & Abaidoo, R. C. (2015). Response of Soybean (Glycine max L.) to rhizobia inoculation and molybdenum application in the northern savannah zones of ghana. Journal of Plant Sciences, 3, 64–70. https://doi.org/10.11648/j.jps.20150302.14

  • Ashmore, M. R. (2005). Assessing the future global impacts of ozone on vegetation. Plant Cell Environment, 28, 949–964. https://doi.org/10.1111/j.1365-3040.2005.01341.x

    Article  CAS  Google Scholar 

  • Association of Official Analytical Chemists, (1975). Official and tentative methods of the analysis. Washington, DC.

  • Bargaz, A., Lyamlouli, K., Chtouki, M., Zeroual, Y., & Dhiba, D. (2018). Soil microbial resources for improving fertilizers efficiency in an integrated plant nutrient management system. Frontiers in Microbiology, 9, 1–25. https://doi.org/10.3389/fmicb.2018.01606

    Article  Google Scholar 

  • Bashan, Y., Kamnev, A. A., & de-Bashan, L. E. E. (2013). A proposal for isolating and testing phosphate-solubilizing bacteria that enhance plant growth. Biology and Fertility of Soils, 49, 1–2. https://doi.org/10.1007/s00374-012-0756-4

    Article  Google Scholar 

  • Collavino, M. M., Sansberro, P. A., Mroginski, L. A., & Aguilar, O. M. (2010). Comparison of in vitro solubilization activity of diverse phosphate-solubilizing bacteria native to acid soil and their ability to promote Phaseolus vulgaris growth. Biololgy and Fertility of Soils, 46, 727–738. https://doi.org/10.1007/s00374-010-0480-x

    Article  Google Scholar 

  • Cordell, D., Drangert, J. O., & White, S. (2009). The story of phosphorus: Global food security and food for thought. Global Environmental Change, 19, 292–305. https://doi.org/10.1016/j.gloenvcha.2008.10.009

    Article  Google Scholar 

  • Dekhane, S. S., Khafi, H. R., Raj, A. D., & Parmar, R. M. (2011). Effect of biofertilizer and fertility levels on yield, protein content and nutrient uptake of cowpea (Vigna unguiculata (L.) WALP.). Legume Research, 34, 51–54.

    Google Scholar 

  • Dey, R., Pal, K. K., Bhatt, D. M., & Chauhan, S. M. (2004). Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria. Microbiological Research, 159, 371–394. https://doi.org/10.1016/j.micres.2004.08.004

    Article  CAS  PubMed  Google Scholar 

  • Duncan, D. B. (1955). Multiple range and multiple F tests. Biometrics. https://doi.org/10.2307/3001478

    Article  Google Scholar 

  • Elhaissoufi, W., Khourchi, S., Ibnyasser, A., Ghoulam, C., Rchiad, Z., Zeroual, Y., Lyamlouli, K., & Bargaz, A. (2020). Phosphate solubilizing rhizobacteria could have a stronger influence on wheat root traits and aboveground physiology than rhizosphere P solubilization. Frontiers in Plant Science, 11, 979. https://doi.org/10.3389/fpls.2020.00979

    Article  PubMed  PubMed Central  Google Scholar 

  • Fening, J. O., & Danso, S. K. A. (2002). Variation in symbiotic effectiveness of cowpea bradyrhizobia indigenous to Ghanaian soils. Applied Soil Ecology., 21, 23–29. https://doi.org/10.1016/S0929-1393(02)00042-2

    Article  Google Scholar 

  • Fisher, R. A. (1921). Some remarks on the method formulated in recent articles on quantitative analysis of plant growth. Annals of Applied Biology. https://doi.org/10.1111/j.1744-7348.1921.tb05524.x

    Article  Google Scholar 

  • Graham, P. H., Hungria, M., & Tlusty, B. (2004). Breeding for better nitrogen fixation in grain legumes: Where do the rhizobia fit in? Crop Management. https://doi.org/10.1094/CM-2004-0301-02-RV

    Article  Google Scholar 

  • Hajjam, Y., & Cherkaoui, S. (2017). The influence of phosphate solubilizing microorganisms on symbiotic nitrogen fixation: perspectives for sustainable agriculture. Journal of Materials and Environmental Science, 8, 801–808. http://www.jmaterenvironsci.com

  • Hogh-Jensen, H., Schjoerring, J. K., & Soussana, J. F. (2002). The influence of phosphorus deficiency on growth and nitrogen fixation of white clover plants. Annals of Botany, 90, 745–753. https://doi.org/10.1093/aob/mcf260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hungria, M., & Kaschuk, G. (2014). Regulation of N2 fixation and NO3-/NH4C. Assimilation in nodulated and N–fertilized Phaseolus vulgaris L. exposed to high temperature stress. Environmental and Experimental Botany, 98, 32–39. https://doi.org/10.1016/j.envexpbot.2013.10.010

    Article  CAS  Google Scholar 

  • Isherwood, K. F. (2000). Mineral fertilizer use and the environment. International Fertilizer Industry Association/United Nations Environment Programme.

    Google Scholar 

  • Kalayu, G. (2019). Phosphate solubilizing microorganisms: Promising approach as biofertilizers. International Journal of Agronomy, 2019, 7. https://doi.org/10.1155/2019/4917256

    Article  CAS  Google Scholar 

  • Khan, A. A., Jilani, G., Akhtar, M. S., Naqvi, S. M. S., & Rasheed, M. (2009a). Phosphorus solubilizing bacteria: Occurrence, mechanisms and their role in crop production. Journal of Agricultural and Biological Sciences, 1, 48–58.

    Google Scholar 

  • Khan, M. S., Zaidi, A., & Wani, P. A. (2009b). Role of phosphate solubilizing microorganisms in sustainable agriculture. In: Lictfouse E et al (eds) Sustainable Agriculture. Springer, 552. https://doi.org/10.1007/978-90-481-2666-8_34

  • Khan, M. S., Zaidi, A., Wani, P. A., & Oves, M. (2009c). Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environmental Chemistry Letters, 7, 1–19. https://doi.org/10.1007/s10311-008-0155-0

    Article  CAS  Google Scholar 

  • Kumaga, F. K., & Ofori, K. (2004). Response of soybean (Glycine max (L.) Merrill) to Bradyrhzobia inoculation and phosphorus application. International Journal of Agriculture and Biology, 2, 324–327.

    Google Scholar 

  • Kyei-Boahen, S., Savala, C. E. N., Chikoye, D., & Abaidoo, R. (2017). Growth and yield responses of cowpea to inoculation and phosphorus fertilization in different environments. Frontiers in Plant Science, 8, 646. https://doi.org/10.3389/fpls.2017.00646

    Article  PubMed  PubMed Central  Google Scholar 

  • Martins, L. M. V., Xavier, G. R., Rangel, F. W., Ribeiro, J. R. A., Neves, M. C. P., Morgado, L. B., et al. (2003). Contribution of biological nitrogen fixation to cowpea; a strategy for improving grain yield in the semi–arid region of Brazil. Biology and Fertility of Soils, 38, 333–339. https://doi.org/10.1007/s00374-003-0668-4

    Article  Google Scholar 

  • Mathu, S., Herrmann, L., Pypers, P., Matiru, V., Mwirichia, R., & Lesueur, D. (2012). Potential of indigenous bradyrhizobia versus commercial inoculants to improve cowpea (Vigna unguiculata L. walp.) and greengram (Vigna radiate L. wilczek.) yields in Kenya. Soil Science and Plant Nutrition, 58, 750–763. https://doi.org/10.1080/00380768.2012.741041

    Article  Google Scholar 

  • Moreira, F. M. S., Carvalho, T. S., & Siqueira, J. O. (2010). Effect of fertilizers, lime, and inoculation with rhizobia and mycorrhizal fungi on the growth of four leguminous tree species in a low-fertility soil. Biology and Fertility of Soils, 46, 771–779. https://doi.org/10.1007/s00374-010-0477-5

    Article  CAS  Google Scholar 

  • Mpepereki, S., Javaheri, F., Davis, P., & Giller, K. E. (2000). Soyabeans and sustainable agriculture: ‘promiscuous’ soyabeans in southern Africa. Field Crops Research, 65, 137–149. https://doi.org/10.1016/S0378-4290(99)00083-0

    Article  Google Scholar 

  • Musa, E. M., Elsheikh, E. A. E., Ahmed, I. A. M., & Babiker, E. E. (2011). Effect of intercropping, Bradyrhizobium inoculation and N, P fertilizers on yields, physical and chemical quality of cowpea seeds. Frontiers of Agriculture in China, 5, 543–557. https://doi.org/10.1007/s11703-011-1147-6

    Article  Google Scholar 

  • Tal, N. (1979). 1979. Nif Tal project, University of Hawaii, Honolulu, Hawaii, USA.

    Google Scholar 

  • Nziguheba, G., Zingore, S., Kihara, J., Merckx, R., Njoroge, S., Otinga, A., et al. (2016). Phosphorus in smallholder farming systems of sub-Saharan Africa: Implications for agricultural intensification. Nutrient Cycling in Agroecosystems, 104, 321–340. https://doi.org/10.1007/s10705-015-9729-y

    Article  Google Scholar 

  • Okogun, J. A., & Sanginga, N. (2003). Can introduced and indigenous rhizobia strains compete for nodule formation by promiscuous soybean in the moist savanna agroecological zone of Nigeria? Biology and Fertility of Soils, 38, 26–31. https://doi.org/10.1007/s00374-003-0611-8

  • Olsen, S. R., & Sommers, L. E. (1982). “Phosphorus,” in Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties, 2nd Edn, eds A. L. Page, R. H. Miller, and D. R. Keeney (Madison, WI: Soil Science Society of America), 403–430.

  • Oteino, N., Lally, R. D., Kiwanuka, S., Lloyd, A., Ryan, D., Germaine, K. J., & Dowling, D. N. (2015). Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Frontiers in Microbiology, 6, 745. https://doi.org/10.3389/fmicb.2015.00745

    Article  PubMed  PubMed Central  Google Scholar 

  • Pawar, U. P., Surnaik, N. T., & Sondge, U. P. (1978). Effect of nitrogen and phosphate on yield and quality of soybean varieties. Journal of Maharashtra Agricultural Universities., 7, 90–92.

    Google Scholar 

  • Rice, W. A., Clayton, G. W., Lupwayi, N. Z., & Olsen, P. E. (2001). Evaluation of coated seeds as a Rhizobium delivery system for field pea. Canadian Journal of Plant Science, 81, 247–253.

    Article  Google Scholar 

  • Rodr´ıguez, H., & Fraga, R. (1999). Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology Advances, 17, 319–339. https://doi.org/10.1016/S0734-9750(99)00014-2

    Article  Google Scholar 

  • Santana, E. B., Marques, E. L. S., & Dias, J. C. T. (2016). Effects of phosphate-solubilizing bacteria, native microorganisms and rock dust on Jatropha curcas L. growth. Genetics and Molecular Research, 15. https://doi.org/10.4238/gmr.15048729

  • Sarwar, N., Atique-ur-Rehman, F., & O., Wasaya, A., Hussain, M., El-Shehawi, A. M., Ahmad, S., Brestic, M., Mahmoud, S. F., Zivcak, M. & Farooq, S. (2021). Integrated nitrogen management improves productivity and economic returns of wheat-maize cropping system. Journal of King Saud University - Science, 33, 101475. https://doi.org/10.1016/j.jksus.2021.101475

    Article  Google Scholar 

  • Schindler, D. W., Hecky, R. E., Findlay, D. L., Stainton, M. P., Parker, B. R., Paterson, M. J., Beaty, K. G., Lyng, M., & Kasian, S. E. M. (2008). Eutrophication of lakes cannot be controlled by reducing nitrogen input: Results of a 37-year whole-ecosystem experiment. Proceedings of the National Academy of Sciences of the United States of America, 105, 11254–11258. https://doi.org/10.1073/pnas.0805108105

    Article  PubMed  PubMed Central  Google Scholar 

  • Silva, V. N., Silva, L. E. S. F., & Figueiredo, M. V. B. (2006). Co-inoculation of cowpea seeds with Bradyrhizobium and Paenibacillus and its efficiency on calcium, iron and phosphorus plant absorption. Pesquisa Agropecuária Tropical, 36, 95–99. (in Portuguese, with abstract in English).

  • Singleton, P. W., Abdelmagid, H. M., & Tavares, J. W. (1985). Effect of phosphorus on the effectiveness of strains of Rhizobium japonicum. Soil Science Society of America Journal, 49, 613–616. https://doi.org/10.2136/sssaj1985.03615995004900030016x

    Article  CAS  Google Scholar 

  • Sundara, B., Natarajan, V., & Hari, K. (2002). Influence of phosphorus solubilizing bacteria on the changes in soil available phosphorus and sugarcane and sugar yields. Field Crops Research, 77, 43–49. https://doi.org/10.1016/S0378-4290(02)00048-5

    Article  Google Scholar 

  • Tahir, M., Khalid, U., Ijaz, M., Mustafa, G., Kareem, F., Naeem, M., et al. (2018). Combined application of bio-organic phosphate and phosphorus solubilizing bacteria ( Bacillus strain MWT 14) improve the performance of bread wheat with low fertilizer input under an arid. Brazilian Journal of Microbiology, 49, 1–10. https://doi.org/10.1016/j.bjm.2017.11.005

    Article  CAS  Google Scholar 

  • Tamiru, S., Pant, L. M., & Tsige, A. (2012). Effects of inoculation by Bradyrhizobium japonicum strains on nodulation, nitrogen fixation, and yield of soybean (Glycine max L.Merill) varieties on Nitisols of Bako, Western Ethiopia. ISRN, 2012:8. https://doi.org/10.5402/2012/261475

  • Thuita, M., Pypers, P., Herrmann, L., Okalebo, R. J., Otieno, C., Muema, E., et al. (2012). Commercial rhizobia inoculants significantly enhance growth and nitrogen fixation of a promiscuous soybean variety in Kenyan soils. Biology and Fertility of Soils, 48, 87–96. https://doi.org/10.1007/s00374-011-0611-z

  • Ulzen, J., Abaidoo, R. C., Mensah, N. E., Masso, C., & AbdelGadir, A. H. (2016). Bradyrhizobium inoculants enhance grain yields of soybean and cowpea in Northern Ghana. Frontiers in Plant Science, 7, 1770. https://doi.org/10.3389/fpls.2016.01770

    Article  PubMed  PubMed Central  Google Scholar 

  • Walpola, B. C., & Yoon, M. (2012). Prospectus of phosphate solubilizing microorganisms and phosphorus availability in agricultural soils: A review. African Journal of Microbiology Research, 6, 6600–6605. https://doi.org/10.5897/AJMR12.889

    Article  CAS  Google Scholar 

  • Wu, F., Li, J., Chen, Y., Zhang, L., Zhang, Y., Wang, S., Shi, X., Li, L., & Liang, J. (2019). Effects of phosphate solubilizing bacteria on the growth, photosynthesis, and nutrient uptake of Camellia oleifera Abel. Forests, 10, 348. https://doi.org/10.3390/f10040348

    Article  Google Scholar 

  • Wu, F., Zhang, H., Fang, F., et al. (2018). Nutrient allocation and photochemical responses of Populus × canadensis ‘Neva’ to nitrogen fertilization and exogenous Rhizophagus irregularis inoculation. Acta Physiologiae Plantarum, 40, 152. https://doi.org/10.1007/s11738-018-2728-2

    Article  CAS  Google Scholar 

  • Zaidi, A., Khan, M. S., Ahemad, M., Oves, M., & Wani, P. A. A., et al. (2009). Recent advances in plant growth promotion by phosphate-solubilizing microbes. In M. S. Khan (Ed.), Microbial strategies for crop improvement (pp. 23–50). Springer-Verlag.

    Chapter  Google Scholar 

  • Zak, D., Goldhammer, T., Cabezas, A., Gelbrecht, J., Gurke, R., Wagner, C., Reuter, H., Augustin, J., Klimkowska, A., & Mclnnes, R. (2018). Top soil removal reduces water pollution from phosphorus and dissolved organic matter and lowers methane emissions from rewetted peatlands. Journal of Applied Ecology, 55, 311–320. https://doi.org/10.1111/1365-2664.13905

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support received from Bhalsar International Company Limited. Authors appreciate the material support received from the Rajasthan Agriculture Research Institute, Durgapura-Jaipur, India. The support of the Department of Agriculture, Kumbungu District, Northern region of Ghana is well acknowledged. Equipment and laboratory support from the CSIR-Savanna Agricultural Research Institute is well appreciated.

Funding

The study was funded by Bhalsar International Company Limited (BR9801).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: [KAK], [YS]; Methodology: [YS], [AK]; Formal analysis and investigation: [KAK], [AI], [ODE]; Writing—original draft preparation: [KAK]; Writing—review and editing: [ODE], [A-YP], [DR], [BBM], [FF]; Funding acquisition: [KAK]; Resources: [KAK], [AI]; Supervision: [YS], [AK].

Corresponding author

Correspondence to A. K. Keteku.

Ethics declarations

Conflict of interest

The authors declare no competing financial or personal relationship interest in this work.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keteku, A.K., Yeboah, S., Agyemang, K. et al. Evaluation of Carrier- and Liquid-Based Bioinoculant as a Promising Approach to Sustain Black Gram (Vigna mungo L.) Productivity. Int. J. Plant Prod. 16, 741–754 (2022). https://doi.org/10.1007/s42106-022-00213-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42106-022-00213-4

Keywords

Navigation