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Abstract
Based on stochasticity in local and nonlocal deformation-gamuts, a stochastic nonlocal equa-
tion of motion to model elastoplastic deformation of 1-D bars made of stochastic materials 
is proposed in this study. Stochasticity in the energy-densities as well as energy-states across 
the spatial domain of given material and stochasticity in the deformation-gamuts parameters 
are considered, and their physical interpretations are discussed. Numerical simulations of 
the specimens of two distinct materials, subjected to monotonic as well as cyclic loadings, 
are carried out. Specimens are discretized using stochastic as well as uniform grids. Thirty 
realizations of each stochastic process are considered. The mean values of the results from 
all realizations are found to be in good agreement with deterministic values, theoretical esti-
mations and experimental results published in open literature.

Keywords Stochastic materials · Stochastic local and nonlocal deformation-gamuts · 
Stochastic peridynamics · Degrees of separation · Shared and unshared information · 
Elastoplastic deformation

1 Introduction

Continuum field theories based on variational principle using partial spatial derivatives are 
ill-suited to model natural development of discontinuities in pristine materials. To over-
come this limitation, based on the relative states of the material points on the deform-
ing body, Eringen et  al. proposed the mathematical framework of nonlocal continuum 
field theory [1–6] that used integral functionals instead of spatial derivatives. Silling [7] 
extended this mathematical framework as “peridynamics” by taking into account the rela-
tive change in the states of the material points as well. While “peridynamics” was defined 
using Greek roots for near and force, there was no clear definition of “nearness” provided.

In last two decades, substantial research has been carried out in the area of linear and 
stochastic peridynamics. Motivated by Langevin dynamics [8–10], in the early works on 
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stochastic peridynamics, Gunzburger and Stoyanov [11] proposed to upscale the stochas-
tic thermostat for molecular dynamics to the peridynamics model. They proposed to add 
stochastic perturbation to the peridynamics kernel and the stochastic thermostat to create a 
realistic behavior for cracks formation and growth. Further, Chen and Gunzburger [12] and 
Chen [13] presented a stochastic peridynamics model by considering the forcing terms as 
a finite-dimensional distributions of a stochastic process. Evangelatos [14] presented a sto-
chastic peridynamics theory by considering the micromodulus function as a random pro-
cess. Demmie and Ostoja-Starzewski [15, 16] formulated stochastic peridynamics model 
by considering randomness in the material properties like mass density, bulk modulus, and 
yield strength and in the critical stretch of the bonds. Decklever [17] used non-uniform grid 
for bond-based peridynamics to effectively predict material properties of, and quasi-static 
crack propagation in, single-walled carbon nanotube via Monte Carlo simulation. R ̈adel 
et  al. [18] explored the dependencies of the peridynamic solutions on the discretization 
schemes by incorporating stochastic distribution of elastic material properties into Peri-
digm, an open-source peridynamics code developed at Sandia National Laboratories.

In conventional peridynamics, nonlocality is parsed in terms of some finite Euclidean 
distance between two material points. The domain of influence of a material point on its 
neighborhood is called its horizon. In order to address non-uniform horizon sizes across 
the material domain, the concept of dual-horizon peridynamics was proposed by Ren et al. 
[19]. It was also demonstrated that this concept is able to address the “ghost force” issue 
and thus eliminates the need of surface correction. Li and Guo [20] applied dual-horizon 
peridynamics to simulate debonding failure in FRP-to-concrete bonded joints. They used 
non-uniform grid for discretization to model the stochastic nature of the cracking process. 
Their predicted results were found to be in good agreement with the experimental results.

A great amount of research in stochastic peridynamics area available in open literature 
is undertaken to model corrosion and concrete. Based on couplings between diffusion 
bonds and mechanical bonds, a peridynamic formulation of stochastic nature was proposed 
by Chen and Bobaru [21, 22], called as concentration-dependent damage model, to model 
pitting corrosion damage. The stochastic nature of their model lay in the “bond-breaking 
chance” of the intact mechanical bonds as a measure of a random number from a given 
uniform distribution. Further, Jafarzadeh et  al. [23] incorporated mechanisms for repas-
sivation in this damage model, allowing autonomous formation of perforated covers in pit-
ting corrosion and development of secondary pits. Zhao et al. [24] adopted the stochastic 
“intermediately homogenized” peridynamic formulation, originally proposed for function-
ally graded materials [25, 26], to model fracture due to rebar corrosion in reinforced con-
crete. Additionally, Wu et al. [27] applied intermediately homogenized peridynamic model 
to predict quasi-static crack propagation in concrete. Niazi [28] used this intermediate-
homogenization approach to model porosity in elastic materials. Porosity in the model was 
introduced by stochastically pre-breaking peridynamic bonds.

All the models proposed thus far for stochastic peridynamics are based on the conven-
tional peridynamics proposed by Silling [7].

Considering the subjective nature of the definition of “nearness”, localization and non-
localization in the material domain were explicitly quantified as a measure of direct and 
indirect interactions respectively between the material points regardless of the Euclidean 
distance between them [29]. The concept of direct and indirect interactions is based on 
the degrees of separation between two material points. Any two material points with one 
degree of separation, directly interacting with each other, are classified as locally inter-
acting. Any two indirectly interacting material points are considered nonlocal to each 
other. This concept of direct and indirect interactions was inspired by the phenomenon of 
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modification in the direct interaction between two material points due to the presence of 
some third material point. Based on these definitions, a novel multiscale notion of local 
and nonlocal deformation-gamuts was introduced and a new equation of motion to model 
elastoplastic deformation of the pristine materials in the most natural way was proposed. 
This study extends the application of this novel notion to stochastic materials.

This paper is structured as follows. The equation of motion based on local and nonlocal 
deformation-gamuts is briefly discussed in Section  2. The stochastic equation of motion is 
proposed in Section 3 by considering stochasticity in the energy-densities as well as energy-
states across the material’s spatial domain, and stochasticity in the deformation-gamuts 
parameters. Physical interpretations of these stochasticities are discussed in Section  3.1. 
Numerical simulations of the specimens of two distinct materials are carried out in Section 4. 
Specimens are discretized using stochastic as well as uniform grids. One of the reasons 
behind considering stochasticity in the energy-densities, energy-states, material properties 
and deformation-gamuts parameters on uniform and stochastic grids is to demonstrate that 
the proposed equation of motion is independent of the grid-type and the horizon size. Thirty 
realizations of each stochastic process are considered, and the mean as well as the deterministic 
results for monotonic as well as cyclic loadings are compared against the published results. 
Concluding remarks are provided in Section 5.

2  Equation of Motion Based on Local and Nonlocal 
Deformation‑Gamuts

The local and nonlocal deformation-gamuts based equation of motion, proposed by Desai 
[29], to model elastoplastic deformation of materials in 1-D, is,

In Eq. (1), �L@x is the material’s mass density associated with the local volume around 
material point x, L@x is read as “localized at x”, ü is the acceleration of the material point x 
in the reference configuration, Fd(x, t) is the external force-density that the local volume 
around material point x is subjected to, VL(x) as well as VNL(x) are local and nonlocal vol-
umes respectively around material point x, and �L(x, x

�, t) and �NL(x, x
�, t) are local and 

nonlocal potentials associated with material point x. Additionally, x′ in VL(x) directly inter-
acts with x, and x′ in VNL(x) indirectly interacts with x. The direct interaction between x and 
x′ is identified as local via a local bond, and the indirect interaction is identified as nonlo-
cal via a nonlocal bond. Thus the local and nonlocal bonds comprise the local and nonlocal 
volumes respectively in the material’s spatial domain. The subscripts L and NL distinguish 
between local and nonlocal interactions. The gradient ∇x operates on the position of the 
material point x resulting in the required local and nonlocal force-fields. The parameter 
Rx,x′ quantifies the modulus of softness of the local bond between x and x′ . It assumes a 
value between 0 and 1. The calibrated weight fractions wx,x′ quantify the correct gain in the 
inability of the nonlocal bond between x and x′ to absorb elastic energy as it deforms. In 
other words, the weight fraction inherently quantifies the critical deformation of the 
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corresponding nonlocal bond. These weight fractions are subjected to the condition, 
∫

VNL(x)

wx,x�dVNL(x
�) = 1.

The local and nonlocal volumes in Eq. (1) quantify the variation in energy-density 
across material’s spatial domain, and thus the energy-states of the material points they 
encompass. Nonlocality is manifested as a measure of the shared energy-states in the mate-
rial’s spatial domain. The shared energy-state of a material point x quantifies its local and 
nonlocal deformation-gamuts as,

and

Local and nonlocal interactions in a 1-D specimen of some materials system are depicted 
in Fig. 1. The continuous domain of the specimen is discretized using some optimal num-
ber of material points n, each indexed by p and q, as shown. If we allow material points q 
to locally and nonlocally interact with material points p, then by definition [29], local (or 
direct) interactions are those for which |p − q| = 1 and nonlocal interactions are those for 
which |p − q| ≠ 1 . It can also be noticed that if local interactions are considered as indirect, 
then nonlocal interactions are direct. Thus, there is a duality between local and nonlocal 
interactions (or deformation-gamuts).

In Eqs. (2) and (3), DG
L

 (local deformation-gamut) quantifies localized energy that is 
nonlocalized and shared with the nonlocal deformation-gamut. This is the energy that 

(2)DG
L

(x, t) = ∫
V
L
(x)

Rx,x��L
(x, x�, t)dV

L
(x�)

(3)DG
NL

(x, t) = ∫
V
NL

(x)

�
NL
(x, x�, t)dV

NL
(x�).

Fig. 1  Local and nonlocal interactions constituting local and nonlocal deformation-gamuts in a 1-D bar
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causes the deformation of the corresponding nonlocal deformation-gamut. The nonlocal 
deformation is measured via DG

NL

 (nonlocal deformation-gamut). In order to ensure that 
the total energy remains conserved at any instant t, it is required that,

For a material undergoing periodic elastic deformation, considering the duality between 
local and nonlocal deformation-gamuts, DG

L

(x, t) ⇌ DG
NL

(x, t).

3  The Stochastic Model

Equation (1) is based on the variation in energy-density and energy-states across the material’s 
spatial domain. Since these variations could be stochastic, the proposed equation of motion 
can be applied to the materials with stochastically varying material properties as well.

Stochasticities in local and nonlocal potentials �
L
(x, x�, t) and �

NL
(x, x�, t) , in the param-

eter Rx,x′ , and in the weight fractions wx,x′ are considered in this study. Additionally, sto-
chasticity in the material’s mass density �

V
L@x

 is also taken into account. Stochasticity in 
these elements is quantified using Karhunen-Loève (KL) Expansion. The details about KL 
Expansion and the parameters used in it are provided in Appendix A.

The proposed governing equation of motion for deformation dynamics of stochastic 
materials is given in Eq. (5),

The local and nonlocal deformation-gamuts of the material point x, at the instant t, for 
the stochastic model are expressed as,

and

In order that the total energy is conserved,

At any instant t, the stochasticity in �
L
 , �

NL
 , Rx,x′ , wx,x′ , and �

V
L
(x)

 are expressed using 
Karhunen-Loève (KL) Expansion as shown in Eqs. (9)–(14) respectively.

(4)DG
L
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(5)

𝜌L@x(x,𝜔
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The stochasticity in �
L
 as a result of the stochasticity in the direct (local) interac-

tions between x and x′ , is expressed as,

Similarly, the stochasticity in �
NL

 as a result of the stochasticity in the indirect (non-
local) interactions between x and x′ , is expressed as,

Stochasticity in Rx,x′ for direct interactions between x and x′ is expressed as,

Similarly, the stochasticity in wx,x′ for the indirect interactions between x and x′ is 
expressed as,

For any realization, the weight fractions are subjected to the condition,

Stochasticity in the mass density, �
V
L@x

 , is expressed as,

3.1  Physical Interpretation(s) of Stochasticity

Physical interpretation(s) of stochasticity are discussed in the following subsections.

(9)
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3.1.1  Local Potentials

Stochasticity in localized potentials bears a direct relationship with the stochasticity 
in material properties. If both are quantified over the same probability space, it can be 
inferred from Eq. (9) that, for any particular type of deformation,

In Eq. (15), �x,x� (t) is the strain between x and x′ at t due to the type of deformation con-
sidered, and ℂ

L
 is the local bond-constant between x and x′ causing it. �(�L) and �(�L) are 

quantified over the same probability space. This implies that any deviation in �
L
 is solely 

due to the same amount of deviation in ℂ
L
.

3.1.2  Nonlocal Potentials

Nonlocal potentials in general quantify the amount of shared material properties in the 
domain. Stochasticity in nonlocal potentials, thus, quantify stochasticity in shared material 
properties like bulk modulus or Young’s modulus of elasticity. Using a similar argument as 
used in Eq. (15), we can re-express �

NL
(x, x�, t,�(�NL)) as,

In Eq. (16), ℂ
NL

 is the nonlocal bond-constant between x and x′ causing the deformation 
of the type under consideration, and �x,x� (t) is the strain between x and x′ at t due to this 
deformation. Besides, �(�NL) and �(�NL) are quantified over the same probability space.

3.1.3  The Notion R
x ,x′

As identified by Desai [29], each material point in the material domain undergoes defor-
mation identical to the stress-strain behavior of its corresponding material. Thus in sto-
chastic materials, any material point x will undergo deformation due to the homogenized 
material properties localized at x, and its deformation locus would be identical to that of 
isotropic material having these homogenized material properties.

Figure  2 depicts the uncertainty in the modulus of softness, US , of the material or 
any local bond. US is defined as the inability of the material or a bond to absorb elastic 
energy. The other parameters in Fig. 2 are, the modulus of toughness UT , yield-stress �y , 
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failure-stress �f  , failure-strain �f  , and the Young’s modulus of elasticity E. The stress-strain 
curve shown with black line demonstrates the behavior of material or the bond due to the 
homogenized effect of material properties.

The notion of R , in general, is expressed as,

In Eq. (17), nro and Kro are the Ramberg-Osgood parameters. They are material con-
stants characterizing the hardening behavior. nro is usually ≥ 5 and the yield-offset 
Kro = 0.002 . R becomes effective when the material or the bond starts yielding, that is, as 
the material or the bond starts gaining the inability to absorb elastic energy. Stress-strain 
curves in other colors represent uncertainties in the modulus of softness of the material. 
Each color corresponds to a particular quantified uncertainty. In Fig. 2, US for any colored 

(17)

R(E, �y, �y, �f , �f ,Kro, nro) =
US

US + UT

=

1

2
E�2

f
− �f �f +

�2
f

2E
+

Kro�y

nro+1

(
�f

�y

)nro+1

1

2
E�2

f

.

Fig. 2  Stress-strain curves depicting uncertainty in U
S
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curve is the area between the corresponding stress-strain curve and the black dashed-dotted 
line. From Fig. 2 it can be interpreted that this uncertainty manifests a combined effect of 
the uncertainties in the yield-stress �y , yield-strain �y and failure-stress �f  of the material.

The homogenized form of the notion Rx,x′ , expressed as Rx , quantifies the modulus of 
softness localized at x [29]. It is expressed in Eq. (18) as,

All the quantities in Eq. (18) collectively imitate some equivalent-isotropic material 
having the localized material properties as described in this paragraph. E@x is the Young’s 
modulus of elasticity localized at x, �y@x is the yield-stress localized at x, �f@x is the fail-
ure-stress localized at x, �f@x is the failure-strain localized at x, and E@x�f@x is the fail-
ure-stress localized at x had the corresponding equivalent-isotropic material been brittle. 
Kro and nro@x are the material constants describing the hardening behavior of the material 
localized at x. Conclusively, for the stochastic model,

unless any local interaction is already assigned a different value of R̄x,x′ to ensure the con-
servation of localized potential energy.

Rx is positive if material points x are influencing material points x′ , and negative if material 
points x′ are influencing material points x [29]. It is usually decomposed into Rx,x′ as needed. 
Rx quantifies the homogenized modulus of softness between x and all of its local (direct) inter-
actions with x′ , and Rx,x′ quantifies the modulus of softness of a particular local interaction, 
that is, between x and a particular x′ . Stochasticity in Rx,x′ , as expressed in Eq. (11), is thus 
manifested as uncertainties in �y@x , �y@x , �f@x , �f@x , E@x , and nro@x , and at a subtle outlook, 
uncertainties in these quantities for the bond between x and the particular x′.

3.1.4  Weight Fractions w
x ,x′

Calibrated weight fractions wx,x′ are a measure of the optimal decomposition of US over 
the material’s nonlocal domain. These calibrated weights quantify the correct gain in the 
inability of the corresponding family of nonlocal bonds to absorb elastic energy [29]. This 
gain in the inability is expressed as a measure of the rate with which the nonlocal potential 
approaches zero, as shown in Eq. (35),

Material starts yielding as Eq. (20) begins to manifest itself during the deformation, and 
a discontinuity, either as material degradation or crack, between x and x′ naturally occurs 
when the bond between them is no longer capable of absorbing more energy. The decom-
position of US is carried out using pair-potentials. These pair-potentials provide a meas-
ure of the modulus of softness of the bond between x and x′ as a function of the distance 
between them. Conclusively, the stochasticity in wx,x′ , as expressed in Eq. (12), manifests 
itself as uncertainties in the localized yield-stress �y@x and localized yield-strain �y@x , and 
as stochasticity in the critical deformation of the bonds.

(18)Rx =

1

2
E@x�

2
f@x

− �f@x�f@x +
�2
f@x

2E@x

+
Kro�y@x

nro@x+1

(
�f@x

�y@x

)nro@x+1

1

2
E@x�

2
f@x

.

(19)R̄x,x� = Rx,

(20)
d�

NL
(x, x�, t)

dt
→ 0.
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As demonstrated in [29], calibration of the weight fractions is carried out using Eqs. 
(21) and (22),

where

In Eqs. (21) and (22), l is the Euclidean distance between the material points x and x′ . 
It is a function of their positions in the reference configuration. �stdev@x is the standard 
deviation of the distribution of weight fractions over the nonlocal domain of x. �stdev@x is 
calibrated ensuring the conservation of US . �stdev@x physically quantifies length of effective 
interaction between x and x′ [29].

For an optimally calibrated1 deterministic distribution of weights (shown with black 
line), several stochastic distributions of weight fractions due to stochasticity in wx,x′ are 
shown in Fig.  3 with other colors. The red dotted-dashed curve depicts uncalibrated 

(21)
wx,x� = w(x, x�) =

y(x, x�)

∫
V
NL

(x)

y(x, x�)dx�
,

(22)y(x, x�) =
e
−

l2 (x,x� )

2�2stdev@x

√
2��2

stdev@x

.

Fig. 3  Distributions of weight fractions

1 Calibration for the equivalent-isotropic material.



Journal of Peridynamics and Nonlocal Modeling 

1 3

weights. It is noticeable that the distribution of weight fractions, due to stochasticity in 
wx,x′ , is likely to assume any other shape as well as long as US remains conserved. Stochas-
ticity in wx,x′ , thus, manifests itself as an uncertainty in �stdev@x giving rise to an uncertainty 
in the size of the nonlocal volume surrounding the material point x.

�stdev@x is expressed as,

In Eq. (23), the subscripts NL  :  i and NL  :  j indicate the ith and jth nonlocal material 
points x′ in the nonlocal domain of x . The two nonlocal potentials typically chosen are 
the maximum and the minimum potentials from the ensemble of the uncalibrated nonlocal 
potentials [29].

Once the weight fractions are determined, �
NL
(x, x�) is calibrated as,

In Eq. (24), x′ in Rx,x′ and �
L
(x, x�) belongs to the local domain of x, and x′ in wx,x′ and 

�
NL
(x, x�) belongs to the nonlocal domain of x.

3.1.5  Mass Density

Stochasticity in mass density, as expressed in Eq. (14), is manifested as stochasticity in the 
mass distribution across the material’s spatial domain and/or as an uncertainty in the size 
of the local volume surrounding the material point x.

4  Numerical Implementation

For a material domain discretized using some optimal number of material points that are 
locally and nonlocally interacting with each other, the computational form of the stochastic 
model expressed in Eq. (5) is,

The derivation of Eq. (25) is provided in Appendix B. In Eq. (25), M is the diagonal 
mass matrix. Each element of M is computed by multiplying the local volume around the 
material point with the mass density associated with it. Ü is the second time-derivative 
of the vector valued displacement of masses, U is the displacement vector of masses, and 
F is the external force vector. K

NL
 is the nonlocal elasticity matrix. It is computed from 

the material’s local elasticity matrix K
L
 by effectively and strategically distributing the 

material properties associated with the local elements of the local elasticity matrix over 
the local and nonlocal elements of the nonlocal elasticity matrix. This is done using a 
pairwise functional capable of modeling the pair-potential. These functionals are similar 
to the ones used in molecular dynamics. The elements of K

L
 are computed from the local-

ized potentials or the strain energies of a deforming material using the notions from clas-
sical mechanics. The local and nonlocal elements of any matrix are identified by means 

(23)�stdev@x =

√√√√√√√

l2(x, x�
NL∶j

) − l2(x, x�
NL∶i

)

2 ln

(
�
NL

(x,x�
NL∶i

)

�
NL

(x,x�
NL∶j

)

) .

(24)�
NL
(x, x�) = wx,x�Rx,x��L

(x, x�).

(25)MÜ +K
NL
U = F.
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of the degrees of separation (“social distance”) between two masses or by means of the 
direct as well as indirect interaction between them. The degree of separation between any 
two masses in the local elasticity matrix is 1 [29].

Equation (25) is simulated to demonstrate elastoplastic deformation in the sto-
chastic materials.

Consider a deterministic discretized one-dimensional prismatic2 specimen as shown in 
Fig. 4. It represents the discretization of a specimen with uniform material properties on a 
uniform grid. Its corresponding stochastic model, Eq. (5), is illustrated in Fig. 5. In the deter-
ministic specimen, any material property, M , for the interaction between any p and q is deter-
ministic throughout the material domain and is expressed as M̄ or M̄p,q . The same applies 
to any of its characterizations as well. The local and nonlocal interactions are depicted as 
springs in both the figures. Uniform geometries of the springs between the material points 
with same degrees of separation indicate that these interactions are characterized by deter-
ministic material properties. It also indicates that the nonlocalization (or distribution) of 
material properties over the nonlocal interactions with the same degrees of separation is uni-
form. The decreasing widths of the springs with the increasing degrees of separation, and/or 
the distance between two nonlocally interacting material points, indicate that the magnitude 
of nonlocalization of the material properties decreases as the degree of separation, and/or the 
distance between two nonlocally interacting material points, increases.

Figure  5 illustrates the specimen with stochastically varying material properties on a 
uniform grid. Non-uniform geometries of the springs indicate that these interactions are 
characterized by non-uniform material properties. Let any material property M between 
material points p and q be identified as Mp,q , and subsequently, any of its characterizations 
by adding the suffix p, q to the corresponding notation.

Fig. 4  The deterministic model

2 This methodology can be applied to a non-prismatic specimen as well.



Journal of Peridynamics and Nonlocal Modeling 

1 3

Let both the specimens have length = L and cross-sectional area = A , and are subjected 
to an external tensile force F on their both ends. Let the total number of material points 
used for discretization are n, each indexed by p and q. All of the material points q are 
allowed to interact material points p locally and nonlocally. Let any local material point be 
identified as q

L
 and a nonlocal material point as q

NL
 . The corresponding local and nonlocal 

elasticity matrices are determined based on the methodology provided by Desai [29]. The 
finer modeling details for both are provided in the following subsections.

4.1  Modeling Methodology

Although the proposed stochastic models build on the deterministic models considered by 
Desai [29], a new computer program in MATLAB was written from scratch to incorporate 
stochasticity. Stochasticity in any material property M , and in any of its characterizations, 
was generated using “wblrnd()” function for Weibull Distribution in MATLAB as,

In Eq. (26), “sign(randn())” randomly returns “+1” or “-1” in MATLAB. The scale and 
shape parameters for Weibull distribution were chosen as 1 and 2 respectively. The stochas-
tic process was optimally truncated using Karhunen-Loève Expansion (Appendix A) as,

(26)

Mx,x� (x, x
�,𝜔(�x,x� )) = M̄x,x� (x, x

�) +�x,x� (x, x
�,𝜔(�x,x� ))

= M̄x,x� (x, x
�) + sign(randn()) × wblrnd(scale,shape)

M̄x,x� (x, x
�)

10
.

(27)

M
x,x� (x, x

�
,𝜔(�

x,x� )) = M̄
x,x� (x, x

�) +

n∑

j=1

√
𝜆(�x,x� )

j

𝜙(�
x,x� )

j

(x, x�){H (�
x,x� )

j

(𝜔(�
x,x� ))}.

Fig. 5  Stochastically varying material properties on a uniform grid
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(a) To begin with, the deterministic Young’s modulus of elasticity at each material point, 
Ē@p , was randomized using Eq. (27), and each local bond, p, p + 1 , was assigned the 
random Young’s modulus, E@p.3 Local elasticity matrix for each specimen was com-
puted. The elements were obtained using the notions from classical mechanics as, 

 Based on the procedure given in [29], static displacement field was determined using 
local elasticity matrix. The localized potential between material points p and q is 
given as, 

 Here, p, q
L
 is the local bond, A

p,q
L

 is the cross-sectional area of the local element, l
p,q

L

 
is the distance between materials points p and q

L
 , ℂ

p,q
L

 is the local bond-constant as 
defined in Eq. (15), and �

p,q
L

 is the strain that the local bond experiences.
(b) Using the static displacement field computed via the local elasticity matrix obtained 

in step (a), the stress, �̄�f@p , and the strain, 𝜖f@p , at p, when the material fails, were 
estimated using the methodology provided in section 4.1 of [29]. R̄p was estimated for 
each material point using Eq. (30) as, 

 To ensure the stochasticity in all other quantities, other than Ē@p and Kro , in Eq. 
(30), R̄p was randomized using Eqs. (26) and (27), and each local bond, p, p + 1 , was 
assigned this random value. For the cases considered in this study, stochasticity in R̄p 
ensures stochasticity in R̄p,qL

 as defined in Eq. (11).
(c) Nonlocal Elasticity Matrix was developed for the computed values of Rp based on the 

procedure given in [29].
(d) Using Eqs. (31) and (32) respectively, �̄�stdev@p for each material point and the corre-

sponding calibrated weights, w̄p,q
NL

 , were estimated from ensemble of uncalibrated 
nonlocal potentials and weights obtained from the nonlocal elasticity matrix computed 
in step (c), 

 and 

(28)ℂ
p,q

L

=

A
p,q

L

E
p,q

L

l
p,q

L

.

(29)𝕌
p,q

L

=
1

2
ℂ

p,q
L

�2
p,q

L

.

(30)R̄p =

1

2
Ē@p𝜖

2
f@p

− �̄�f@p𝜖f@p +
�̄�2
f@p

2Ē@p

+
Kro�̄�y

n̄ro+1

(
�̄�f@p

�̄�y

)n̄ro+1

1

2
Ē@p𝜖

2
f@p

.

(31)
�̄�stdev@p =

√√√√√√√√

l2
p,q

NL∶farthest

− l2
p,q

NL∶nearest

2 ln

(
max

(
�p,q

NL

)

min
(
�p,q

NL

)

) ,

3 For the cases considered in this study, stochasticity in Ē
p
 ensures stochasticity in Ē

p,q
L
.
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 In Eq. (31), q
NL∶farthest

 and q
NL∶nearest

 are respectively the farthest and nearest nonlocal 
material points from p. The calibrated weights, w̄p,q

NL

 were randomized using Eqs. 
(12), (26) and (27).

(e) To obtain the stochastic nonlocal elastic matrix, nonlocal potentials were determined as, 

 In Eq. (33), ‖fffp,q
L

‖ is the magnitude of the localized internal force between material 
points p and q

L
.

The discretized equation of motion was simulated using implicit Modal Analysis used in 
LS-DYNA [30]. The critical time step, Δtcri , was determined using Eq. (34) as,

For the simulations, Δt was taken as Δtcri . Equation (35) served as a general criterion to 
break bonds. All the bonds associated with the weights wp,q

NL

 were broken as the specimen 
experienced their corresponding strain �p,q

NL

 , as shown in Eq. (33).

The simulation was carried out for monotonic as well as cyclic loadings. For monotonic 
loading, an initial external tensile force of 0.01 N was applied on both ends of the prismatic 
bar, and it was increased by 1% after every static displacement until the specimens started 
experiencing strains larger than their respective failure strains 𝜖f  . For cyclic loading, the 
tensile force was unloaded in the similar fashion as the external stress on the specimens 
became larger than the corresponding yield stress.

The simulation results are presented in the following subsections.

4.2  Deterministic Model

Material 1: For the deterministic model, Fig.  4, let Young’s Modulus Ē = 71.6 GPa, 
�̄�f = 665.8 MPa, 𝜖f = 0.115 , �̄�y = 538.6 MPa, 𝜖y = 0.009522 , n̄ro = 17.8702 , and 
Kro = 0.002 , Mass Density �̄� = 2810 kg∕m3 , Poisson’s Ratio �̄� = 0.33.
Material 2: For the deterministic model, Fig.  4, let Young’s Modulus Ē = 115.7 GPa, 
𝜎f = 933 MPa, 𝜖f = 0.516 , 𝜎y = 867 MPa, 𝜖y = 0.009494 , n̄ro = 47.61 , and Kro = 0.002 , 
Mass Density �̄� = 4430 kg∕m3 , Poisson’s Ratio �̄� = 0.31.

For the specimens of both materials, let length L = 0.1 m and cross-sectional area 
A = 0.01 × 0.01 m2.

(32)w̄p,q
NL

= 2
e
−

l2p,q
NL

2�̄�2
stdev@p

√
2𝜋�̄�2

stdev@p

.

(33)�p,q
NL

= wp,q
NL

Rp,q
L

�p,q
L

=
1

2
wp,q

NL

�
Rp,q

L

‖fffp,q
L

‖
�
lp,q

NL

�p,q
NL

.

(34)Δtcri = 4𝜋

√
�̄�L2

Ē
.

(35)
d�p,q

NL

dt
→ 0.
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4.3  Stochastic and Uniform Grids

In addition to the uniform grids, stochastic grids were also considered. Material properties 
were thus allowed to vary stochastically on uniform grids as well as stochastic grids. Speci-
mens for both materials were discretized with 500 local bonds for both the grid types. The 
spacings between the material points for stochastic grids were determined using “rand()” 
function in MATLAB as,

(36)
random_spacing = average_spacing + 0.65 × sign(randn()) × rand() × average_spacing.

Fig. 6  Typical stochastic and uniform grids

Fig. 7  Stochasticity in the Young’s modulus of elasticity for Material 1
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In Eq. (36), average_spacing corresponds to the spacing between two material 
points on a uniform grid, 0.65 is an arbitrary number to ensure that the maximum spac-
ing between any two material points on the stochastic grid is not more than 165% of the 
average_spacing.

A new realization of stochastic grid was generated for each set of realizations of the 
stochastic parameters illustrated in Section 4.4. To prevent mathematical or computational 
singularity, those cases in which any two material points overlapped (or nearly overlapped) 
were ignored, and a new realization was considered instead.

The spacing between the material points on the uniform grid was considered as L

500
.

Typical stochastic and uniform grids considered for the specimens are depicted in Fig. 6.

4.4  Stochastic Model

Thirty realizations of each stochastic parameter were considered, and the 30th realization of the 
corresponding stochastic parameter is illustrated in Figs. 7, 8, 9, 10, 11, 12, 13, 14, 15, and 16.

Stochasticities in the local and nonlocal potentials are manifested as a result of 
the stochasticity in the material properties. For the two materials considered in this 
study, the stochasticity in the Young’s Modulus of Elasticity is illustrated in Figs. 7 
and 8. This stochasticity may appear in a deterministic specimen due to many fac-
tors like manufacturing defects, natural phenomenon — like corrosion, or some 
unknown reason.

Fig. 8  Stochasticity in the Young’s modulus of elasticity for Material 2
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Fig. 9  Randomness in R mechanism for Material 1

Fig. 10  Randomness in R mechanism for Material 2
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Fig. 11  Stochastic R mechanism for Material 1

Fig. 12  Stochastic R mechanism for Material 2
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Fig. 13  Randomness in calibrated weights for material points @ L = 0 and L =
L

8
 for Material 1

Fig. 14  Randomness in calibrated weights for material points @ L = 0 and L =
L

8
 for Material 2
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Fig. 15  Typical stochastic calibrated weights for material points @ L = 0 and L =
L

8
 on Material 1 specimen

Fig. 16  Typical stochastic calibrated weights for material points @ L = 0 and L =
L

8
 on Material 2 specimen
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4.4.1  Deformation‑Gamuts Parameters

R mechanisms for the deterministic cases and the randomness in them are illustrated 
in Figs. 9 and 10. The mechanisms for stochastic R are illustrated in Figs. 11 and 12.

Typical deterministic calibrated weights for material points located at the lengths 
L = 0 and L =

L

8
 of both specimens and the randomness in these weights are shown in 

Figs. 13 and 14. The stochastic calibrated weights are shown in Figs. 15 and 16. The 
gap between the two curves at L =

L

8
 in these figures is the local domain of that mate-

rial point [29].
The deterministic effective length of interaction of each material point for both 

materials, as well as the randomness in it due to the stochastic calibrated weights, is 
given in Figs. 17 and 18. The stochastic effective lengths of interaction for all material 
points of both materials are shown in Figs. 19 and 20. It is noticeable that even though 
the stochasticity in �

stdev@x
 is not explicitly quantified in this study, the summation of 

the deterministic and random values in Figs. 17 and 18 is equal to the stochastic values 
in Figs. 19 and 20 respectively.

4.4.2  Monotonic Loading

The stress-strain curves for 30 realizations of both materials and of their deterministic 
models are illustrated in Figs. 21 and 22. In Figs. 23 and 24, the mean stress-strain curves 
of these 30 realizations of both materials are compared with the deterministic curves and 
the stress-strain curves obtained using Ramberg-Osgood equations. The mean curves are 
found to be in good agreement with both these curves.

Fig. 17  Randomness in �
stdev@x

 for Material 1
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Fig. 18  Randomness in �
stdev@x

 for Material 2

Fig. 19  Stochastic �
stdev@x

 for Material 1
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4.4.3  Cyclic Loading

Stable hysteresis loops for several cycles for the 30th realization of both materials are 
shown in Figs.  25 and 26. The log-log plots of the stress amplitudes vs. plastic-strain 

Fig. 20  Stochastic �
stdev@x

 for Material 2

Fig. 21  Engineering stress vs. 
strain curves for 30 realizations 
of Material 1
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amplitudes are given in Figs.  27 and 28. The slopes (cyclic strain hardening exponents) 
and the y-intercepts (stress-strain coefficients) of the linear fits were obtained using the 
“poly1” fit function available in MATLAB. The cyclic strain hardening exponents and the 
stress-strain coefficients for all the realizations are given in Figs. 29, 30, 31, and 32.

Fig. 22  Engineering stress vs. 
strain curves for 30 realizations 
of Material 2

Fig. 23  Mean, deterministic and theoretical engineering stress vs. strain curves of Material 1
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Fig. 24  Mean, deterministic and theoretical engineering stress vs. strain curves of Material 2

Fig. 25  Several cycles of steady-
state cyclic stress-strain behavior 
for realization 30 of Material 1
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Fig. 26  Several cycles of steady-
state cyclic stress-strain behavior 
for realization 30 of Material 2

Fig. 27  Log-log fit for stress vs. plastic-strain amplitudes of realization 30 of Material 1
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Fig. 28  Log-log fit for stress vs. plastic-strain amplitudes of realization 30 of Material 2

Fig. 29  Cyclic strain hardening exponents ( n′ ) of Material 1
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Fig. 30  Cyclic strain hardening exponents ( n′ ) of Material 2

Fig. 31  Cyclic stress-strain coefficients ( K′ ) of Material 1
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The simulated mean values of the cyclic strain hardening exponents and cyclic strength 
coefficients for the stochastic material properties over stochastic and uniform grids, and 
their comparison with the deterministic values [29] and experimental results [31, 32], are 
provided in Table 1.

Fig. 32  Cyclic stress-strain coefficients ( K′ ) of Material 2

Table 1  Mean values of cyclic strain hardening exponent n′ and cyclic strength coefficient K′

Mean

Stochastic grid Uniform grid Deterministic Experimental

Material 1
n
′ 0.0777 0.0612 0.06244 0.0662
K

′ 774.1596 MPa 774.4350 MPa 791.6 MPa 792.8 MPa
Material 2
n
′ 0.0381 0.0481 0.04762 0.0484
K

′ 1032.3 MPa 1091.1 MPa 1105.4 MPa 1340.5–1537.6 MPa
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5  Concluding Remarks

Based on stochastic local and nonlocal deformation-gamuts, in this study, a novel mul-
tiscale nonlocal stochastic equation of motion to model elastoplastic deformation of 1-D 
bars made of stochastic materials is introduced. To quantify stochasticity in material prop-
erties, stochasticity in the energy-densities and energy-states across the material’s spatial 
domain as well as stochasticity in the deformation-gamuts parameters is considered. Speci-
mens of two distinct materials subjected to monotonic as well as cyclic loadings are simu-
lated. Simulations for stochastic material properties on uniform grids, and stochastic mate-
rial properties on stochastic grids are carried out. Thirty realizations for each stochastic 
process are considered. It is demonstrated that the mean values of the results from all the 
realizations of material properties on uniform grid are in good agreement with the results 
for the deterministic case as well as the theoretical estimations and experimental results 
published in open literature for the corresponding equivalent-isotropic material. The results 
for the stochastic material properties on stochastic grids are fairly acceptable. It is impor-
tant to note that the accuracy of the results largely depends on the quantification of the sto-
chasticity. For example, if the denominator in the term M̄x,x� (x,x

�)

10
 of Eq. (26) is increased, the 

material properties still remain stochastic. However, accuracy of the results will improve. 
For the cases considered in this paper, this denominator is the same for all M̄ , for any of 
its characterizations, and all the stochastic DG parameters. However, to capture a more 
realistic case, depending on their mutual correlations, the denominator may be allowed to 
assume different values for M̄ , different characterizations of M̄ , and different DG param-
eters. Additionally, the scale and shape parameters for Weibull distribution also have an 
effect on the final results. Further, if the arbitrary number in Eq. (36) is reduced, conver-
gence of the mean values of the results for stochastic material properties on the stochastic 
grid will be better.

Unlike conventional peridynamics, at any modeling scale the proposed stochastic equa-
tion of motion is independent of the horizon size, uniformity in bond-lengths, grid-size, 
and the grid-type. The effective distance of interaction of the material point x is 3 × �stdev@x 
in the proposed equation of motion. From Figs. 17, 18, 19, and 20 it can be noticed that 
�stdev@x is determined by the “material” itself, either deterministic or stochastic, for the 
scale it is modeled at. No explicit change in the “horizon” is needed while transitioning 
from the deterministic medium to stochastic medium, an issue identified in [16]. Addition-
ally, from the discussion in Section 3.1.4 it can be noticed that the “critical stretch” need 
not be explicitly adjusted to the grid-type, an issue identified in [18].

In this study, all random fields are generated from Weibull distribution at the scale of 
analysis. This ensures spatial correlation between material properties at the scale under 
consideration. It can also be noticed from the discussion in Section 3.1 that all stochastic 
parameters in Eq. (5) are correlated via other stochastic parameters as well, for instance 
Rx,x� (x, x

�,�(�x,x� )) and wx,x� (x, x
�,�(�x,x� )) are correlated via localized yield-stress �y@x and 

localized yield-strain �y@x . Considering the duality between local and nonlocal deforma-
tion-gamuts and the conservation of total potential energy at any scale of analysis, the 
understanding of multiscale correlation of stochastic DG parameters to recognize the mani-
festation of stochasticity during the process of upscaling from atomistic-scale to macro-
scale is identified as an active challenge.
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Appendix A. Karhunen‑Loève (KL) Expansion

The Karhunen-Loève Expansion [33, 34] is a bi-orthogonal stochastic process expansion. 
It is the representation of a stochastic process as an infinite linear combination of orthog-
onal functions, analogous to a Fourier series representation of a function on a bounded 
domain. It is helpful in the numerical modeling of abstract measure spaces with no or little 
physical intuitive support.

Consider some stochastic process, G(� ,�(�)) , as depicted in Fig.  33, is defined on a 
common probability space (Ω,F,P) , where Ω is the sample space, F  represents �-algebra , 
and P is the probability measure. Let � ∈ some bounded domain D and the process is 
characterized by a finite variance �var−� . If the deterministic (mean) values are given by 
Ḡ(𝜒) and the deviation from the mean for any realization is denoted by �(� ,�(�)) . Then,

The Karhunen-Loève decomposition of the zero-mean stochastic process �(� ,�(�)) , 
depicted by any realization in Fig. 33, is expressed as its projection on the Hilbert basis 
{H(�)

j
(�(�))} , as shown in Eq. (A.2),

(A.1)G(𝜒 ,𝜔(�)) = Ḡ(𝜒) + �(𝜒 ,𝜔(�)).

(A.2)�(� ,�(�)) =

∞∑

j=1

√
�(�)

j
�(�)

j
(�){H(�)

j
(�(�))}.

Fig. 33  Stochastic process
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The bracketed superscripts indicate the realization which the superscripted quantity 
is associated with. The Hilbert basis, in Eq. (A.2), serves as the set of uncorrelated ran-
dom variables. This set is expressed as,

�(�)
j

 and �(�)

j
 are the eigen values and eigen functions of the bounded, symmetric and posi-

tive-definite co-variance function C(�)(�
1
,�

2
) for the stochastic process under considera-

tion. They are the solution of the homogeneous Fredholm integral equation of the second 
kind, as expressed in Eq. (A.4),

where,

(A.3)H
(�)

j
(�(�)

) =

1
√

�(�)
j

∫
D

�(� ,�(�)
)�(�)

j
(�)d� .

(A.4)∫
D

C
(�)(�

1
,�

2
)�(�)

j
(�

1
)d�

1
= �(�)

j
�(�)

j
(�

2
).

(A.5)∫
D

�(�)

i
(�)�(�)

j
(�)d� = �

ij
.

Fig. 34  Karhunen-Loève expansion of realization 6
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Here, �
ij
 is the Kronecker-delta function. According to Mercer’s Theorem [37], C(�)(�

1
,�

2
) 

is expressed as,

C
(�)(�

1
,�

2
) can be optimally truncated using first M terms [35, 36] as,

In order to demonstrate the convergence of Karhunen-Loève (KL) Expansion, an 
approximation of realization 6 in Fig. 33 is shown below in Fig. 34.

Appendix B. Computational form of the stochastic model

The proposed governing equation of motion for deformation dynamics of stochastic mate-
rials in 1-D is,

Its discretized version for the bar in Fig. 1 takes the form,

In terms of localized and nonlocalized material points q, we have,

This gives,

(A.6)C
(�)(�

1
,�

2
) =

∞∑

j=1

�(�)

j
�(�)

j
(�

1
)�(�)

j
(�

2
).

(A.7)C
(�)(�

1
,�

2
) =

M∑

j=1

�(�)

j
�(�)

j
(�

1
)�(�)

j
(�

2
).

(B.1)

𝜌
L@x

(x,𝜔(�))ü(x, t) + ∫
V
L
(x)

(1 −Rx,x� (x, x
�,𝜔(�x,x� )))∇

x
�

L
(x, x�, t,𝜔(�l))dV

L
(x�)

+ ∫
V
NL

(x)

∫
V
NL

(x)

wx,x� (x, x
�,𝜔(�x,x� ))∇

x
�

NL
(x, x�, t,𝜔(�nl))dV

NL
(x�)dV

NL
(x�) = Fd(x, t).

(B.2)

𝜌
L@p

(p,𝜔(�))üp +
∑

q
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NL
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+
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NL
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NL

)
)∇

p
�

NL
(p, q

NL
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In Eq. (B.4), 
∑

q
L

(1 −Rp,q
L

(p, q
L
,�

(�p,q
L
)
))∇

p
�

L
(p, q

L
, t,�(�l)) is the fraction of local-

ized internal force that remains localized, and 
∑

q
NL

∇
p
�

NL
(p, q

NL
, t,�(�nl)) is the remain-

ing fraction of the localized internal force that is nonlocalized (or distributed) over the 
interactions of p with nonlocal material points q

NL
 . Thus,

Thus, from Eqs. (B.4) and (B.5), we get,

Using the aforementioned arguments and Eq. (33), Eq. (B.6) can be rewritten as,

In Eq. (B.7), m
L@p

 is the mass of the material point p localized at p, üp is the acceleration 
of the material point p, ℂ

p,q
L

 is the local bond-constant defined in Eq. (15), u
p,q

L

 is the rela-
tive displacement between material points p and q

L
 , ℂp,q

NL

 is the nonlocal bond-constant 
defined in Eq. (16), u

p,q
NL

 is the relative displacement between material points p and q
NL

 , and 
FL@p(t) is the time dependent external force localized at p.

For the entire bar, Eq. (B.7) can be written in the matrix form as,

Equation (B.8) is the required Eq. (25).
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