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Abstract
Dryland agricultural system is under threat due to climate extremes and unsustainable management. Understanding of climate 
change impact is important to design adaptation options for dry land agricultural systems. Thus, the present review was 
conducted with the objectives to identify gaps and suggest technology-based intervention that can support dry land farming 
under changing climate. Careful management of the available agricultural resources in the region is a current need, as it 
will play crucial role in the coming decades to ensure food security, reduce poverty, hunger, and malnutrition. Technology 
based regional collaborative interventions among Universities, Institutions, Growers, Companies etc. for water conservation, 
supplemental irrigation, foliar sprays, integrated nutrient management, resilient crops-based cropping systems, artificial 
intelligence, and precision agriculture (modeling and remote sensing) are needed to support agriculture of the region. Dif-
ferent process-based models have been used in different regions around the world to quantify the impacts of climate change 
at field, regional, and national scales to design management options for dryland cropping systems. Modeling include water 
and nutrient management, ideotype designing, modification in tillage practices, application of cover crops, insect, and dis-
ease management. However, diversification in the mixed and integrated crop and livestock farming system is needed to have 
profitable, sustainable business. The main focus in this work is to recommend different agro-adaptation measures to be part 
of policies for sustainable agricultural production systems in future.
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Introduction

A farming system (FS) is an organised way of operating a 
piece of land to grow crops and raise livestock or both. It 
includes everything on farm and outside the farm related to 
farm operations. FS could be categorized into (i) extensive 
and intensive FS; (ii) subsistence and commercial FS; (iii) 
dry and irrigated FS; (iv) individual and multiple FS and 
(v) arable farming, livestock rearing and mixed farming. 
All of these categories might require similar development 
strategies and interventions to have sustainable outcomes 
(Byerlee & Husain, 2008). Thus, FS is an approach of 
developing farm strategies based on principles of produc-
tivity, profitability, stability and sustainability. Farming 
systems research (FSR) is an important area to be con-
sidered for the improvement of agriculture as whole. The 
three main elements of FSR as proposed by Simmonds, 
(2008) are (i) FSR sensu stricto (FS deep analysis as they 
exist); (ii) On farm research with farming systems perspec-
tive [OFR/FSP] and (iii) New farming systems develop-
ment (NFSD) as shown in Fig. 1. However, component 
four needs to have new farming systems (NFS) under addi-
tional management and climate change scenarios. Systems 
modeling has been used in FSR, and include linear sta-
tistical modeling, mechanistic modeling, and integrated, 
bioeconomic or socio-ecological models (Feola et  al., 
2012; Rupnik et al., 2018). Since FSR is an interdiscipli-
nary approach, its application to simulation models can 
be adopted to address trans-disciplinary tasks. In the past, 
different methods and approaches of decision support sys-
tems were used to answer why and how questions that 
include probabilistic and optimization models (Hindsborg 
& Kristensen, 2019), supervised learning models (Wit-
ten & Frank, 2002), Bayesian models (Wang et al., 2012), 
time series analysis (Michel & Makowski, 2013) and 
genetic programming (Samadianfard et al., 2022). Silva 
and Giller, (2021) reported about what crop models can 
and can’t (yet) do. They explored current trends in crop 
modeling after reviewing research presented in the 2nd 
International Crop Modeling Symposium (iCropM2020). 
Most of the focus of the presented work was on climate 
change, adaptation and impact assessment, and much less 
on food security or policy. Similarly, more attention was 
on field level work with less attention on farming sys-
tems investigations. There were few contributions related 
to model improvement with little work about nutrient 
limitations, pest or disease impacts. Crops models can be 
used to devise hypotheses and drive new experiments to 
fulfill above mentioned gaps. Furthermore, outcomes of 
the models should be provided to policy makers so that 
intended purposes can be achieved. Finally they reported 
the importance of cross-scale and interdisciplinary efforts 

with direct engagement of stakeholders to address the 
grand challenges faced by food and agricultural systems 
in the coming century. 

South Asia is one of the important dry land agricultural 
regions in the world. It covers about 3% of the world’s land 
area and is home to a quarter of the world’s population. Cli-
mate change in the form of rise in temperature is hitting the 
region very hard. According to the World Bank, average 
annual temperature of the region will increase between 1.5 
to 3 °C (hotspot) by 2050 in comparison to 1981–2010 if no 
action is taken to minimize C emissions (Hoegh-Guldberg 
et al., 2018). This could put half of the world’s population 
in trouble this hotspot could lead to lower crop yield and 
declined crop productivity (Ainsworth & Ort, 2010). Thus, 
sustainability as a component of FSR is needed to mitigate 
climate change (van Zonneveld et al., 2020) through build-
ing strong, resilient system by considering different factors 
(Fig. 2) (van Zonneveld et al., 2020). Interactive studies of 
these components, with the consideration of farmers, as a 
basic foundation is important for designing a logical frame-
work for FSR (Fig. 3). Hence, key characteristics of FSR 

Fig. 1   The four main elements of framing systems research (FSR) (A 
FSR sensu stricto, B On farm farming system research, C New farm-
ing systems development (NFSD) and D Systems Modelling [ Modi-
fied from Simmonds, (2008)]
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are systems thinking, and interdisciplinary and participatory 
approaches, and these characteristics are missing in most of 
the South Asian developing countries (Ogada et al., 2020).

Changes in the climatic variables (e.g. temperature and 
rainfall) have been observed at shorter time frames e.g. 
month, a season, or a year, as well as on longer time span, 
i.e., decadal for South Asian countries (Sivakumar & Stefan-
ski, 2011). This variability for the shorter time span is called 
climate variability, however, for longer time spans it is called 
climate change. Both are big concerns across the globe as 
well as for South Asian countries (Arora, 2019). Extreme 
climate events at the time of wheat harvesting resulted in 
huge damage to the major staple crop of the region as well 
as to other crops (Ye et al., 2020). However, no adaptation 
options are currently available to give relief to the farmers. 
The Intergovernmental Panel on Climate Change (IPCC) 

defines climate change as any change in climate over time 
due to human activity or natural variability. It has been 
proven that most of the changes in climatic parameters are 
mainly due to human activities on shorter time scale. As 
increasing concentrations of greenhouse gases (GHGs) 
trap extra heat in the earth's atmosphere, higher tempera-
ture results which is called global warming or enhanced 
greenhouse effect. This enhanced effect leads to changes 
in the distribution of rainfall, storm intensity, changed pat-
tern of atmospheric circulation and higher temperature at 
the land/sea surfaces. Most of the earlier researchers have 
linked these physical and biological system changes to 
warming temperature (Rosenzweig et al., 2008). The IPCC 
in their reports predicted 1.8–4.0 °C increased temperature 
in 2090–2099 depending upon which scenario of future 
GHGs emissions was used to drive climate models (IPCC, 

Fig. 2   Factors used to translate 
worldview concept into concep-
tualizing research and practical 
inquiry

Fig. 3   Set of interacting fac-
tors (Environment, farmers 
and farm) for farming systems 
analysis
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2007). GRID-Arendal (http://​www.​grida.​no/​about), which 
was established in 1989 to support environmentally sustain-
able development in collaboration with UN, suggested ways 
to control global warming.

The temperature increase impacts would be more severe 
for smallholder and subsistence farmers due to their lack 
of adaptive capacity particularly in the Indo-Gangetic Plain 
(Kumar et al., 2020). Since these extreme climatic events 
will significanly impact food production, food security in the 
future will become an increasingly critical issue (Shi et al., 
2021). Food security is a great challenge facing humankind 
(Porter et al., 2014). United Nations, in their Sustainable 
Development Goals (SDGs) put food security first (Tambu-
rino et al., 2020). SDGs replaced Millennium Development 
Goal Target 1C with an emphasis not only on hunger, but 
also on sustainability and nutrition (Pedercini et al., 2020; 
Qu et al., 2020). SDG 2 deals with zero hunger. Thus to 
achieve food security, improved nutrition and promote sus-
tainable agriculture, application of a FS approach is essential 
(Allen et al., 2019; Eyhorn et al., 2019). This could be chal-
lenging due to rising food demand, changing climate and 
degraded resources (Mall et al., 2017). Godfray et al., (2010) 
reported a serious situation with billions of people suffering 
from nutritional deficiencies and malnutrition. Sustainable, 
climate-resilient farming systems are needed for nutritional 
quality and food security as mentioned in SDG (Altieri et al., 
2015). This is quite a big challenge as the number of chroni-
cally undernourished people is rapidly increasing (Witten 
& Frank, 2002). Food security is a massive problem and it 
is worsened by climate change. Schmidhuber and Tubiello, 
(2007) concluded that the overall impact of climate change 
on food security will differ across regions and over time. 
They further reported that climate change will adversely 
affect food security and it will increase the dependency of 
developing countries on imports. Furthermore, Tesfaye, 
(2021) reported that climate change will threaten food secu-
rity in the hottest wheat growing regions of world. Thus 
technological options are needed to mitigate climate change 
impact on food security. These options include soil and crop 
innovation and agricultural land reclamation (Horton et al., 
2021). Similarly, recognizing the FS trajectory is necessary 
if future food needs are to be met. Sustainable intensifica-
tion (SI) could be an option as it provides more output from 
the same area of land while minimizing negative impacts to 
the environment (Pretty et al., 2011). The main aim of SI 
is to increase yield without adverse environmental impacts 
and the cultivation of more land, or increased production 
from existing farmland, while minimizing environmental 
pressure.

South Asia, which has 20% of the world’s population, 
faces severe challenges in agriculture mainly due to climate 
variability (Sivakumar & Stefanski, 2011). It had been docu-
mented earlier that extreme climate events in the form of 

heat and drought will create food security issues (Tesfaye, 
2021). Most South Asian regions have witnessed variabil-
ity in temperature and rainfall that manifested in frequent 
heat waves, droughts and floods leading to great damage to 
agriculture (Almazroui et al., 2020). Similarly, the world’s 
largest river systems (Indus, Ganga and Brahmaputra) are 
in this region with maximum land usage for agriculture. 
Thus, people’s livelihoods depend upon management of 
available natural resources, i.e., soil and water. However, 
sustainability of these resources is threatened by extreme 
climate events (Ali et al., 2019). Likewise, due to the high 
population pressure and poor management water resources 
are becoming stressed (Birendra et al., 2021). Since most 
of the land (about 60% of the cropped area) in this region is 
rainfed, the agriculturally based economy of these countries 
is heavily dependent upon summer rainfall, i.e., monsoons 
(Arshad et al., 2018; van Ogtrop et al., 2014). This region 
is a paradox as it enjoys high economic growth but suffers 
from food and nutritional insecurity, extreme poverty, dete-
rioration of natural resources and climate change (Stephens 
et al., 2018). The management of available natural resources 
in dryland areas is urgent, as it will play a crucial role in the 
coming decades to ensure food security and reduction in 
poverty (Baig et al., 2013). Thus, our focus is to review gaps, 
and to suggest technology based collaborative intervention 
such as water conservation, supplemental irrigation, foliar 
sprays, integrated nutrient management, resilient crops and 
cropping systems and precision agriculture (modeling and 
remote sensing) that can support agriculture of the South 
Asian region under changing climate.

Gaps in Dryland Farming Systems

Regions where the ratio between evaporation and evapo-
transpiration is less than 0.65 are called dryland. Dryland 
farming is a special case of rainfed agriculture. Dryland 
farming has been practiced primarily in arid and semiarid 
regions where annual rainfall is about 20–35% of potential 
evapotranspiration. Moisture stress is the main factor limit-
ing yield in this region.

1.	 Hence, successful management of dryland framing 
system depends upon (i) retention of precipitation on 
land; (ii) reduction in evaporation and (iii) utilization 
of drought tolerant crops. This is possible through SI 
which is described as raising yields without additional 
land conversion and without harming the environment 
(Cassman & Grassini, 2020). Pervez Bharucha et al., 
(2021) produced 100 questions through a horizon scan-
ning method that point to the gaps in dryland farming. 
These were further categorized into four sections i.e. (i) 
natural resource inputs; (ii) crop and livestock produc-

http://www.grida.no/about
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tion; (iii) agricultural development and policy and (iv) 
markets and consumption. This important work identi-
fied major gaps that need to be filled to have SI in dry-
land framing systems. Furthermore, crops grown under 
dryland conditions have a larger yield gap that could be 
narrowed with optimal rotations (Hochman et al., 2020) 
and through the use of recommended management prac-
tices e.g. improved cultivars, site specific nutrient man-
agements through use of precision agriculture and water 
harvesting. Therefore, in order to design appropriate 
research and hypotheses we need to use process-based 
models which can easily test what-if scenarios. Effect of 
climate change

Variation in climatic conditions is one of the red-hot sub-
jects in every discipline and it can be quantified by using 
models as mentioned above. Climatic variability and change 
is affecting food production at local, regional and continental 
levels, therefore, influencing the lives of all human beings, 
plants and livestock systems (Williams et al., 2020; Ahmed 
2020). Flora and fauna are particularly influenced by climate 
change because of life-threatening variability in maximum 
and minimum air temperature and precipitation patterns in 
all cropping systems (Challinor et al., 2014; Hutchings et al., 
2020). Worldwide, the thermal trend is the greatest ecologi-
cal challenge in the current century. For example it leads to 
enhanced mean air temperature in major cropping systems 
(Ali et al., 2019). The impact of high temperature (HT), 
drought (D), or elevated CO2 [eCO2] is discussed further in 
the following sections.

Overview of Responses to High Temperature (HT), 
Drought (D), or elevated CO2 [eCO2]

The influence of climatic variables (e.g. air temperature, 
precipitation and [eCO2]) on cropping systems is com-
plicated. These variables play a significant part in rainfed 
cropping systems (Williams et al., 2020). Warming stress 
conditions cause decreases in crop productivity (Zampieri 
et al., 2020). Higher air temperature stress from sowing to 
maturity restricts crop growth and shortens the crop cycle 
(Hatfield & Dold, 2018). Higher temperature than optimum 
hastens anthesis and induces floral aberrations (e.g., sta-
men hypoplasia and pistil hyperplasia), which negatively 
impacts proper reproductive accomplishment in cereal crops. 
Furthermore, very poor dehiscence of anthers, poor pollen 
grain formation and reduced viability of pollen are recog-
nized as primary causes of stress-induced unproductiveness 
and kernel abortion in maize and wheat (He et al., 2018). 
During the grain filling period, higher air temperature stress 
negatively influences grain quality. Too little water has a 
greater negative influence than high-rainfall events in vari-
ous cropping systems (Jalota et al., 2013). Serious water 

shortage during kernel filling resulted in earlier senescence 
and a shorter grain filling period as well as lower green flag-
leaf area perseverance in cereal crops (Asseng et al., 2019). 
Meanwhile, [eCO2] has shown a positive effect on crop bio-
mass production but higher concentrations of CO2 lead to 
elevation of tissue temperature. However, interactive effects 
of these climatic variables on crop production might be dif-
ferent (Rajwade et al., 2015).

High Temperature and Drought Interaction

High air temperature and drought stress are now frequent 
events. In most cropping systems, drought has been intensi-
fied due to higher air temperature stress (Högy et al., 2013). 
Mittler, (2006) documented the effect of multiple abiotic 
stresses e.g. combination of HT and D stress on crops under 
field conditions. The combined impact of HT and D stress 
on crops like barley and wheat was found to be more severe 
as compared to a single stress (Shah & Paulsen, 2003). Rang 
et al., (2011) reported that HT and D interact and it has been 
seen in most parts of Europe where the interaction resulted 
in decreased productivity of wheat and maize (Ciais et al., 
2005). In Asia HT and D stress was seen during the critical 
developmental stages of rice which resulted in major losses 
in the rice based cropping systems (Wassmann et al., 2009). 
Zhang and Huang, (2012) documented yield reduction in 
three major cereals i.e. rice, wheat and maize, in the north-
ern part of China due to HT and D stress. The combined 
detrimental effect of HT and D on cereal, i.e., rice, sorghum, 
wheat, barley, and maize, was more severe as compared to 
individual HT or D impact (Cotter et al., 2020). Cohen et al., 
(2020) conducted meta-analysis of HT and D stress on crop 
yield and yield components. They concluded that a signifi-
cant decrease in crop yield was due to the combined impact 
of HT and D on harvest index, life cycle, seed number, seed 
size and seed composition. The consequences of drought 
are amplified at higher temperature than lower air tempera-
ture, worldwide. The synergistic interactions of higher tem-
perature and drought showed a decreased production more 
through the mutual stresses than by either stress alone, and 
that much of the influence was on physiological processes in 
crop plants in arid environments (Amarasingha et al., 2015).

Interactive Impact of  High Temperature and  Drought 
on Water Use Efficiency  Water use efficiency (WUE) is the 
ratio of the unit crop dry matter produced per unit of water 
used. Blum, (2009) reported that WUE increases under D 
while it decreases under HT stress. Rollins et  al., (2013) 
recorded a 45% decrease in WUE of grain yield (g grain 
L−1) in barley due to HT × D stress while Shah and Paulsen, 
(2003) reported, − 34 to + 24% change in WUE (g grain 
L−1) in wheat. Future climate change might increase the fre-
quency and intensity of extreme events like drought which 
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will limit crop growth and yields. Increasing WUE and yield 
per unit of water is one of the most important challenge in 
dryland farming (Yulianti et al., 2016). Higher air tempera-
ture and drought stress interaction might reduce WUE, as 
warming trend will lead to higher evapotranspiration (ET) 
in the future. Furthermore, the interaction will also increase 
crop water demand in dry and windy situations as compared 
to humid and cool climatic circumstances (Porter, 2005). 
In South Asia, lower WUE and productivity in most of the 
cropping systems are mainly because of extreme climatic 
shocks. This will further lead to problems related to food 
security, as climate change induced crop productivity will 
negatively impact food production and prices in all south 
Asian countries (Thompson et  al., 2017). Similarly, water 
stress significantly impacts physiological mechanisms of 
crops grown in dryland cropping systems. Their results 
showed that interactive stress resulted in 60–92% reduction 
in photosynthesis as compared to non-stressed conditions. 
Additionally, 28% rise in WUE was indicated under drought 
stress at middle/suboptimal level, however, it was reduced 
by 35% at high temperature (Kaur et  al., 2012). Williams 
et al., (2020) studied crop yield, WUE, precipitation capture 
and soil water storage in a dryland cropping system under a 
given set of crop sequence treatments. WUE was calculated 
by using following formulae:

where CY = Crop yield, HHP + �
d
 = Crop water use i.e. 

HHP = Sum of the precipitation that fell between harvests. 
(HHP) and �

d
 = Soil water depletion in mm of soil water 

depleted between seeding and harvest.
Additionally, precipitation use efficiency (PUE) from 

seeding to harvest was calculated as:

where STHP = Amount of precipitation from date of sewing 
to harvest.

However, PUE over the year ( PUECYP) could be calcu-
lated by using the following formula:

where CYP = Crop year precipitation in mm.
Soil water use efficiency (SWUE) can be calculated as 

used by Williams et al., (2020):

where �depletion = Soil water depletion (mm) between seeding 
and harvest of a crop.

(1)WUE =
CY

HHP + �
d

(2)PUESTHP =
CY

STHP

(3)PUECYP =
CY

CYP

(4)SWUE =
CY

�depletion

The work of Williams et al., (2020) suggested that in 
order to increase WUE, PUE, SWUE and crop productivity 
we should increase diversification and improve conservation 
of water under low rainfall dryland conditions. Furthermore, 
they also suggested the use of higher yielding, drought toler-
ant crop varieties to improve climatic and economic resil-
ience in dryland cropping systems.

Interactive Impact of  High Temperature and  Drought 
on Nitrogen Use Efficiency  Nitrogen (N) is very important 
for all type of farming systems but its losses in the form of 
volatilization and leaching are big environmental concerns 
(Hutchings et  al., 2020). Ammonia (NH3) emissions and 
nitrate (NO3

−) pollution are big threats to the environment 
and to human health, and their primary source is the agricul-
tural sector (Schullehner et al., 2018). Meanwhile, livestock 
production has a large environmental footprint (Leip et al., 
2015). Environmental performance of crop production sys-
tems can be monitored by nitrogen use efficiency (NUE), 
which is a very useful indicator (Antille & Moody, 2021). 
Nitrogen use efficiency is negatively affected under higher 
temperature and drought conditions (Hutchings et al., 2020). 
NUE can be calculated as proposed by Rahimizadeh et al., 
(2010):

where GY = Grain yield and Nsupply = Soil N content at sow-
ing + total N fertilizer applied.

Cammarano et  al., (2020) concluded that negative 
impacts of rainfall and temperature on crop production could 
be offset by applying additional water and nitrogen. Nitrogen 
leaching and NUE strongly correlated as higher leaching 
results to lower NUE. Webber et al., (2015) simulated water 
and N-water limited yield across Europe and concluded 
that future N fertilization rates need to be assessed through 
integrated approaches. Fagodiya et al., (2017) reported the 
alteration of global N cycle due to global warming and 
climate change. They concluded that N fertilizer acts as a 
source of global warming (due to N2O emission) as well as 
cooling [NH3 (Reduced N compounds) and NOX (oxidized 
N compounds)]. Thus, they recommended that both warm-
ing and cooling effects should be studied in the future. The 
impact of climate change on crop duration/yields, water/N 
balance and NUE in a rice–wheat cropping system was stud-
ied by Jalota et al., (2013) using the CropSyst model. The 
results showed that around 20 and 29% of applied N goes 
to gaseous loss while 10 and 0% to leaching, 69 and 72% to 
nitrogen uptake and 0 and 2% to immobilization in rice and 
wheat crops, respectively. This confirms the earlier findings 
where they reported 17–28% gaseous loss (Reddy & Patrick, 
1975), 60–77% as N uptake (Aulakh et al., 2000) and 9–36% 

(5)NUE =
G

Y

Nsupply
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as leaching linked with the percolation rate of water in soil 
(Vlek et al., 1980).

Interactive Impact of  High Temperature and  Drought 
on Agronomic Efficiency: Yield and Yield Components  Crop 
yield components and yield depend on air temperature dur-
ing the crop growing season. An increase in air tempera-
ture can have positive or negative effects on agronomic effi-
ciency and crop water need (Rajwade et  al., 2015). It has 
been reported that HT can cause earlier crop maturity due 
to fast completion of different phenological stages (Hyles 
et al., 2020). Earlier maturity results in a reduction in crop 
yield and quality (Högy et  al., 2013). Zhao et  al., (2017) 
evaluated the impact of global temperature increase on 
the production of four major crops i.e. wheat, rice, maize, 
and soybean. They concluded that each degree-Celsius 
increase in global mean temperature would, on average, 
reduce global yields of wheat by 6.0%, rice by 3.2%, maize 
by 7.4%, and soybean by 3.1%. They reported this impact 
without adjustments for CO2 fertilization, effective adap-
tation, and genetic improvement. Heat and water stress in 
combination have significant strong impacts on crop yield, 
and this combination prevails in dryland agriculture nowa-
days. Ostmeyer et al., (2020) reviewed the impacts of heat, 
drought, and their interaction with nutrients on crop physi-
ology, grain yield and quality of crops. They concluded that 
drought stress impacts can be ameliorated by the use of 
nutrients. Knox et al., (2012) studied the projected impacts 
of climate change on the yield of eight major crops in Africa 
and South Asia. They reported that overall yield change 
for all crops in each region was − 8% by 2050. However, 
they estimated − 17%, − 5%, − 15% and − 10% mean yield 
change across Africa for wheat, maize, sorghum and mil-
let respectively. The yield change in South Asia was − 16% 
(maize) and − 11% (sorghum). They recommended that the 
deleterious effect of climate change could be mitigated by 
adaptation options such as shifting planting dates, modify-
ing crop rotations, development of new crop varieties and 
expansion of irrigation infrastructure. However, these adap-
tations require investments in resource poor countries.

High Temperature and Elevated CO2 Interaction

Carbon dioxide affects crop physiological processes directly 
or indirectly. The direct effect include photosynthesis and 
stomatal physiology (Kadam et al., 2014). Allen, (1994) 
elaborated the direct effects of CO2 on crops and indirect 
effects of CO2 through possible climate change. Elevated 
CO2 has shown a positive effect on growth and development, 
which was greater during earlier growth stages as compared 
to later growth stages. It is now well known that increased 
CO2 concentrations result in greater production of carbo-
hydrates and biomass (Thompson et al., 2017). Similarly, 

enhanced yield and crop productivity have been reported due 
to higher photosynthesis under [eCO2] in many crop species 
(Bocianowski et al., 2018). However, Mittler et al., (2012) 
reported negative impact on crop yield under increased tem-
perature because of [eCO2]. An average 3 to 5 °C rise in 
temperature has been documented due to the doubling of 
CO2 concentration (Arora & Kumar, 2018). The interactive 
effect of temperature and [eCO2] results in the partial clo-
sure of stomata which could reduce transpiration and lead 
to changes in leaf temperature in all cropping systems. Win-
slow et al., (2003) documented that [eCO2] benefits can be 
offset by higher temperature since a rise in temperature can 
cause shortening of crop growing period. The interactive 
effect of high temperature and [eCO2] on WUE, nitrogen 
use efficiency and agronomic efficiency has been highlighted 
further in this section.

Interactive Impact of  High Temperature and  Elevated CO2 
on  Water Use Efficiency  The intearctive effect of high 
tempearture and [eCO2] on WUE is shown in Fig. 4. The 
increase or decrease in WUE will be due to direct or indirect 
effects of these two variables on physiological, biochemical 
and crop growth traits. Similarly, these two variables have 
linkage with RuBiSCO (Ribulose‐1,5‐bisphosphate car-
boxylase/oxygenase) either through carboxylation or pho-
torespiration. RuBiSCO is an enzyme involved in the first 
major step of carbon fixation. It catalyzes the carboxylation 
of RuBP (Ribulose‐1,5‐bisphosphate). Higher tempearture 
results in photorespiration by promoting oxygenation reac-
tions as compared to [eCO2] where carboxylation increases 
(Ainsworth et al., 2020). Higher WUE due to [eCO2] could 
be because of decreased stomatal conductance and density 
which will not be the case under higher tempearture (Maes-
tre et al., 2012; Olivoto et al., 2017). Polley, (2002) reported 
that [eCO2] could counteract the higher tempearture effect 
on evapotranspiration.

Interactive Impact of  High Temperature and  Elevated CO2 
on Nitrogen Use Efficiency  Nitrogen use efficiency of agri-
cultural crops at local, regional and continental levels is 
negatively influenced by the interactive effects of [eCO2] 
and other climatic variables. The role of CO2 is very cru-
cial in crop physiology, by affecting photosynthesis, crop 
growth and yield (Wei et al., 2018). It has been documented 
that stomatal activity, biomass production and WUE are 
highly correlated. However, [eCO2] leads to lower nutrient 
uptake, particularly N, because of restricted root nutrient 
uptake and a dilution effect (Myers et al., 2014). Li et al., 
(2019) reported higher photosynthetic rate and lower chlo-
rophyll content in the flag leaf of wheat under [eCO2] as 
compared to ambient CO2. Additionally, higher N fertiliza-
tion resulted in a higher grain number per spike in [eCO2]. 
Thus, high temperature and [eCO2] have negative impacts 
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on nitrogen use efficiency, which can cause poor grain qual-
ity in the future (Jobe et al., 2020).

Interactive Impact of  High Temperature and  Elevated CO2 
on Agronomic Efficiency: Yield and Yield Components  High 
temperature with [eCO2] resulted in higher yield and yield 
components (Challinor et  al., 2014). Some positive and 
some negative effects of a combination of high temperature 
and [eCO2] on canopy photosynthesis (μmol m−2 s−1), leaf 
photosynthesis (μmol  m−2  s−1), WUE (mmol mol−1) and 
photosynthetic WUE was reported in earlier work (Prasad & 
Jagadish, 2015). However, the interactive effect of high tem-
perature and [eCO2] have shown positive effects on wheat 
grain yield (+ 6% to + 40%) as well as rice yield (+ 69%) 
(Rakshit et al., 2012). The interactive effect of high temper-
ature and [eCO2] on the grain weight of crops remained neg-
ative (Bocianowski et al., 2018). Roy et al., (2012) reported 
spikelet sterility in rice due to the interactive effect of high 
temperature and [eCO2] which is the major cause of yield 
reduction.

Elevated CO2 and Drought Interaction

Elevated CO2 and drought increases WUE from leaf level 
to ecosystem level in C3 as well as in C4 plants (Kumar 
et al., 2019). Synergistic responses have been observed 
between [eCO2] and drought for WUE among most plants 
(Noor et al., 2003). In C3 plants [eCO2] increases WUE 

through fixation of carbon and decreased transpiration. 
However, in C4 plants increased WUE is mainly due to the 
decreased transpiration rate. Conley et al., (2001) docu-
mented increased WUE in sorghum by 16 and 17% and 
47% to 52% for C3 cherry under irrigated and dry conditions 
respectively. This was mainly due to a decrease in evapo-
transpiration (Hussain et al., 2013). In sugarcane, a C4 plant, 
stomatal conductance (gs) and WUE under severe drought 
and ambient CO2 decreased by 95% and 93% respectively 
in comparison with control. However, under drought stress 
and [eCO2] the drop in gs and WUE was 80% and 26% of the 
controls values respectively (Vu & Allen, 2009). Wall et al., 
(2011) reported drought avoidance in barley due to [eCO2]. 
It causes 34% reduction in gs and conservation of water for a 
longer period under water stress conditions. Another impor-
tant adaptation feature is an increase in stomatal size and a 
decrease in stomatal density due to [eCO2] and moderate 
water stress (Fig. 5).

Dryland Cropping System and Soil

Dryland agriculture accounts for 80% of the world’s culti-
vated land and contributes to 60% of the total crop produc-
tion (UNESCO, 2009). Low crop productivity in rainfed 
agricultural systems is mostly due to poor soil fertility. 
The impact of climatic variables (temperature, precipita-
tion and [eCO2]) on the soil of rainfed cropping system 

Fig. 4   Elevated CO2 and 
temperature interactive effect 
on WUE (Upward arrows show 
higher impact while downward 
arrows show lower impact)
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is evident at different degrees and levels. Generally, the 
main question researchers look for is what the impact of 
global warming on the amount of carbon in the soil will 
be. Under current cultural practices, e.g. chisel and deep 
ploughing in rainfed cropping systems there is chance of 
increase CO2 emissions from soils (Farina et al., 2011). 
Similarly, due to increased global warming and drought 
in the future, there is a possibility of more loss of soil 
organic carbon (SOC) because of higher soil respiration as 
shown in Fig. 6. Crowther et al., (2016) quantified global 
SOC losses in response to warming. They reported more 
soil carbon losses at higher latitude. However, they found 
a positive association between HT and SOC loss. Gener-
ally, higher temperature and [eCO2] could promote crop 
productivity and SOC. However, higher temperature pro-
motes soil organic matter decomposition and loss of SOC. 
A positive interaction between HT and [eCO2] for crop 
growth, yield and SOC has been reported (Kimball, 2011). 
Pugnaire et al., (2019) reviewed plant soil feedback inter-
actions under climate change. Climate change affects the 
plants’ inputs to soil through litter and rhizodeposits. They 
reported that drought led to the provision of low-quality 
litter, low nutrient content to soil and lower decomposi-
tion rate.

Soil is home to millions of fungi, billions of bacteria 
and other microorganisms, and extreme climate events are 
showing detrimental effects to these organisms. Since these 
microorganisms play an important role in C and nutrient 
cycling, their absence or deficiency can cause poor soil fer-
tility and productivity (Pugnaire et al., 2019). It has been 
well documented that long term warming causes changes in 
microbe communities (Cavicchioli et al., 2019). Bintanja, 
(2018) reported that a 5 °C increase in temperature shifted 
the ratio of bacteria to fungi causing alteration in the respira-
tion rate of the soil microbial community. Temperature and 
respiration are strongly correlated, thus the role of elevated 
temperature and microbial metabolism recently attracted 
attention in research (Gao et al., 2018). Intensive agricul-
ture in dry land farming systems is the main cause of loss of 
belowground biodiversity, leading to poor soil health. This 
loss will be more severe under changing climate as climate 
change has direct and indirect impacts on soil communi-
ties (Dubey et al., 2019). Therefore, it is important to adopt 
sustainable management practices so that we can promote a 
healthy soil microbiome in dry land cropping systems.

Carbon sequestration in rainfed cropping systems could 
be increased by adoption of practices like diversified crop-
ping systems, cover crops, crop residue incorporation, 

Fig. 5   Elevated CO2 and drought interactive effect on WUE
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minimum tillage, no tillage, balanced fertilization and 
application of organic fertilizer (farmyard manure and green 
manure) (Newbold et al., 2015). Lal, (2004) further reported 
that with an addition of 1 ton of carbon to the soil carbon 
pool in degraded croplands, the yield of crop might increase 
by 20–40 kg ha−1 for wheat, 10–20 kg ha−1 for maize and 
0.5–1 kg ha−1 for cowpeas. Thus, C sequestration has great 
potential to enhance food security and offset fossil fuel emis-
sions (0.4–1.2 giga tons C year−1).

Overview of Responses to Biotic Stresses

Human activities and natural events are accelerating changes 
in the global environment. The changes include increas-
ing GHGs that result in increased global temperature and 
changes in water availability in coming years. These changes 

have also shown profound effects on biotic stresses such as 
disease prevalence and development, insect pest attacks and 
weeds abundance. Weeds are unwanted plants that compete 
for resources and causes huge losses to crop growth, yield 
and grain quality. They are also host of insect pests and 
pathogens. It has been reported previously that weed dynam-
ics in different cropping systems is significantly affected by 
the changes in temperature, rainfall and [eCO2] (Ziska & 
McConnell, 2015). Climate change is affecting weed-crop 
interactions, weed ecology and weed management. Bajwa 
et al., (2020) reviewed impacts of climate change elements, 
i.e., HT, D and [eCO2], on wheat pests. They reported that 
climate change favors the expansion, growth and multiplica-
tion of wheat pests. Furthermore, climate change opens new 
geographic windows for weed infestations (Mao et al., 2021; 
Vilà et al., 2021), insect biodiversity (Raven & Wagner, 
2021) and disease outbreaks (Chaloner et al., 2021) across 

Fig. 6   Interactive effect of elevated CO2, temperature, and drought on soil organic carbon
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the globe. However, this will vary from place to place as 
drier climate might have low disease and insect occurrence 
in future (Dudney et al., 2021). Thus researchers suggested 
application of integrated pest management approaches such 
as frequent pest scouting, disease forecasting and predictive 
modeling to combat climate change induced biotic stresses.

Crops in the future will be more susceptible to biotic 
stresses, e.g., weed invasions, pest attacks and diseases 
(Chauhan et al., 2012). Weeds have shown very positive 
response to HT and [eCO2] as reported by Mahajan et al., 
(2012). Ramesh et al., (2017) reported interactive effects 
of climate change variables on weeds. Increased tempera-
ture, D and [eCO2] will result in higher weed growth with 
dominance of C4 weeds in the cropping systems. Therefore, 
in the future under climate change there will be more weed 
pressure. Peters et al., (2014) reviewed the climate change 
impacts on weeds and reported that thermophile late matur-
ing weeds are becoming more prominent, causing greater 
damage to crops in the cropping systems. Generally, weeds 
or plant species show three kinds of reactions to climate 
change i.e. (i) migration; (ii) acclimation and (iii) adaptation 
(Vilà et al., 2021). In the future, we will have to adopt sus-
tainable weed management options to minimize the impact 
of weeds on cropping systems.

Climate change will increase the intensity of crop dis-
eases in coming decades. Ziska et al., (2011) observed more 
prevalence of rust disease in soybean due to climate change 
in all growing areas of Africa and across the globe. Biotic 
stress will worsen the situation by indirectly affecting water, 
fertilizer and radiation use efficiency and ultimately yield 
and yield components in different cropping systems (Blois 
et al., 2013). During recent years, an epidemic of leaf and 
stem rust linked with strains of wheat is spreading in most 
agriculture regions across the globe due to climate vari-
ability. Increased rainfall and humid environmental condi-
tions are favoring leaf and stem rust but on the other hand, 
frequent drought may limit this spread with the reduction 
of yield in various cropping systems. Grey leaf spot is a 
disease that is becoming an epidemic in various regions 
of world (Korres et al., 2016). During the 1st half of the 
twentieth century Puccinia graminis f. sp. tritici (Pgt), black 
stem rust of wheat, caused a serious outbreak. It results in 
a 19% to 28% reduction in wheat yield. However, research-
ers have controlled this disease by selecting wheat varieties 
with resistance and by removal of the alternate host in wheat 
growing regions. A new race of Pgt was found in Uganda in 
1998 named Ug99. Ug99 has the capacity to cause disease in 
90% of world wheat population as it can overcome the genes 
Sr31 and Sr38. The Ug99 wheat stem rust is a future chal-
lenge that could be worsened by climate change (Hernandez 
Nopsa et al., 2014). It causes stem rust epidemics in Africa 
and the Near east by controlling the widely used resistance 
gene Sr31. Ug99can also become a potential threat to wheat 

throughout Asia (Lucas, 2017). The spread and emergence 
of Ug99 stimulated a coordinated international initiative to 
identify effective sources of resistance in wheat. This could 
help to develop varieties that can be deployed in regions 
where new races are present or are likely to emerge (see 
https://​bgri.​corne​ll.​edu/). Plants pathogens and environment 
interact closely. This interaction was described as a disease 
triangle with environment at the central point (Pautasso 
et al., 2010). Changes in environmental variables, i.e., tem-
perature, rainfall and CO2, will affect this disease interaction 
triangle favoring occurrence of more pathogen. Fischer and 
Knutti, (2015) reported that weather is the key driver of dis-
ease outbreaks, so understanding disease dynamics under 
changing climate is necessary to have appropriate control 
measures.

Adaptation/Mitigation to Climate Variability 
and Change

Agricultural production is impaired by extreme climate 
events. This damage could lead to issues of crop failure, 
lower crop yield, poor crop quality and finally food inse-
curity at local, regional and global levels if proper adap-
tation measures are not urgently taken. Adaptations are 
actions taken to mitigate the damages caused by climate 
variability. The IPCC defines adaptation as the adjustment 
in systems in response to climate stimuli. Generally, if net 
damages are high as in case of 2–3.5 °C warming, then 
the adaptation cost will be higher as compared to 1.5 °C 
warming where less adaptive efforts will be required 
(National Academies of Sciences and Medicine, 2017). 
United Nations 17 SDGs could be considered as guide-
lines for the development of climate change adaptation 
measures (Nations, 2015). Implementation of the Sen-
dai Framework for Disaster Reduction with a bottom up 
approach, and participation of different stakeholders, could 
also be considered to design adaptation strategies (Busayo 
et al., 2020). Mimura et al., (2015) recommended antici-
patory adaptation or adaptation planning where measures 
are taken in advance to prevent adverse impacts. Exam-
ples include early warning systems (e.g. seasonal climate 
forecasts and disease forecasting), land use planning, crop 
yield forecasting and management of water resources. 
Travis et al., (2018) suggested that reactive adaptation has 
a better chance to keep pace with lower levels of warm-
ing in many production systems. Adaptation can also 
include disaster risk management plans or risk transfer 
mechanisms through which risk effects can be minimized 
or compensated (e.g. crop insurance and diversification). 
Adaptation and mitigation have strong interconnections as 
both can help to reduce the risks of climate change. Some 

https://bgri.cornell.edu/
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of the potential adaptation options as proposed by IPCC 
and other authors have been presented in Table 1 (Ahmed, 
2020; IPCC 2007, 2014a, b).

Adaptation and mitigation are possible through tech-
nology change and by adding to systems options that can 
reduce resource inputs and emissions of GHGs. Waha 
et  al., (2013) concluded that benefits from concomi-
tant positive effects of climate change e.g. [eCO2] and 
increased rainfall is possible through adaptation strategies. 
These strategies include change in sowing date, appropri-
ate choice of cropping systems and crops. Furthermore, 
adverse impacts of heat and drought stress could be mod-
erated through adaptation measures. Abid et al., (2019) 
analyzed farmers’ perceptions about climate change and 
explored connections between different stages of adapta-
tion, i.e., perceptions, intention and implementation. In 
their work, they stated that local perceptions of climate 
change are important considerations for the design and 
implementation of adaptive measures at the farm level. 
Moreover, the study reported farmers’ education as an 
important precursor to implement the adaptive meas-
ures effectively (Ghose et al., 2021). However, factors 
that can improve farmers’ adaptive behavior to climate 
change include weather forecasting, market information, 
advisory services, and farming experience. Furthermore, 
large-scale farmers were able to adapt to climate change 
through change in planting dates and selection of new, 
adapted varieties. However, small land holding farmers 
need more attention so that they can easily access infor-
mation, institutional services and resources to succeed in 

the face of climate change. Further detail about possible 
adaptation measures is discussed below:

Introduction of Legumes in the Cropping System

Introduction of legumes in the exhaustive cropping systems 
(e.g. fallow-wheat, cotton-wheat, rice–wheat, maize-maize, 
potato-wheat or maize-wheat) can be beneficial to reduce 
the negative impacts of climate change. Similarly, legumes 
can provide quality food and feed. Legumes could help to 
reduce the use of fertilizers and energy, and consequently 
lower GHG emissions. Thus, they are considered environ-
ment-friendly crops. Legumes can also minimize the use 
of nitrogenous fertilizers by significantly reducing the level 
of N2O (e.g. 1 kg of N as N2O is produced per 100 kg of N 
fertilizer) one of the active GHGs. Furthermore, legumes 
can also provide N effect (N provision through BNF) and 
break crop effect (non-legume specific benefits e.g. improve-
ment of soil structure and organic matter contents, soil water 
holding capacity and availability, phosphorus mobilization 
and reduced biotic stress pressure) (Stagnari et al., 2017). 
Introduction of legumes in the cropping system could pro-
vide multiple benefits, e.g., (i) environmental (ii) socio-
economic (iii) crop diversification (iv) soil restoration (v) 
water conservation and (vi) reduce use of external inputs. 
Furthermore, legumes have high potential for conservation 
agriculture. Mousavi-Derazmahalleh et al., (2019) recom-
mended legume crops as adaptive measures in response to 
climate change. Jensen et al., (2012) reviewed research about 
the growing capacity of legumes to lower GHG emissions, 
reduce fossil energy consumption, sequester carbon and 

Table 1   Potential options for adaptation to climate change [Source: (IPCC, 2007, 2014b)]

Sector wise 
adaptation 
options

Climate extremes

Drought/drying Increased rainfall/flooding Warming/heatwaves Wind speed/storminess

Crops • Drought resistant varieties
• Intercropping
• Crop diversification
• Crop residue retention
• Weed management
• Water harvesting
• Hydroponic farming
• Alternate wetting and drying

• Changes in sowing time
• Promotion of alternative crops
• Floating agricultural systems
• Improved drainage
• Improved extension services

• Heat resistant varieties
• Alteration of cropping calen-

dar and activities
• Pest control
• Crop surveillance
• Irrigation

• Wind resistant crops
• Agroforestry

Livestock • Supplementary feeding
• Change in stocking rate
• Altered grazing and rotation of 

pasture

– • Housing and shade provision
• Change to heat-tolerant breeds

–

Water • Water budgeting
• Water conservation via mulch-

ing
• Water recharge techniques
• Leak reduction
• Education for sustainable water 

use

• Flood forecasting
• Early warning systems
• Insurance

• Sustainable water use
• Water conservation
• Cover cropping

–
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as source of biomass to produce biofuels. In conclusion, 
they recommended that due to multiple benefits of legumes 
they should be considered as an important component of 
future agroecosystems. Leguminous crops also improve soil 
organic matter and act as a restorative crop. Under current 
and future climate variability, sowing of legumes with major 
crops can be very useful approach (Sayari et al., 2015).

Biodiversity

Diversification is a spatio-temporal process where the objec-
tive is to have heterogenous farming systems. On-farm 
and off-farm diversification can build system resilience to 
climate shocks (Fig. 7). The issues of climate change and 
biodiversity are interconnected. Protection of biodiversity 
can help systems adapt to climate change. Biodiversity 
promotes healthy systems which will be more resilient to 
climate change. It can help us to work with, rather than 
against, nature. Hisano et al., (2018) reported that biodiver-
sity can mitigate climate change as diverse systems could be 
more resilient to climate change. Furthermore, it can help 
to improve ecosystem functioning. Hufford et al., (2019) 
reviewed crop biodiversity as potential way to adapt agri-
culture to global climate change. They reported the impo-
ratnce of crop biodivesity as it will fullfill the qualitative or 
quantitative demands of the agricultural production system 
in future.

Genetic Modifications of Crops

The development of resistant crop cultivars through differ-
ent omics techniques could help to mitigate climate change. 

Speed breeding is a great example developed by Dr. Hickey 
to expand crop diversity to feed 10 billion people and accel-
erate the rate of crop improvement (Watson et al., 2018). The 
newly developed cultivars will have higher tolerance to heat 
stress, severe water shortage, pests and diseases. Lopes et al., 
(2015) reported the importance of adaptive genotypic traits 
to the maintenance of grain yields in dry and warm years. 
Furthermore, they suggested that landraces should be used 
as valuable sources of genetic diversity and stress adapta-
tion. The authors also emphasized the development of data-
bases and the promotion of data sharing strategies among 
breeders, quality scientists, pathologists and physiologists 
so that improvements in adaptation to climate change go 
worldwide. Moreover, cultivars with higher water, nutrient 
and radiation use efficiency, and cultivars which can tolerate 
water logging, salinity and drought stresses, are required. 
Atlin et al., (2017) reviewed plant breeding and varietal 
replacement as critical options for adaptation to climate 
change. They reported that since most varieties available 
to smallholder farmers are obsolete, the breeding system 
should be strengthened in such a way that small farmers 
could also benefit from new cultivars.

Change in Crop Management Practices

The extreme effects of climate variability on cropping sys-
tems could be mitigated by adopting proper crop manage-
ment practices. These include changes in the planting date 
and geometry, proper management of irrigation and fertilizer 
practices (rate, placement and timing), optimization of plant-
ing density and appropriate use of seed rate (Kumar et al., 
2021). Asgedom and Kebreab, (2011) reviewed beneficial 

Fig. 7   Levels of diversifica-
tion both on-farm and off-farm 
(Duong et al., 2021)
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management practices and GHG mitigation options to mini-
mize climate change impacts. Planting date shifts can help 
to develop stress avoidance, e.g., anthesis may be timed to 
avoid heat stress. In rainfed conditions, close row-to-row and 
plant-to-plant spacing can hasten canopy coverage of the soil 
surface and consequently, reduce evaporation losses (Ahmad 
et al., 2015). Furthermore, shifting from sole crop rotation 
toward the diversified and integrating farming system is a 
very accommodating approach (Mohammadian et al., 2020).

Conservation Agriculture for Sustainability 
in the Cropping System

Conservation agriculture can be a good adaptation option 
to mitigate climate change. Conservation agriculture can 
enhance cropping system performance in the long run 
through improvement in soil health and biogeochemical 
cycles (Thierfelder et al., 2016), and it helps minimize the 
use of artificial nutrients thus reducing GHG emissions 
(Smith et al., 2019). Rochecouste et al., (2015) reported 
about the potential of conservation agriculture practices 
to mitigate climate change. Similarly, Amin et al., (2020) 
reviewed soil C management research to improve soil physio 
chemical features and recommended application of social-
ecological systems to offsets GHG emissions.

Carbon Sequestration

Sequestration of SOC is one of the utmost imperative oppor-
tunities for the reduction of GHGs and CO2 production. By 
increasing the carbon quantity in the soil with the help of 
the sustainable crop management practices, we can diminish 
the emission of CO2 to the atmoshpere. Biochar applica-
tion can be useful for carbon sequestration and enhancement 
of organic carbon stability in the soil under various crop-
ping systems (Newbold et al., 2015). Olson et al., (2010) 
reported use of cover crops as potential sources to restore 
SOC and soil productivity. Growing more trees could be 
helpful to sequester C through atmospheric fixation of CO2 
into biomass. Therefore, it is suggested that land kept for the 
plantation of trees or woody plants must not be utilized or 
for the other purposes. The burning of cotton sticks, wheat 
and rice straw or stubbles must be stopped (Powlson et al., 
2016) since burning of residues results in other problems 
such as smog, which can damage different sectors of life. 
Burning residues is more common in rice growing regions 
of India and Pakistan causing problems in both countries. 
Thus, immediate, coordinated action is needed on both sides 
of the border to prevent this problem and increase SOC. 
Similarly, to stop rice residue burning across the globe we 
should provide new technology for rice residue management. 
Zero-tillage drills provide a good option to sow wheat in 
standing rice stubble but its higher cost and accessibility to 

all are impediments to the adoption of this technology on 
a large scale. Powlson et al., (2011) emphasized the use of 
crop residues or animal manure to increase SOC that could 
help to revegetate degraded land and minimize GHG emis-
sions. However, they suggested use of other measures such 
as reforestation and improving N use efficiency instead of 
just giving more importance to C sequestration only in com-
bating climate change.

Long‑Term Scenario Analysis

Future impacts of climate variability on all crops and crop-
ping systems could be studied by using crop growth models 
with long-term scenario analysis. Autret et al., (2020) did 
long term modeling of crop yield, N losses and GHG bal-
ance in organic cropping systems through the crop model 
STICS. The results showed that total N fertilization and total 
N gaseous loss as well as N surplus and N storage have 
significant correlations among each other. Metadata analy-
sis can help to understand and address complex agricultural 
systems problems as reported by Kamilaris et al., (2017). 
Similarly, model scenarios help to study the impact of cli-
mate extremes and pandemic like Covid-19 on food systems 
that can further explore global food shocks in response to 
these events (Sivakumar and Stefanski, (2011). Furthermore, 
long term analysis can also be used to study yield stability, 
environmental adaptability and production risks of a spe-
cific crop in the cropping system (Macholdt et al., 2020). 
The initiative as reported by CGIAR, where crop modeling 
could be used for multiple purposes, is the best example 
of this approach. This give real benefits at ground scale as 
it involves interdisciplinary approaches to address multiple 
challenges (Kruseman et al., 2020; Ramirez-Villegas et al., 
2020). Use of meta-analysis is a good approach to reach 
solid conclusions as reported in different earlier work about 
conservation agriculture, drought and heat stress, irrigation, 
intercropping, alternate wetting and drying irrigation, cli-
mate change, climate change and adaptation, [eCO2] and 
climate warming (Cohen et al., 2020).

Artificial Intelligence (AI) and Machine Learning 
(ML)

Machine learning and artificial intelligence could boost 
farming system productivity and efficiency (Eli-Chukwu, 
2019). These technologies can help farmers reduce climate 
extreme impacts. AI and ML techniques could help to detect 
extreme events such as drought and floods, disease occur-
rence and pest attack. AI and ML were used to advise farm-
ers what to anticipate. It has been reported that AI brought a 
revolution in agriculture (Talaviya et al., 2020). AI and ML 
technologies have been successfully implemented in such 
agricultural management operations as irrigation, spraying, 
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crop monitoring and weeding (Partel et al., 2019) through 
the use of robots and drones. Thus, AI and ML could help 
to save water and improve productivity and quality of crops. 
Furthermore, future concerns of sustainable agriculture 
could be addressed by AI and ML (Elahi et al., 2019). AI 
and ML have been successfully applied in precision agricul-
ture (Mahmud and He, 2020).

Models to Develop Tools for Improved Management 
of Subsistence Dryland Agricultural Systems

Process based mechanistic models can be used to support 
dryland agricultural systems as these models can identify 
yield gaps and suggest ways to minimize these gaps under 
alternative scenarios. Similar suggestions about usage of 
tools were proposed by Lobell et al., (2009) in which they 
reviewed the magnitude and cause of yield gaps across 
the globe. However, focusing on individual crop yields 
could not in itself bring sustainability to these systems, so 
a whole farm approach should be adopted to support the 
system. Agricultural systems modelling is needed to quan-
tify the benefits and trade-offs from alternative practices at 
the farm scale. Modeling has played, and will continue to 
play, a significant role in improving agriculture under dif-
ferent scenarios to feed the billions of people across the 
world (Rodriguez et al., 2014). Models can help to design 
resilient farming systems under dryland agriculture by pro-
viding knowledge about functioning and dynamics of the 
systems in interactions with biotic and abiotic components, 
and then inform stakeholders how to manage their particu-
lar system. The Ricardian approach was used by Ochieng 
et al., (2016) to study the impacts of climate variability and 
change on agricultural revenue of small-scale farmers in 
Kenya. Results showed that climate variability and change 
have significant effects on the livelihoods of small farm-
ers. Their findings further indicated that temperature is a 
much more important indicator than rainfall, and suggested 
implementation of policies that prevent destruction of natu-
ral resources. These policies should also include crop insur-
ance and use of integrated adaptation measures e.g. drought 
tolerant crop varieties, more investment in agriculture and 
application of sustainable management practices (Ochieng 
et al., 2016; Sequeros et al., 2021). Statistical matching and 
econometric modeling were used to estimate how the cli-
mate smart agriculture technologies and practices impact 
household income and asset accumulation of small-scale 
dryland farmers in Kenya (Ogada et al., 2020). Results sug-
gested use of drought tolerant crops with an investment in 
livestock could be good adaption strategy to mitigate the 
impact of climate variability and change. Furthermore, it 
had been suggested that crop canopy-based trait adaptation 
strategies (decrease the rate of canopy development in north-
ern locations and increase the rate in southern locations) 

could overcome constraints imposed by rainfall variability 
on water use efficiency (WUE) under dryland conditions 
(Sadras & Rodriguez, 2007).

Different process based dynamic crop modelling tools 
are now available which could be used at a larger scale. 
These include APSIM (Agricultural Production Systems 
sIMulator), AquaCrop, CropSyst, CLM (Community Land 
Model), DAISY, DSSAT (Decision Support Systems for 
Agrotechnology Transfers), ECOSYS, HERMES, INFO-
CROP, LINTUL (Light INTerception and UtiLisation), 
STICS (Simulateur mulTIdisciplinaire pour les Cultures 
Standard) and RZWQM (Root Zone Water Quality Model) 
etc. APSIM is a well utilized model across the globe to do 
multiple tasks such as risk management, modelling Geno-
type (G) × Environment (E) × Management (M) Interactions 
in dryland agriculture and modelling farms and farmers. 
Under the sponsorship of APSIM initiative a biophysical 
model CLEM (Crop Livestock Enterprise Model) has been 
released to evaluate the impacts of management at the farm 
scale. Participatory modelling is necessary to answer what-
if scenarios so that these tools can be practically used by 
farmers and extension officers to achieve field-scale objec-
tives. Rodriguez and Sadras, (2011) tested the hypothesis 
that plasticity in the farming system could give options to 
test new opportunities. Therefore, participatory discussions 
and computer aided farming systems designs have proved 
useful for gaining insights into complex systems, generating 
awareness, and developing strategies to solve problems at 
real world scale. Further application of process-based mod-
els has been presented in Table SI. Meanwhile, success of 
smallholder farmers under climate shocks could be improved 
by the use of artificial intelligence (AI), machine learning 
(ML) and deep learning methods in genomic prediction 
models as reported by Consultative Group for International 
Agricultural Research (CGIAR). Massive-scale genotyp-
ing and diversity analysis of 80,000 wheat accessions was 
conducted by Sansaloni et al., (2020). The main objective 
of this work was to understand crop diversity for its use in 
future breeding programs. Liakos et al., (2018) reviewed 
ML as emerging big data science technology that can help 
to improve farm system productivity. Furthermore, ML can 
help to improve activities at farm scale by connecting ML 
to sensor data. Goldstein et al., (2018) applied concepts of 
ML on sensor data for irrigation management. They sug-
gested ML processes could be used for irrigation planning 
as well as for yield and disease prediction. Furthermore, 
ML and AI can be used for gully erosion mapping (Tien 
Bui et al., 2019), groundwater mapping (Arabameri et al., 
2020), drip irrigation (Klyushin & Tymoshenko, 2021), 
optimization of irrigation and application of pesticides and 
herbicides (Talaviya et al., 2020), dairy farm management 
(Cockburn, 2020; Shine et al., 2018), milk production fore-
casting (Nguyen et al., 2020), livestock farming (García 
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et al., 2020), selection of suitable crop traits (Shekoofa et al., 
2014) and seasonal rainfall forecasting (Feng et al., 2020; 
van Ogtrop et al., 2014).

Future Research Focus

Future research focus needs to be changed in such a way to 
eliminate hunger on real term basis. It has been reported in 
the editorial of nature that among 570 million farms in the 
world, more than 475 million are smaller than 2 hectares, 
but most of our research has prioritized larger farms, with-
out giving sufficient importance to small farming. Most of 
the past research concludes that smallholders can adapt to 
climate change by adopting new approaches e.g. planting 
climate-resilient crops through extension services, which 
is not the case in reality. Similarly, Ceres2030 sustainable 
solutions to end hunger researchers found that most past 
studies are not relevant to the needs of smallholder farm-
ers (Laborde et al., 2020). They also reported that most of 
the reported studies did not directly involve the farmers 
(Stathers et al., 2020). Furthermore, in the past four dec-
ades funding priorities generally targeted big farms only. 
Emphasis on small farms was less desirable in universities 
as well as by publishers (Pardey et al., 2016). Since in most 
funding where the private sector is involved, rewards go to 
those who can procure more research funding. However, to 
achieve SDG, and to end hunger, we need to direct our future 
research more toward smallholder farms.

Conclusions

In general, all farming systems are being negatively affected 
by climate change and global warming, but dry land farming 
systems are particularly vulnerable. Resource use efficien-
cies, yield and yield components along with soil capabili-
ties are on the verge of irreparable losses unless we adopt 
effective mitigation strategies. Thus, technology-based inter-
vention is needed to support agriculture of dryland farm-
ing systems. This support will help to achieve sustainability 
development goals in the long run. The negative impacts of 
climate change on dry land farming systems can be mini-
mized by the quantification of impacts on the systems, by 
the use of available data sets with further analysis and by 
the application of ‘what-if’ scenarios using process-based 
models. By these means, benefits and tradeoffs can be quan-
tified under different sets of management practices on short 
term as well as on long term bases to develop tactics to 
reduce risk under extreme climate conditions. This could 
further help to design adaptation and mitigation strategies 
like modification in the farming system matrix, introduc-
tion of legumes (microbial-based technologies), improve-
ment in varieties (water efficient or drought/heat tolerant), 

appropriate crop management practices, intercropping, sup-
plemental irrigation, conservation, erosion minimization and 
precision agriculture, carbon sequestration strategies, adop-
tion of agroforestry and decisions for future needs.
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