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Abstract
In this work, we present the mathematical foundation of an assembly code for finite ele-
ment approximations of nonlocal models with compactly supported, weakly singular ker-
nels. We demonstrate the code on a nonlocal diffusion model in various configurations 
and on a two-dimensional bond-based peridynamics model. Further examples can be found 
in  D’Elia et  al. (Math Models Methods Appl Sci 31(08):1505–1567, 2021). The code 
nlfem is published under the GNU General Public License (for details, see, e.g., https:// 
www. gnu. org/ licen ses/ gpl-3. 0. de. html) and can be freely downloaded at https:// gitlab. uni- 
trier. de/ pde- opt/ nonlo cal- models/ nlfem.

Keywords Nonlocal operators · Finite element discretizations · Python

1 Introduction

Differential equations yield solutions which necessarily contain a certain amount of regu-
larity and are based on local interactions. There are many real-world phenomena where 
those inherent assumptions are violated. Therefore, over the last two decades, nonlocal 
models attracted attention due to their capability of circumventing those limitations [2].

The models emerge due to various applications like anomalous diffusion [3, 4], peridy-
namics [5], or image processing [6, 7] and are diverse in their mathematical nature [8, 9]. 
That is, the integral kernels might exhibit strong singularities, an infinite or finite interac-
tion horizon, and can be scalar or tensor-valued. Their investigation is often accompanied 
with numerical experiments motivated by these applications.

In this work, we describe the discretization of nonlocal operators of the general form
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where the kernel C� vanishes for points farther apart than some horizon 𝛿 > 0 . The support 
of the kernel, also referred to as interaction neighborhood in the following, is often mod-
eled by the Euclidean norm ball or suitable approximations thereof.

The purpose of our code nlfem [10] is to compute numerical solutions of related 
boundary value problems at a convenient speed for researchers. The discretization of these 
problems is achieved by a finite element approximation. The resulting variational frame-
work comes at the price of a second integration compared to the operator in its strong 
form, which makes it more costly compared to classical differential operators. Further 
challenges in the implementation arise due to finite interaction horizons and singularities 
of the kernel [1].

The finite element method is one among several methods to approximate nonlocal oper-
ators. Mesh-free methods [11–13] are commonly applied to peridynamics problems, and 
there exist finite difference schemes [14] and kernel collocation methods [15] for nonlocal 
diffusion and mechanics.

As nlfem is a finite element implementation, we shortly review the available codes for 
nonlocal problems based on that method. The foundation for operators related to the frac-
tional Laplacian1 is given by boundary element methods [16]. Based on these fundamentals, 
a MATLAB implementation for a finite element approximation of the two-dimensional frac-
tional Laplacian with infinite interaction is presented in [17]. Further advanced techniques 
to efficiently implement the fractional Laplacian are developed in [18] and incorporated into 
the finite element code PyNucleus [19]. The package is a recommendable alternative to our 
code, and we give a detailed comparison of PyNucleus and nlfem in Sect. 4.3. Apart from 
that, there exists a commercial finite element code as part of LS-DYNA [20] for peridynam-
ics. For a general overview, we refer the reader to the comprehensive review paper [21] on 
numerical methods for nonlocal problems.

Our code nlfem assembles nonlocal operators on triangular meshes based on linear con-
tinuous Galerkin (CG) or discontinuous Galerkin (DG) ansatz spaces.

It allows the assembly of stiffness matrices related problems with given Neumann and 
Dirichlet boundary data [22–24]. An important detail is that the null space of systems 
corresponding to pure Neumann boundary data is exact due to a careful approximation of 
kernel truncations which eliminates distortions rooted in geometric errors. The knowledge 
of the null space can be exploited to efficiently evaluate the pseudoinverse, for example, by 
rank corrections or Krylov subspace solvers.

Concerning the domain, nlfem covers a variety of different configurations. It handles 
nonlocal interactions in nonconvex or even disconnected domains where the intersection 
between the interaction neighborhood B�(x) and the domain can be disconnected. For 
example, this is of particular interest in shape optimization with nonlocal operators [25, 
26], where the domain is modified iteratively.

The kernel can be symmetric or nonsymmetric as well as scalar—or matrix-valued. 
For the symmetric case, our discretization of the weak form guarantees the symmetry of 
the stiffness matrix up to machine precision. The code can generically handle smooth 
kernels, and it comes with quadrature rules for fractional-type kernels as they are found 

−L�u(x) ∶= 2∫Ω̃

(
C�(x, y)u(x) − C�(y, x)u(y)

)
dy,

1 Throughout this work, we always refer to the fractional Laplacian in the integral form.
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in [16, 17]. In addition to that, the kernel can vary depending on the subdomain it is 
evaluated on. This opens the door to the assembly of interface problems determined by 
spatially variable kernels.

The nlfem code is most efficient for operators with interaction horizons which are 
comparable to the mesh size, i.e., h ⩽ � ⩽ Ch for some C ⩾ 1 . This relation is often 
used in the nonlocal mechanics setting; for example, in [27, 28], choices such as � = 3h 
or � = 4h are used. A careful consideration of the quadrature and interpolation errors 
can allow smaller ratios �∕h and increase the sparsity of the related systems.

Our implementation is based on the extensive discussions on the errors incurred by 
various approximations of the interaction neighborhood and quadrature rules [1, 
26], all of which are implemented here. We only discuss a small selection of interaction 
neighborhoods in this paper, such as two approximations of the Euclidean norm ball, 
which provably do not deteriorate the finite element interpolation error [1]. Further-
more, the interaction neighborhood of a kernel is efficiently determined by a breadth-
first traversal [29, Chapter 6] of finite elements throughout the assembly process, which 
avoids expensive preprocessing computations.

A fundamental advantage of finite element methods is that they can be considered 
to be asymptotically compatible in the sense of [30]. Our code reproduces this prop-
erty for the cases h ⩽ � , h ∼ � → 0 if the implemented interaction neighborhood does 
not induce geometric errors. For example, this is the case for the implemented infinity 
norm ball.

For convenience, the assembly is performed in multiple threads, and the main rou-
tine, which is written in C++, comes with a user-friendly Python interface. When it 
comes to solving, we note that the stiffness matrix is returned in compressed sparse row 
(CSR) format. Therefore, the user can apply any sparse solver accessible from Python 
and apply it to the stiffness matrix.

The remainder of this article is organized into two main sections. First, in Sect. 2, we 
give a precise formulation of the targeted problem class (Sect. 2.1) along with its finite 
element approximation (Section  2.2). In the following subsections, we then highlight 
discretization details that deserve special attention in a nonlocal framework. Second, in 
Sect. 3, we present various numerical examples, including diffusion and mechanics, and 
give a brief scaling study.

2  Finite Element Approximation

In this section, we review known results about the assembly of finite element approxi-
mations to nonlocal operators [1]. However, the current literature does not discuss in 
detail the influence of ball approximations on the symmetry of the system matrix. That 
is, a symmetric kernel might be approximated by a nonsymmetric stiffness matrix if 
the kernel truncation is not handled with sufficient care. The novel contribution in this 
section is a ball approximation which rules out geometric and quadrature-related distor-
tions. Moreover, we present a novel assembly algorithm tailored to truncated kernels 
which identifies the interaction neighborhood on-the-fly without the requirement of a 
prepossessing step.
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2.1  Problem Formulation

Let �Ω ⊂ ℝd be a compact domain, and let Ω ⊂ �Ω be open in Ω̃.2 We note that the case 
Ω = Ω̃ is allowable, and Ω is open in ℝd only if Ω ⊂ int (�Ω) . We refer to Ω as domain. The 
complement of Ω in Ω̃ is denoted by ΩD ∶= Ω̃ ⧵Ω . It typically plays the role of a nonlo-
cal Dirichlet boundary in suitable settings. The case Ω̃ = Ω implies ΩD = � and thus the 
absence of further constraints. In this case, the resulting nonlocal problem can be inter-
preted as Neumann-type problem; see, e.g., [22, 31]. In Fig. 1, we present an exemplary 
configuration. Let 𝛿 > 0 be an interaction horizon. We make the following assumption 
about the kernel function.

Assumption 1 We assume that for the matrix-valued kernel function �� ∶ ℝd ×ℝd
→ ℝn×n , 

there exists an s ∈ (0, 1) such that

is bounded.

This allows singularities at the origin and also includes smooth kernels such as the con-
stant kernel. Next, we introduce the interaction neighborhood B�(x) , where

for some norm | ⋅ |∙ in ℝd . We denote the truncated kernel by

The linear nonlocal operator under consideration acting on a function u ∶ ℝd
→ ℝn is then 

given by

(1)��(x, y)1B� (x)
(y) |x − y|d+2s

(2)B�(x) ∶= {y ∈ ℝ
d | |x − y|∙ ⩽ �},

(3)C�(x, y) ∶= ��(x, y)1B� (x)
(y).

Fig. 1  a The compact domain Ω̃ contains Ω (blue) and ΩD (red), where the latter is possibly empty. The 
blue boundary belongs to Ω , and the red boundary belongs to ΩD . b The red elements belong to the nonlo-
cal Dirichlet boundary ΩD , while the blue elements belong to the domain Ω . Note that the vertices on the 
red lines do not belong to the interior of Ω

2 There exists an open set O ⊂ ℝd , such that O ∩ Ω̃ = Ω.
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Note that in general, the above integral does not exist, and we tacitly interpret the strong 
form of the operator in the Cauchy principal value sense3 if necessary. By testing (4) with 
v ∶ Ω̃ → ℝn where v = 0 on ΩD , we obtain the bilinear form

With v = � on ΩD and Fubini’s theorem (see, e.g., [22]), the bilinear form can be written as

Note that we exploited the symmetry of the exact indicator function 1B� (x)
(y) to obtain  

this equality.

Remark 2.1 (Nonlocal convection-diffusion). The kernel introduced in (3) is not assumed 
to be symmetric and may therefore exhibit a nonzero anti-symmetric component. A split-
ting of this kernel into its symmetric and anti-symmetric parts results in an additive split-
ting of the nonlocal operator defined in (4), say L� = L

d
�
+ L

c
�
 . Invoking the operators 

and terminology from the nonlocal vector calculus introduced in [8, 32], one can relate 
−Ld

�
 and −Lc

�
 to nonlocal diffusion and nonlocal convection, respectively (see, e.g., [26, 

Section 2.3]).

2.2  Finite Dimensional Approximation

For integers K,M ∈ ℕ , let Th ∶= {Ek}
K
k=1

 denote a subdivision of Ω̃ = Ω ∪ ΩD into polyhe-
dral finite elements with nodes {xm}Mm=1.

Assumption 2 We assume that Ω and ΩD can be exactly covered by the subdivisions 
T
h
Ω
= {Ek}

KΩ

k=1
 and Th

D
= {Ek}

K
k=KΩ+1

 with Th = T
h
Ω
∪ T

h
D
 , respectively, where Th

D
 is possibly 

empty. Since we assume polyhedral elements, this implies that

are polyhedral domains.

(4)−L�u(x) ∶= 2∫Ω̃

(
C�(x, y)u(x) − C�(y, x)u(y)

)
dy.

(5)

A(u, v) ∶= −∫Ω

v(x)⊤L𝛿u(x)dx

= 2∫Ω

v(x)⊤ ∫�Ω

C𝛿(x, y)u(x)

− C𝛿(y, x)u(y)dydx.

(6)

A(u, v)

= ∫�Ω ∫�Ω

(v(x) − v(y))⊤
(
C𝛿(x, y)u(x) − C𝛿(y, x)u(y)

)
dydx

= ∫�Ω ∫�Ω

1B𝛿 (x)
(y)(v(x) − v(y))⊤

(
�𝛿(x, y)u(x) −�𝛿(y, x)u(y)

)
dydx.

(7)Ω =

KΩ⋃
k=1

Ek and ΩD =

K⋃
k=KΩ+1

Ek

3 More precisely, ∫
Ω̃
h(x, y)dy ∶= lim�→0+ ∫Ω̃⧵B� (x)

h(x, y)dy.
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In the case of ΩD = � , we have that KΩ = K and Th = T
h
Ω
 . For convenience of notation, we 

assume an ordering of the nodes such that {xm}
MΩ

m=1
⊂ Ω and {xm}Mm=MΩ+1

⊂ ΩD . This assump-
tion is not made in the implementation of nlfem.

We implement scalar and vector-valued piecewise-linear continuous and discontinuous 
basis functions {�j}

J
j=1

 , where J = M in the case of continuous and J = (d + 1)K in case of 
discontinuous basis functions. Again, for convenience, we assume an ordering of the basis 
functions and define the corresponding finite-dimensional subspaces

where JΩ ⩽ J denotes the number of basis functions which have support within Ω . In case 
of continuous basis functions, the unknown coefficients correspond to the nodes lying in 
the interior of Ω with respect to Ω̃ . See Fig. 1 for an illustration. Now, the evaluation of the 
bilinear form A on Vh(Ω̃,ℝn) × Vh

c
(Ω̃,ℝn) can be written as sum over the finite elements, 

i.e.,

Since the kernel C� may exhibit a truncation on some pairs (Ek, E�) , we need an appropriate 
approximation of its support. The number of elements in the interaction neighborhood of 
a point in 2d for a fixed horizon � is in O(h−2) , and a greater mesh size h can increase the 
sparsity in the discrete system. Therefore, a precise approximation can leverage efficiency, 
and it is desirable that the geometric error in the evaluation of (9) does not deteriorate the 
interpolation error of the finite element space. While the approximation of the infinity or 
�
1 norm balls does not introduce a geometric error, the one for curved neighborhoods, like 

the Euclidean norm ball, does.
In the following, we describe two major examples of the implemented ball approximations 

for the Euclidean ball

which we call the approxcaps and the nocaps approximations. Both are based on the given 
finite element mesh Th . By “cap,” we mean the circular segments that arise when a finite 
element triangle is only partially covered by the Euclidean ball; see Fig. 2. Among others, 
these ball approximations are investigated in [1].

Definition 2.2 (nocaps Ball). For x ∈ Ω̃ , the nocaps ball approximation is defined as the 
convex hull of the intersection of the boundary �B2

�
(x) of the Euclidean ball and the bound-

aries of the elements, i.e.,

where the dependency on the mesh size h is omitted in the notation.

(8)Vh(Ω̃,ℝn) ∶= span ({�j}
J
j=1

), and Vh
c
(Ω̃,ℝn) ∶= span ({�j}

JΩ
j=1

),

(9)

A(�j,�i) =

K∑
k=1

K∑
�=1

[
∫
Ek
∫
E
�

(�i(x) − �i(y))
⊤
(
C𝛿(x, y)�j(x) − C𝛿(y, x)�j(y)

)
dydx

]
.

B2
�
(x) ∶= {y ∈ ℝ

d | |x − y|2 ⩽ �},

B
ncp

�
(x) ∶= conv

⎛⎜⎜⎝
�
E
�
∈Th

�E
�
∩ �B2

�
(x)

⎞⎟⎟⎠
,
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For d = 2 , one can show that the area of the symmetric difference of B2
�
(x) and 

B
ncp

�
(x) is provably of order O(h2) when the mesh size h tends to zero. This is error 

commensurate with respect to the interpolation error of a linear finite element ansatz 
space; details for the latter two statements can be found in [1]. The convex hull omits 
circular caps which appear in the intersection of some elements with the neighborhood 
E
�
∩ B2

�
(x) and have a significant size on coarse grids. Therefore, by adding additional 

points on the center of possible caps, the geometric error can be reduced even further 
while still being in O(h2) for d = 2 ; see again Fig. 2. The maximum number of caps for 
a single intersection E

�
∩ B2

�
(x) is three.

While the results in [1] are derived for a fixed horizon � , related investigations for 
the local limit ( � → 0 ) with polygonal ball approximations can be found in [33].

Definition 2.3 (approxcaps Ball). Let x ∈ Ω̃ . We denote the points on the cap center of 
each nonempty intersection E

�
∩ �B2

�
(x) by y

�
 . The approxcaps ball is then defined by

Exact quadrature rules for circular caps can be found in [34]. Here, however, the 
quadrature points have to be computed during run time, as the rules depend on the 
geometry of the cap for higher quadrature orders. Therefore, we do not consider these 
exact rules in nlfem.

In addition to these approximate balls, we next also introduce the infinity norm ball.

Definition 2.4 (Infinity Norm Ball). For x ∈ Ω̃ , the infinity normball is defined by

Proofs for the convergence of the nonlocal Dirichlet-type problem to the classical Dirichlet 
problem with corresponding scaling constants for various kernel functions can be found, e.g., 
in [26]. Since the infinity normball is implemented exactly, it allows numerical tests of the 
expected asymptotic compatibility of the discretization scheme [30].

We finally note that the indicator function based on any implemented truncation may 
lack symmetry. More precisely, there might exist x and y , for which

B
acp

�
(x) ∶=

conv
(
B
ncp

�
(x) ∪ {y

�
| y

�
cap center of E

�
∩ �B2

�
(x) for some E

�
∈ T

h}
)
.

B∞
�
(x) ∶= {y ∈ ℝ

d | |x − y|∞ ⩽ �}.

Fig. 2  If a finite element triangle is only partially covered by an Euclidean ball, the intersection contains 
circular caps. The nocaps ball (a) omits this cap, whereas the approxcaps ball (b) retriangulates the whole 
intersection
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where B#
�
(x) , # ∈ {ncp, acp,∞} , represents one of the implemented truncations. This arti-

fact stems from the ball approximation itself in the case of the nocaps and approxcaps ball, 
but can also be caused by the quadrature; see Remark 2.6 below.

We define the integrand

and, based on the ball approximation and (6), the approximate bilinear form

By Fubini’s integration theorem, for sufficiently smooth basis functions �j ∈ Vh(Ω̃,ℝn) 
and �i ∈ Vh

c
(Ω̃,ℝn) , the approximate bilinear form defined in (11) can be written as

where

In view of (5), this shows that the approximate bilinear form A#
h
 can be interpreted as the 

discretization of the operator −L� based on the symmetrified approximate indicator func-
tion 1S

B#
�

(x, y) instead of 1B�(x)
(y) in the strong form. However, defining the approximate 

bilinear form as in (11) guarantees the symmetry of the stiffness matrix (A#
h
(�j,�i))i,j ; see 

also Remark 2.6 below.
In the following, we discuss the evaluation of the local contributions

to the (i, j)-th entry of the stiffness matrix.

1B#
�
(x)(y) ≠ 1B#

�
(y)(x),

(10)Φij(x, y) ∶= (�i(x) − �i(y))
⊤(�𝛿(x, y)�j(x) −�𝛿(y, x)�j(y))

(11)

A#
h
(�j,�i) ∶= ∫Ω̃ ∫Ω̃

1B#
�
(x)(y)Φij(x, y)dydx

=

K∑
k=1

K∑
�=1

∫
Ek
∫
E
�

1B#
�
(x, y)Φij(x, y)dydx.

A#
h
(�j,�i)

= ∫�Ω ∫�Ω

1B#
𝛿
(x)(y)Φij(x, y)dydx

= ∫Ω ∫�Ω

1B#
𝛿
(x)(y)�i(x)

⊤
(
�𝛿(x, y)�j(x) −�𝛿(y, x)�j(y)

)
dy dx

− ∫�Ω ∫Ω

1B#
𝛿
(x)(y)�i(y)

⊤
(
�𝛿(x, y)�j(x) −�𝛿(y, x)�j(y)

)
dy dx

= 2∫Ω

�i(x)
⊤ ∫�Ω

1
S

B#
𝛿

(x, y)
(
�𝛿(x, y)�j(x) −�𝛿(y, x)�j(y)

)
dy dx,

(12)1
S

B#
�

(x, y) ∶=
1

2

(
1B#

�
(x)(y) + 1B#

�
(y)(x)

)
.

(13)A#
k�
(�j,�i) ∶= ∫

Ek
∫
E
�

1B#
�
(x)(y)Φij(x, y)dy dx
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2.3  Population of the Stiffness Matrix

The assembly algorithm iterates over all pairs of elements and then adds the local contribu-
tions (13) to the stiffness matrix. We call a pair of elements (Ek, E�) intersecting if

If a pair is not intersecting, we call it disjoint. For the evaluation of the contributions, it 
is only important how the kernel behaves on a fixed pair of elements. If for example the 
kernel exhibits a singularity at the origin and the pair is disjoint, the singularity does not 
occur. Also, if a pair of elements (Ek, E�) fulfills that

the truncation does not come into play. We therefore distinguish two cases. In the first case, 
the kernel has a singularity with s < 0.5 or the pair of elements is disjoint. This allows 
to derive the representation (14) of the bilinear form because the singularity either is not 
too strong or does not occur at all. In the opposite case, the kernel has a singularity with 
s ⩾ 0.5 and the elements are intersecting so that the expression (13) cannot be divided 
into smaller parts.

2.3.1  Disjoint Pairs or Kernels with s < 0.5

If s < 0.5 in (1) or if the pair (Ek, E�) is disjoint, the local contributions (13) can be factored 
out and computed separately, i.e.,

In (14), the basis functions, and not their differences, are integrated. Consequently, respec-
tive terms in (14) yield identical values for linear discontinuous and continuous elements, 
and it becomes apparent that, if s < 0.5 , the bilinear form can also be evaluated on discon-
tinuous ansatz spaces. Therefore, nlfem allows continuous and discontinuous finite element 
spaces if s < 0.5 . In fact, the splitting (14) is not viable for s ⩾ 0.5 where we require some 
regularity4 in �i and �j for the integral to exist.

The expression A#1
k�
(�j,�i) is nonzero only if the element Ek lies in the support of �i 

and �j . Similarly, the contribution of A#3
k�
(�j,�i) is linked to the element E

�
 . The term 

Ek ∩ E
�
≠ �.

E
�
⊂ B𝛿(x) for all x ∈ Ek,

(14)

A#
k�
(�j,�i) =∫

Ek
∫
E
�

1B#
𝛿
(x)(y)�i(x)

⊤
�𝛿(x, y)�j(x)dy dx

− ∫
Ek
∫
E
�

1B#
𝛿
(x)(y)�i(x)

⊤
�𝛿(y, x)�j(y)dy dx

+ ∫
Ek
∫
E
�

1B#
𝛿
(x)(y)�i(y)

⊤
�𝛿(y, x)�j(y)dy dx

− ∫
Ek
∫
E
�

1B#
𝛿
(x)(y)�i(y)

⊤
�𝛿(x, y)�j(x)dy dx.

=∶A
#1
k�
(�j,�i) + A

#2
k�
(�j,�i)

+ A
#3
k�
(�j,�i) + A

#4
k�
(�j,�i).

4 For example, Lipschitz continuity of the basis functions �i and �j suffices.
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A
#2
k�
(�j,�i) is nonzero only if �i has its support on Ek and �j on E

�
 , where the converse 

holds for A#4
k�
(�j,�i) . That way, we derive the indices of the basis functions corresponding 

to the pair (Ek, E�) in the stiffness matrix. We note that the same indices of basis functions 
occur again for the pair (E

�
, Ek) , but the contributions to the stiffness matrix are not identi-

cal as the truncation 1B#
�
(x)(y) is not symmetric. Ultimately, the contribution of the two pairs 

(Ek, E�) and (E
�
, Ek) together lead to the symmetrified truncation (12).

2.3.2  Kernels with s ⩾ 0.5 on Intersecting Pairs

If a pair of elements is intersecting and s ⩾ 0.5 , the separation of integrands in (14) is 
not admissible. Therefore, nlfem is restricted to continuous basis functions if s ⩾ 0.5 . As 
the pair is intersecting, the elements are either vertex touching, edge touching, or identi-
cal. Therefore, the number of basis functions to be considered in these cases is 5, 4, or 3, 
respectively. If we denote the vertices by j1,… , j

�
 for � = 5, 4, 3 , we obtain 25, 16, or 9 

pairs of basis functions (�j�
,�j��

) for �, �� = 1,… ,� which yield nonzero contributions to 
the local stiffness matrix (A#

k�
(�j�

,�j��
))1 ⩽ �,�� ⩽ �

.

2.4  Quadrature

The quadrature rules need to work for kernels with truncations and singularities. However, 
the implemented quadrature rules in nlfem do not account for both at the same time on a 
fixed pair of elements. We therefore require the following assumption.

Assumption 3 The quadrature rules for singular kernels assume that for all intersecting 
pairs of elements (Ek, E�) , it holds that E

�
⊂ B𝛿(x) for all x ∈ Ek.

If Assumption 3 is violated, the interaction neighborhood of the kernel is overestimated. 
This deteriorates the error finite element error. However, for sufficiently small mesh size, 
say 3h ⩽ � , the problem does not occur.

Remark 2.5 Specific quadrature rules for singular kernels are required for sufficiently 
strong singularities only. Kernels like the peridynamics kernel (28) can be integrated by 
simply technically avoiding zero-divisions. More precisely, by choosing fixed quadrature 
rules for the inner and outer integral which do not have shared quadrature points, we make 
sure that (x − y) ≠ 0 in (28) for any kernel evaluation during the assembly process.

Given Assumption 3 and the fact that disjoint pairs do not require a treatment with regu-
larizing integral transforms [16], we can evaluate all contributions as given in Algorithm 1. 

In any case, the quadrature is performed by pulling back the domain of integration to a 
reference domain

Algorithm 1  Evaluate A#

k�
 in (13)
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The affine linear mapping �k ∶ Ê → E with Jacobian determinant |�k| from the reference to 
a physical element allows to define the pullback

the inner integral

and the local contribution to the (i, j)-th entry of the stiffness matrix

on the reference element.

2.4.1  Quadrature for Kernel Truncations

For some pairs (Ek, E�) , we find that E
�
 is only partially covered by the interaction neighbor-

hood B#
�
(x) for some x ∈ Ek , so that E

�
∩ B#

𝛿
(x) ⊊ E

�
 . In this case, the ball approximations 

B
ncp

�
(x) and Bacp

�
(x) as well as the ball B∞

�
(x) require a retriangulation of the integration domain 

E
�
∩ B#

�
(x) . We denote the set of elements which result from such a retriangulation5 by

so that 
⋃

T
#
h,�

(x) = E
�
∩ B#

�
(x) . In view of Fig. 2, the set T#

h,�
(x) collects the elements mak-

ing up the shaded region 
⋃

T
#
h,�

(x) for the nocaps ball (Fig. 2a) and the approxcaps ball 

(Fig. 2b), respectively. Let {ŷq, dŷq}
Q

q=1
 denote a quadrature rule on the reference element Ê , 

and let x̂ ∈ Ê be some reference point. Then, the fully discrete inner integral from (15) 
reads as

In finite element implementations, the function values of basis functions are usually pre-
computed at the quadrature points and stored. However, if a retriangulation is necessary, 
the physical coordinates of the quadrature points 𝜒

�̃
(�yq) for q = 1,… ,Q on some element 

Ẽ
�̃
∈ T

#
h,�

(x) are known at runtime only and the basis functions are evaluated at the corre-
sponding points.

Ê × Ê, where Ê ∶= {x̂ ∈ ℝ
d | x̂ ⩾ 0,

d∑
�=1

x̂� ⩽ 1}.

Φ̂k�,ij(x̂, ŷ) ∶= Φij(�k(x̂),��
(ŷ))|�k||��

|,

(15)K̂
#

k�,ij
(x̂) ∶= ∫

Ê

1B#
�
(�k(x̂),��

(ŷ))Φ̂k�,ij(x̂, ŷ)dŷ

(16)Â#
k�,ij

∶= ∫
Ê

K̂
#

k�,ij
(x̂)dx̂

T
#
h,�

(x) ∶= {Ẽ
�̃
}
L
�

�̃=1
,

(17)�K
#

k�,ij
(�x) ≈

L
�∑

�̃=1

Q∑
q=1

�Φk�̃,ij(�x,�yq)d�yq .

5 Note that these elements can be strict subsets of finite elements and should not be confused with the 
original finite element mesh. This is why additional notation is needed.
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Now, let {x̂p, dx̂p}
P
p=1

 be a quadrature rule with points x̂p and weights dx̂p for the reference 
element of the outer integral. Then, with (17), the discretized version of the local contribu-
tion to the (i, j)–th entry of the stiffness matrix (16) is obtained by

2.4.2  Quadrature for Singularities

Some kernel functions exhibit a singularity at the origin, which lies in the integration 
domain of K̂

#

k�,ij
(x̂) whenever the pair (Ek, E�) intersects. We therefore require regularizing 

integral transforms [16]. Assumption 3 allows to ignore possible truncations in (16) and to 
simply evaluate

Intersecting pairs (E
�
, Ek) can be vertex touching, edge touching, or identical. For each of 

those cases, we apply integral transforms, which again pull back subsets of the integration 
domain Ê × Ê to the unit cube (0, 1)4 . The transformations are well established and applied, 
for example, in the field of boundary element methods. Details can be found in [16, 17]. 
Note again, that in the case of singular kernels with s ⩾ 0.5 , the implemented routines 
cannot evaluate the expression in (18) for discontinuous basis functions.

Remark 2.6 (Asymmetry due to quadrature). We have mentioned in Sect.  2.2 that the 
approximate indicator function based on the approxcaps and nocaps balls may gener-
ally lack in symmetry and therefore would lead to nonsymmetric stiffness matrices if 

�A#
k�,ij

≈

P∑
p=1

(
L
�∑

�̃=1

Q∑
q=1

�Φk�̃,ij(�xp,�yq)d�yq

)
d�xp .

(18)Â#
k�,ij

= ∫
Ê
∫
Ê

Φ̂k�,ij(x̂, ŷ)dŷdx̂.

Fig. 3  The figure shows the 
approximation of the interaction 
domain of a single triangular 
element by interaction neighbor-
hoods of three quadrature points 
for the infinity normball B∞

�



99Journal of Peridynamics and Nonlocal Modeling (2024) 6:87–117 

1 3

one used representation (5) of the bilinear form. Also, truncations invoked by the infin-
ity norm ball B∞

�
(x) , which can be implemented exactly, can be nonsymmetric on suf-

ficiently irregular grids. These two observations hold true independent of the symmetry 
of the kernel function ��(x, y) . However, it is a desirable feature that the symmetry of 
the kernel, i.e., the self-adjointness of the operator, is transported through the discretiza-
tion process. In other words, for a symmetric kernel, we expect a symmetric stiffness 
matrix. This behavior is more intricate and related to the approximation of the interac-
tion domain of a finite element by the union of interaction neighborhoods of quadrature 
points; see Fig. 3. Thus, we use by default representation (11) instead, which as stated 
above corresponds in strong form to the operator −L� based on the approximate indicator 
function (12). Thereby, we guarantee the stiffness matrix to be symmetric up to machine 
precision for any symmetric kernel function. Also, an important consequence of the sym-
metrification is that the null space of the stiffness matrix related to pure Neumann-type 
problems contains the constant vectors up to machine precision. This allows the applica-
tion of projected Krylov subspace methods or rank-1 corrections to efficiently evaluate a 
pseudoinverse of the stiffness matrix.

We summarize the different cases for the quadrature of kernels in Table 1. The table 
distinguishes between different degrees of singularity s in the case of d = 2 as well as inter-
secting and disjoint pairs of elements. When s > 0 , we apply regularizing integral trans-
forms represented by ♣ in the table. This quadrature rule is applied for intersecting pairs 
and requires Assumption 3. Whenever s < 0.5 , we allow for discontinuous and continuous 
basis functions. When s ⩾ 0.5 , only continuous basis functions are provided. For more 
details, we refer to [18]. If −1 < s ⩽ 0 , the singularity might be so weak that it suffices 
to simply avoid zero-divisions on intersecting pairs, which is represented by ♢ in the table. 
However, the quadrature rule ♣ can also be applied. If s ⩽ −1 , there is no singularity at 
all, and the symbol ♡ represents a standard quadrature rule. The rules, ♡ and ♢ , respect the 
kernel truncation, i.e., they do not require Assumption 3.

2.5  Traversal of the Interaction Neighborhood

The local contributions Â#
k�,ij

 to the stiffness matrix, defined in (13), can be nonzero 
even for pairs of disjoint finite elements (Ek, E�) , which we then refer to as interacting 
elements in the following. Unstructured meshes and the various supports of kernel func-
tions call for a flexible routine to identify interacting elements. The identification can 
be accomplished if the assembly follows a breadth-first search. A breadth-first search 
consecutively traverses the nodes in a graph starting in a root node. It first visits the 

Table 1  The table gives an 
overview of the different 
quadrature rules which can be 
applied for dimension d = 2 in 
nlfem

♡ Standard quadrature rule on Ê × Ê . ♢ Quadrature rule on Ê × Ê that 
avoids x̂p = ŷq . ♣ Quadrature rule on (0, 1)4 after regularizing integral 
transforms

s ⩽ −1 −1 < s ⩽ 0 0 < s < 0.5 0.5 < s < 1

Intersecting ♡ ♢ or ♣ ♣ ♣

Disjoint ♡ ♡ ♡ ♡

CG and DG CG
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nodes which are directly adjacent to the root node. Then, only it visits the (unvisited) 
neighbors of the successive nodes. The search stops when a certain criterion is met or 
no further successors can be found. We refer to the neighbors of the root node as first 
layer of the search.

In order to describe the algorithm, we define the set of immediate neighbors of some 
element Ek by

and the adjacency graph �adj ∶=
(
T
h,Eadj

)
 of the finite element mesh with vertices Th  

and edges

The graph �adj can be understood as the dual graph of the finite element mesh, and its 
vertices are therefore given by the elements. We additionally define the interaction graph 
�S ∶=

(
T
h,ES

)
 with vertices Th and edges

The set of edges Eadj is contained in ES because touching elements interact. Hence, the set 
of vertices of �adj and �S are identical, and all edges of �adj are contained in �S . In that 
sense, �adj is a subgraph of �S . Furthermore, for a fixed element Ek , let us denote the set of 
all interacting elements by Th

k
∶= {E

�
∈ T

h|||(Ek, E�) ∈ ES} . We then define the subgraph 
�Sk

∶=
(
T
h
k
,ESk

)
 of �S with vertices Th

k
 and edges given by

The adjacency graph �adj can be computed and stored efficiently, while the interaction 
graph �S exhibits storage requirements which are comparable to the full stiffness matrix. 
We also note that the breadth-first search described below allows to naturally identify inter-
secting pairs (Ek, E�) , as they only occur in the first layer of the traversal. This important 
built-in feature is used to identify the intersection cases for element pairs mentioned in 
Sect. 2.3.

Assumption 4 We assume without loss of generality that each of the graphs �Sk , �adj , and 
�S is connected.

It is clear that Assumption 4 can be violated if Ω̃ is not connected or even if it is con-
nected as depicted in Fig.  4a. As a remedy, the implementation allows to add artificial 
vertices and elements to the mesh which connect certain parts of the mesh. The artificial 
vertices and elements allow to change the mesh topology so that it is guaranteed that the 
interaction domain of an element, and hence �Sm , is always connected; see Fig.  4b. Of 
course, the artificial elements do not enter any integration routines. A straightforward 
option is to embed Ω̃ into a bounded and convex hold-all domain �Ω ⊂ ℝn , which guaran-
tees that the graphs �Sk , �adj , and �S are always connected; see Fig. 4b.

In that sense, Assumption 4 does not cause any loss of generality. If Assumption 4 
holds, we can recover the subgraph �Sk with a truncated breadth-first traversal of �adj start-
ing in the root node Ek as given in Algorithm 2. To that end, we define an empty queue Q 

(19)N(Ek) = {E
�
| Ek ∩ E

�
≠ �}

Eadj ∶= {(Ek, E�) ∈ T
h × T

h | Ek ∈ N(E
�
)}.

(20)ES ∶=
{
(Ek, E�) ∈ T

h × T
h ||| Â

#
k�,ij

≠ 0 for some �j,�i ∈ Vh(Ω̃,ℝn)
}
.

ESk
∶=

{
(Ek, E�) ∈ T

h × T
h ||| (Ek, E�) ∈ ES

}
.
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of elements to which we can append new elements and read and remove them in a first-in 
first-out ordering. As first step, the root node Ek is appended to Q = [Ek] . While Q is not 
empty, an element E

�̃
 is read and removed from the queue in a first-in first-out order. Its 

immediate neighbor, say E
�
∈ N(E

�̃
) , are obtained from the adjacency graph and the inte-

grals Â#
k�,ij

 are successively evaluated for all E
�
∈ N(E

�̃
) . The element E

�
 is added to the 

queue whenever the integral does not vanish, and finally marked as visited. This procedure 
automatically truncates the search to interacting elements for any connected interaction 
neighborhood. 

3  Numerical Examples

We solve a truncated fractional-type steady-state diffusion problem, a linear bond-based 
peridynamics equation [5, 35] and a steady-state diffusion problem based on the infinity 
normball. In the first two examples, we demonstrate the convergence rate of the approxi-
mate solutions to a manufactured solution as the mesh size h → 0 . In the latter example, 
we demonstrate the asymptotic compatibility of the discretization scheme for a vanishing 
horizon �.

To this end, let Ω ∶= (0, 0.5)2 ⊂ ℝ2 . We define the interaction domain of Ω by 
ΩD ∶= [−�, 0.5 + �]2 ⧵ Ω, so that Ω̃ = [−�, 0.5 + �]2 . We then want to solve the nonlocal 
Dirichlet-type problem

Fig. 4  Connected domain causing disconnected neighborhoods. In a, the interaction neighborhood of an 
element is disconnected even though the domain is connected. In b, a convex hold-all domain Ω̂ allows to 
account for possible interactions within disconnected interaction neighborhoods

Algorithm 2  Traversal of interac-
tion neighborhood
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We define the function spaces

where

For given data f ∈ L2(Ω,ℝn) and g ∶= v|ΩD
 , where v ∈ V(Ω̃,ℝn) , we call u ∈ V(Ω̃,ℝn) the 

weak solution to problem (21), if

The well-posedness of problem (22) for various choices of kernel functions can be found, 
e.g., in [8, 21, 22, 36–38]. By exploiting the known values of u on the Dirichlet domain, we 
can rewrite the first line in (22) as

where

and

In the stiffness matrix, the splitting (23) can be naturally obtained by separating the col-
umns corresponding to the degrees of freedom from the columns corresponding to the 
nodes on the boundary ΩD.

(21)
{

−L�u = f in Ω,

u = g in ΩD.

V(�Ω,ℝn) = {u ∈ L2(�Ω,ℝn) ∶ ‖u‖V < ∞},

Vc(
�Ω,ℝn) = {u ∈ V(�Ω,ℝn) ∶ u = 0 in ΩD},

‖u‖2
V
= A(u, u) + ‖u‖2

L2(Ω̃)
.

(22)
A(u, v) = (f, v) forall v ∈ Vc(Ω̃,ℝ

n),

and u = g in ΩD.

(23)AΩΩ(u, v) = (f, v) − AΩΩD
(g, v),

AΩΩ(u, v) ∶=∫Ω ∫Ω

(v(x) − v(y))⊤
(
C𝛿(x, y)u(x) − C𝛿(y, x)u(y)

)
dydx

+ 2∫Ω ∫ΩD

v(x)⊤C𝛿(x, y)u(x)dydx

AΩΩD
(g, v) ∶= −2∫Ω ∫ΩD

v(x)⊤C𝛿(y, x)g(y)dydx.

Table 2  Convergence rates for 
the truncated fractional diffusion 
operator (26), � = 0.2 , and h → 0 
in a continuous Galerkin ansatz 
space

h dof L2 error Rates

1.41e-01 1.60e+01 7.19e-04 0.00e+00
7.07e-02 8.10e+01 1.65e-04 2.13e+00
3.54e-02 3.61e+02 4.09e-05 2.01e+00
1.77e-02 1.52e+03 1.01e-05 2.01e+00
8.84e-03 6.24e+03 2.41e-06 2.07e+00
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3.1  Truncated Fractional‑Type Diffusion

We choose the scalar-valued translationally invariant and symmetric kernel function 
�s
�
∶ ℝ2 ×ℝ2

→ ℝ given by [22]

where

Then, the scalar-valued truncated fractional-type diffusion operator reads as

The well-posedness of problem (22) for this choice of kernel is studied in [22]. The con-
stant c� depends on � and s and is chosen such that the operator converges to the classical 
Laplacian as � → 0 ; see, e.g., [26, Lemma 7.4.1]. Another choice of the constant conver-
gence to the fractional Laplacian as � → ∞ can also be obtained [39].

In the example above, we choose the manufactured solution u(x) = x2
1
x2 + x2

2
 and set 

f (x) ∶= −Δu(x) = −2(x2 + 1) in Ω and g(x) ∶= u(x) on ΩD . Since the correctly scaled 
nonlocal operator equals the classical Laplacian operator on polynomials of order up to 
three (see, e.g., [26]), we have that u(x) is the solution of problem (22). Furthermore, we 
choose s ∶= 0.5 , � = 0.2 , and various mesh sizes h as given in the tables below. In view 
of Table 1, for pairs of disjoint elements, we use as ♡ a 7-point quadrature rule6 for each, 
i.e., outer and inner, integral. Since six of the seven points are located on the boundary 
of the triangle, this choice has proven to be advantageous in the case of truncated kernels 
since the resulting interaction neighborhoods centered at these points better approximate 
the interaction domain of this triangle; also, see Fig. 3, and for more details, see [1]. For 
intersecting pairs, we need a quadrature rule on (0, 1)4 after the integral transformations are 
performed. For ♣ , we choose a tensor product of a 5-point Gauss quadrature rule, which is 
sufficiently accurate to preserve the expected convergence rates.

The convergence rates on a continuous Galerkin ansatz space are shown in Table 2. For 
our choice of s = 0.5 , a discontinuous Galerkin ansatz space is also conforming, and the 

(24)�s
�
(x, y) = cs,�

1

|x − y|2+2s ,

(25)cs,� =
2 − 2s

��2−2s
and s ∈ (0, 1).

(26)−Ls
�
u(x) ∶= ∫B� (x)

�s
�
(x, y)(u(x) − u(y))dy.

Table 3  Convergence rates for 
the truncated fractional diffusion 
operator (26), � = 0.2 , and h → 0 
in a discontinuous Galerkin 
ansatz space

h dof L2 error Rates

1.41e-01 1.44e+02 7.58e-04 0.00e+00
7.07e-02 5.94e+02 1.60e-04 2.24e+00
3.54e-02 2.39e+03 4.06e-05 1.98e+00
1.77e-02 9.59e+03 1.01e-05 2.01e+00
8.84e-03 3.84e+04 2.43e-06 2.06e+00

6 Specifically, the quadrature points are the barycenter, the vertices, and the midpoints of the sides of the 
reference triangle Ê and the corresponding weights are 27

60
⋅
1

2
 , 3
60
⋅
1

2
 , and 8

60
⋅
1

2
 , respectively.
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results are presented in Table 3. In both settings, we observe the expected second-order 
convergence as the mesh size h → 0 ; see, e.g., [22]. Note that the given examples violate 
Assumption 4 in the first stage of the experiments as 2h > 𝛿 . We see that the first rates in 
both tables are affected by this.

3.2  Bond‑Based Peridynamics

The translationally invariant and symmetric linear peridynamic kernel is given by [38]

where

The corresponding linear peridynamics operator then reads as

In [38], the well-posedness is established for problem (22), where f ∈ L2(Ω,ℝd) and 
g ∈ L2(ΩD,ℝ

d) . For the given constant in (28), it is also shown there that the peridynamics 
operator −P� converges to the local Navier operator

as � → 0 . A similar convergence result is also obtained for the corresponding weak solu-
tions. Thus, in the given example, we choose the manufactured polynomial solution 
u(x) ∶= (x2

2
, x2

1
x2) , set f(x) ∶= −P0u(x) = −

�

2

(
1 + 2x1, x2

)
 in Ω and as Dirichlet constraints 

choose g(x) ∶= u(x) on ΩD . Similarly to the diffusion case above, we again obtain that 
u(x) is the solution of (22) due to the correct scaling of the operator [38]. The results are 

(27)C�(x, y) ∶= c� C(x − y) 1B� (x)
(y),

(28)C(x − y) ∶=
(x − y)(x − y)⊤

|x − y|3 and c𝛿 ∶=
3

𝛿3
.

(29)−P�u(x) ∶= c� ∫B� (x)

C(x − y)(u(x) − u(y))dy.

(30)−P0u(x) ∶= −
�

4
Δu(x) −

�

2
∇ divu(x)

Table 4  Convergence rates 
for the peridynamics operator 
(29), � = 0.1 , and h → 0 in a 
continuous Galerkin ansatz space

h dof L2 error Rates

1.41e-01 3.20e+01 7.47e-04 0.00e+00
7.07e-02 1.62e+02 1.82e-04 2.04e+00
3.54e-02 7.22e+02 4.58e-05 1.99e+00
1.77e-02 3.04e+03 1.12e-05 2.04e+00
8.84e-03 1.25e+04 2.63e-06 2.09e+00

Table 5  Convergence rates 
for peridynamics operator 
(29), � = 0.1 , and h → 0 in a 
discontinuous Galerkin ansatz 
space

h dof L2 error Rates

1.41e-01 2.88e+02 6.64e-04 0.00e+00
7.07e-02 1.19e+03 1.86e-04 1.84e+00
3.54e-02 4.78e+03 4.96e-05 1.90e+00
1.77e-02 1.92e+04 1.25e-05 1.99e+00
8.84e-03 7.68e+04 2.92e-06 2.10e+00
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presented in Tables 4 and 5 for a continuous and discontinuous Galerkin ansatz, respec-
tively. In both settings we observe second-order convergence as the mesh size h → 0.

3.3  Diffusion with Infinity Ball Truncation

Here, we consider a constant kernel truncated by the infinity normball. Specifically, we choose 
the constant to be c∞

�
∶=

3

4�4
 , which ensures the convergence to the local Dirichlet problem for 

vanishing horizon � → 0 ; see, e.g., [26]. The nonlocal operator is then given by

The truncation by the infinity normball is implemented without geometric error, which 
allows numerical tests of the asymptotic compatibility of the finite element discre-
tization [30]. For the numerical experiment, we choose the manufactured solution 
u(x) = sin(4�x1) sin(4�x2) , set f (x) ∶= −Δu(x) = 32�2 sin(4�x1) sin(4�x2) in Ω and 
g(x) ∶= u(x) on ΩD . Note that, opposed to the previous examples, here, for a fixed 𝛿 > 0 , 
the function −L∞

�
u differs from −Δu . Consequently, the solutions of the nonlocal and the 

local Dirichlet problem differ from each other for each 𝛿 > 0 and coincide in the limit 
� → 0 . In fact, the solution to (31) changes as � changes, and we can observe the conver-
gence in  Table 6. We run tests for a fixed mesh size h and vanishing � (see Table 7), as 
well as for a horizon-dependent mesh size h =

√
2� and vanishing � (see Table 6). In both 

cases, we observe a second-order convergence as � → 0.

3.4  Nonlocal Convection‑Diffusion

Nonsymmetric kernels can model convective effects, and nlfem allows to assemble the respec-
tive systems. In this example, we consider a convection-diffusion operator

(31)−L∞
�
u(x) ∶= c∞

� ∫B∞
�
(x)

(u(x) − u(y))dy.

Table 6  Convergence rates and 
timings for the infinity normball 
(31), � =

√
2h , and h, � → 0 in a 

continuous Galerkin ansatz space

h � L2 error Rates Time (s)

1.41e-01 2.00e-01 2.00e-01 0.00e+00 2.98e-02
7.07e-02 1.00e-01 4.01e-02 2.32e+00 1.45e-01
3.54e-02 5.00e-02 8.85e-03 2.18e+00 4.82e-01
1.77e-02 2.50e-02 2.10e-03 2.07e+00 1.86e+00
8.84e-03 1.25e-02 5.17e-04 2.03e+00 7.55e+00

Table 7  Convergence rates for 
the infinity normball (31), fixed 
h, and � → 0 in a continuous 
Galerkin ansatz space

h � L2 error Rates

8.84e-03 2.00e-01 2.03e-01 0.00e+00
8.84e-03 1.00e-01 3.98e-02 2.35e+00
8.84e-03 5.00e-02 8.81e-03 2.18e+00
8.84e-03 2.50e-02 2.08e-03 2.08e+00
8.84e-03 1.25e-02 5.17e-04 2.01e+00
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with � = �d + �c consisting of a constant diffusion term

and an antisymmetric kernel

with b = (1, 1)T , to account for the convective effects. The factor 𝜖 > 0 controls the 
influence of the diffusion in the model, and it is set to 10−3 . In order to show the conver-
gence of the approximation, we choose the solution u(x) = x2

1
+ x2

2
 for which we obtain 

−Lcd
�
u(x) = −4� + 2x1 + 2x2 =∶ f (x) . Note that the manufactured solution in fact fulfills

The above differential operator is, in fact, a special case of a local convection-diffusion 
operator because the vector field b is constant in x and thus has zero divergence. The 
second-order convergence is shown in Table  8. Another example with � = 0.1 is plotted  
in Fig. 5.

The code nlfem only allows to assemble stiffness matrices for kernels with sufficiently 
large diffusive part �d , and the convergence of the convection-diffusion problem becomes 
unstable for � = 10−5 . The modeling of stronger convective effects requires upwind inte-
gration schemes like the one presented in [40].

(32)−Lcd
�
u(x) = 2∫Ω̃

�(x, y)u(x) − �(y, x)u(y)dy,

(33)�d(x, y) = � 1B∞
�
(x)(y)

3

4�4
,

(34)�c(x, y) = 1B∞
�
(x)(y)

bT (y − x)

2

3

4�4
,

(35)−Lcd
�
u(x) = −� Δu(x) + bT∇u(x).

Fig. 5  Contour plot of the solu-
tion to a nonlocal convection-
diffusion problem with constant 
forcing term f (x) ≡ 1 , Dirichlet 
zero boundary conditions, hori-
zon � = 0.01 , and kernel � with 
� = 0.1
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3.5  Parallel Complexity of the Assembly Process

The number of elements in each interaction neighborhood grows quadratically in 2d if the 
diameter of the elements h is decreased for fixed � . Thus, the assembly of the system matrix 
with retriangulations as described in the beginning of Sect.  2.4.1 becomes a costly proce-
dure. Therefore, a matrix-free approach is too expensive, and we store the stiffness matrix in 
a sparse format. Furthermore, it makes sense to share the work among multiple threads. The 
multithreading is implemented using OpenMP [41], and the work is shared by a partition-
ing of finite elements as given in Algorithm 2, line 1. Due to the nonlocality of the operator, 
several threads might need to access identical entries in the global stiffness matrix at the same 
time to store their contribution. OpenMP allows so-called critical sections to organize the 
manipulation of shared variables. This avoids write conflicts, but it would tremendously slow 
down the computation. In order to avoid a critical section during the assembly, each thread 
separately allocates its portion of the global stiffness matrix. The size of the overlap among 
the submatrices in the threads, i.e., the amount of additional memory requirements due to the 
parallelization, depends on the nonlocal overlap of the subdomains. We can therefore reduce 
the memory requirements by partitioning the domain with metis [42] instead of a scheduler of 
OpenMP. The submatrices are finally added together into a single sparse matrix.

We depict the strong scaling on a computer with two 2.20GHz Intel Xeon CPUs with 
22 cores per socket and two threads per core. The machine has 756 GB of RAM. Table 9 

Table 8  Convergence of the 
nonlocal convection-diffusion 
problem for � = 0.1 and h → 0

h dof L2 error Rates

1.41e-01 1.60e+01 1.28e-03 0.0e+00
7.07e-02 8.10e+01 3.36e-04 1.93e+00
3.54e-02 3.61e+02 8.39e-05 2.00e+00
1.77e-02 1.52e+03 2.09e-05 2.01e+00
8.84e-03 6.24e+03 5.11e-06 2.03e+00

Fig. 6  a Strong scaling for 24,336 (black) and 10,848, 6120, and 2736 (gray) degrees of freedom. b Weak 
scaling for horizons 0.06, 0.05, and 0.04 (black)
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and Fig. 6a (black dots) show the run time of an assembly on a regular grid on a domain 
Ω̃ = [−�, 0.5 + �]2 with mesh size h = 7.1e− 03 and � = 0.1. The related linear system has 
24,336 degrees of freedom and 45,022,167 nonzero entries. The number of threads is 
increased by a factor up to 32 while the time drops by a factor of 1/20. The scaling looks per-
fect for up to 16 parallel threads and the effect diminishes from then on. Figure 6a also shows 
the scaling for smaller problems with 10,848, 6120, and 2736 degrees of freedom (gray dots) 
which show a similar behavior.

The weak scaling experiment has been performed on a machine with four 2.1GHz 
AMD Opteron 6272 Processors with 8 cores per socket and 2 threads per core. The domain 
Ω̃ = [−�,

√
T + �]2 depends on the number of threads T = 1, 2,… , 16 . For the study, we 

choose horizons � = 0.06, 0.05 , and 0.04 and set the mesh size to � = 3h . The timings for the 
largest experiment with � = 0.04 (black dots, Fig. 6b) are depicted in Table 10. The system 
size grows linearly in the number of cores (dof, Table 10). Therefore, a perfect weak scaling 
should exhibit no increase in the computational time for growing number of threads so that the 
scaled speedup is equal to the number of threads. Figure 6b depicts that the assembly does not 
scale perfectly. More precisely, Table 10 shows that the 16 threads yield a speedup of 11. This 
can be explained by a growing overhead in the merging of the submatrices into a single sparse 
system.

However, the increase in precision for vanishing mesh size is quadratic which can amortize 
the costs. This is reported in Table 6 where we find that an increase of computation time by a 
factor 253 leads to a 386 times smaller L2 error.

4  The Code nlfem

4.1  Usage

The package provides an assembly routine while clearly the construction of numerical 
examples also incorporates the definition of a finite element mesh, the settings of the 
integrators, kernels and forcing terms, and finally the solution of the resulting equation. 
We exemplify the usage of nlfem by solving a scalar, nonlocal Dirichlet-type problem 
(see (21)), where Ω is given by a 2d-disk of radius 0.9 with a nonlocal boundary ΓD of 
width � = 0.1.

Table 9  Assembly time for a 
system with 24,336 degrees of 
freedom in strong scaling study

Threads 1 2 4 8 16 32
Time (s) 2153 1169 583 302 166 107
Parallel efficiency - 0.92 0.92 0.89 0.81 0.63

Table 10  Assembly time for the 
system with horizon � = 0.04 
degrees of freedom in weak 
scaling study

Threads 1 2 4 8 16
Time (s) 125 132 148 160 170
Scaled speedup 1 1.89 3.38 6.25 11.3
dof 5625 11,025 22,201 44,100 88,209
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4.1.1  Finite Element Mesh

The construction requires a finite element mesh in a 1d, 2d, or 3d domain. The mesh 
is characterized by its elements and vertices. The elements are given by a 
numpy.ndarray of datatype numpy.int_ and shape (nE, d+1), where nE is the 
number of elements and d the dimension of the domain. The vertices are a numpy 
array of floats with shape (nV, d), where nV is the number of vertices.

The domain described by the above arrays needs to be divided into different parts 
according to their purpose. To that end, we define a numpy nd.array called ele-
mentLabels of type numpy.int_ and length nE. It assigns a label to each element. 
Negative elements indicate the Dirichlet boundary, any positive element is considered 
a part of the domain, and zero-labeled elements are ignored and used to manipulate the 
mesh topology only; see Assumption 4 and the related remarks.

Example The finite element mesh (that is vertices and elements) of the required 
form can be obtained for example from gmsh. In the example presented in Fig. 7a, the 
elementLabels are set to − 1 on ΓD (blue in the below figure) and 1 on Ω (yellow) 
in Fig. 7a.

4.1.2  Defining the Settings

The kernel is a Python dictionary which contains the keys function, hori-
zon, outputdim, and possibly fractional_s. A list of implemented kernel 
functions can be found via nlfem.show_options(). The horizon determines 
the interaction radius of the kernel and outputdim tells whether the kernel is sca-
lar or tensor-valued. Given the kernel has a singularity which requires regularizing 

Fig. 7  a The domain Ω̃ consisting of Ω (yellow) and ΩD (blue). b The degrees of freedom with the cor-
responding labels which determine whether a degree of freedom is unknown (yellow) or given by the 
Dirichlet data (blue)

http://gmsh.info/
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integral transformations, we need to specify the parameter s of the singularity in 
fractional_s. The quantity is required for the special integration routines frac-
tional and weakFractional which need to be applied to those kernels.

Example We choose the scalar kernel (24) which is of truncated fractional type where 
d = 2 and s = 0.4 . The corresponding dictionary reads as 

As optional parameter, it is possible to hand over varying kernel coefficients with 
the key "Theta". Of course, the implemented kernel has to support the usage of the 
given information. This is so, for example, for the kernel functions "theta" and 
"sparsetheta" which evaluate

respectively. The coefficients are expected to be of type scipy.sparse.csr_matrix. 
However, there are no other restrictions, so that any use of the coefficients inside of the 
kernel function is possible. Note also that new kernels can be defined.

The dictionary specifying the forcing-term has a similar structure and contains 
a key function. Again, a list of implemented forcing functions can be found via 
nlfem.show_options(). Note that the assembly of the right-hand side is standard 
and nlfem offers this functionality for convenience only.

Example We choose f (x) = −2(x1 + 1) which can be specified by 

All other settings are stored in the dictionary conf. The truncation routines are selected 
by the method given in approxBalls. The quadrature rule which is used in the trun-
cation routine is indicated by numpy arrays of quadrature points and weights. For kernels 
which exhibit a singularity, it is possible to select another integration routine specifically 
for touching elements (e.g., fractional, weakFractional). However, the choice 

4

��4
Θ(x, y) and

4

��4
(1 − Θ(x, y)),
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does not affect the quadrature for nonsingular kernels. The function nlfem.show_
options() prints a list of the singular kernels.

Example We discretize the problem with a continuous Galerkin ansatz space and use a 
retriangulation with caps (Definition 2.3) to approximate the truncation of the interaction 
neighborhood. We choose a 7-point quadrature rule with points Px and weights dx. The 
full example configuration is specified by the dictionary 

Note that all options for the settings in kernel, function, and conf can be printed 
by nlfem.show_options() and empty dictionaries in the required form can be 
obtained from nlfem.get_empty_settings().

4.1.3  Assembly

Based on the settings, the assembly of the nonlocal stiffness matrix is effected via 
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The dictionary mesh contains information about the labeling of elements, ver-
tices, and dof. The labels of the degrees of freedom (dof) depend on the kernel (sca-
lar or tensor-valued) and the ansatz space (CG or DG). Therefore, the function nlfem.
stiffnessMatrix_fromArray() automatically deduces vertexLabels and 
dofLabels. A vertex is labeled according to the labels of the elements it belongs to, and 
it is given the smallest of those element labels. The dof labels are identical to the vertex 
labels for CG ansatz spaces and scalar-valued kernels. For DG ansatz spaces, the labels 
are directly obtained from the element labels. The labels of the degrees of freedom on the 
domain Ω and the Dirichlet domain ΩD are derived from the element labels and stored in 
mesh as dofLabels so that the following lines isolate the corresponding entries of the 
discrete solution (Fig. 8). 

Example In the given example, we have a CG ansatz space and a scalar-valued kernel so 
that the dofLabels are identical to the vertexLabels; see Fig. 7b.

The solution of a Dirichlet-type problem requires the definition of Dirichlet data g . The 
function below implements g(x) = x2

1
x2 + x2

2
 . 

Ultimately, we can solve the discrete nonlocal Dirichlet problem via 

Fig. 8  Solution of the example 
problem
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4.2  Structure of the Code

The nlfem code provides a Python interface which communicates all settings to a C++ 
function. The main functionality of nlfem is evoked by the function stiffnessMatrix_
fromArray() in the file cython/nflem.pyx. We therefore restrict the description of 
the code structure on the flow of function calls starting from the user input to the evaluation 
of a kernel function and the return of the discrete system. More details are to be found in 
the C++  docum entat ion of nlfem. The function stiffnessMatrix_fromArray() is 
written in Cython and can be called from Python. It passes the input to a C++ function and 
leads to a call of par_system() located in src/Cassemble.cpp. This function collects 
all settings and starts the assembly of the nonlocal stiffness matrix. It splits up the work by an 
OpenMP work-sharing construct and starts a double loop over the finite elements for each of 
the workers. In the center of the double loop, par_system() calls the integration function 
which has been chosen by the user. The function is called by the pointer integrate() 
and implemented in src/integration.cpp. This function again evokes a specific 
method to evaluate the interaction neighborhood which finally evaluates the kernel model_
kernel(). The kernels are implemented in src/model.cpp and listed in a C++ map in 
src/Cassemble.cpp which allows to access them from the Python interface. After the 
completion of the assembly, a sparse matrix is stored to disk by par_system() and read 
again by stiffnessMatrix_fromArray() which returns it to the user as scipy.
sparse.csr_matrix object.

4.3  Scope and Comparison

The code nlfem [10] provides similar functionality as PyNucleus [19], and we therefore 
combine the presentation of the scope of nlfem with a comparison of the functionality of 
PyNucleus and nlfem. First of all, the code PyNucleus points into a different direction than 
nlfem as it assembles operators of the type

as opposed to (4), where the case that the scalar kernel �(x, y) has an infinite interaction 
horizon is explicitly allowed. The operators L and L̃ are identical for symmetric kernels.

(36)−L̃u(x) = ∫
ℝd

(u(x) − u(y))�(x, y)dy

https://pde-opt.gitlab-pages.uni-trier.de/nonlocal-models/nlfem/html/
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We show an overview of the functionality of the two codes in Table 11. PyNucleus aims 
to provide efficient discretization and assembly routines with quasi-optimal complexity, 
in particular for problem with infinite interaction horizon � , which nlfem does not cover. 
Both codes provide a Python interface and implement some kind of parallelization, where 
PyNucleus can directly be used on clusters (MPI), as opposed to nlfem which offers multi-
threading (OpenMP). PyNucleus contains mesh construction and solver functionality, and 
it can store the matrices resulting from the assembly in hierarchical, dense, and sparse for-
mat, where nlfem offers sparse matrices only. Both codes provide discontinuous and con-
tinuous finite element spaces on 1d, 2d, and 3d domains. PyNucleus allows discontinuous 
P0 and continuous P1, P2, and P3 elements while nlfem provides discontinuous and con-
tinuous P1 elements. While PyNucleus is restricted to scalar kernels, nlfem allows scalar- 
and tensor-valued kernels.

Remark 4.1 While tensor-valued kernels allow systems related to linearized peridynamics 
models, nlfem does not allow to approximate nonlinear peridynamics operators.

In Table 12, we see a detailed overview of the truncations and kernel types which are 
implemented. While in both codes new kernels can be introduced, adding new truncation 
routines or special quadrature rules is a more complex endeavor. We therefore compare the 
scope of the codes with respect to the implemented interaction horizon and singularities. 

Table 11  Comparison of 
functionality

PyNucleus nlfem

Interface Python Python
Parallelization MPI OpenMP
Mesh construction ✓ ✗
Data format Dense, hierarchical, 

sparse
Sparse

Solvers ✓ ✗
Kernel domain 1d, 2d 1d, 2d, 3d
Kernel value Scalar Tensor, scalar
Varying coefficients ✓ ✓
Varying fractional order ✓ ✗

Table 12  Comparison of 
truncation and kernels

PyNucleus nlfem

Dimension Truncation Singularity
1d � = ∞ Fractional ✓ ✗

𝛿 < ∞ Integrable ✓ ✓
Fractional ✓ ✗

2d � = ∞ Fractional ✓ ✗
�∞ Fractional, integrable ✗ ✓
approxcaps Fractional, integrable ✓ ✓

1d, 2d, 3d barycenter Integrable ✗ ✓
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On 1d domains, PyNucleus can assemble fractional and integrable kernels with finite and 
infinite horizons, where nlfem supports truncated integrable kernels only. On 2d domains, 
both codes support fractional-type and integrable kernels.

Remark 4.2 The quadrature rules for the (truncated) fractional Laplacian, that is for 
��(x, y) ≡ const in (1), can be simplified significantly [18]. Identical elements require an 
evaluation of a 1d instead of a 4d integral. Similarly, edge-touching and vertex-touching 
elements require the computation of two- and three-dimensional integrals only [18]. As 
those rules have been incorporated into PyNucleus, it is to be preferred over nlfem for the 
truncated fractional Laplacian. Note however that the rules in nlfem are directly applicable 
to a larger range of kernels as, for example, the tensor-valued nonradial kernel (27).

Both codes offer error commensurate approximations of B2
�
 truncations. The code nlfem 

moreover supports the B∞
�

 and barycenter ball approximations [1]. The main advantage of 
the latter is that it can be implemented independently of the dimension d of the domain. 
Therefore, nlfem can assemble nonlocal operators in 3d. On the other hand, PyNucleus 
contains assembly routines for classical, local operators, which nlfem does not support.

To conclude, we find that PyNucleus covers a larger scope than nlfem[,] while not all 
features of nlfem are contained in PyNucleus .

5  Conclusion

The code nlfem is a tool to set up numerical experiments for researchers. The docum entat 
ion also describes the extension by user-defined kernels which allows to consider a large 
problem class. It can assemble nonlocal problems in 2d with an error commensurate kernel 
truncations for Euclidean and infinity norm balls and in 1d and 3d using the generically 
implemented barycenter method [1]. We therefore hope to bridge efficiency and flexibility 
to obtain a convenient Python package which nourishes the current development in the 
field of finite element methods for nonlocal operators and enables easy validations of new 
theory without the effort of implementing code from scratch. In that sense, nlfem contrib-
utes to the ongoing effort to unlock the full potential of nonlocal models.
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