
Vol:.(1234567890)

Journal of Peridynamics and Nonlocal Modeling (2024) 6:118–148
https://doi.org/10.1007/s42102-023-00100-0

1 3

RESEARCH

The Peridigm Meshfree Peridynamics Code

David J. Littlewood1 · Michael L. Parks1,4 · John T. Foster2 · John A. Mitchell1 ·
Patrick Diehl3

Received: 6 July 2022 / Accepted: 20 March 2023 / Published online: 8 May 2023
© The Author(s) 2023

Abstract
Peridigm is a meshfree peridynamics code written in C++ for use on large-scale parallel
computers. It was originally developed at Sandia National Laboratories and is currently
managed as an open-source, community driven software project. Its primary features include
bond-based, state-based, and non-ordinary state-based constitutive models, bond failure
laws, contact, and support for explicit and implicit time integration. To date, Peridigm has
been used primarily by methods developers focused on solid mechanics and material failure.
Peridigm utilizes foundational software components from Sandia’s Trilinos project and was
designed for extensibility. This paper provides an overview of the solution methods imple-
mented in Peridigm, a discussion of its software infrastructure, and demonstrates the use of
Peridigm for the solution of several example problems.

Keywords Peridynamics · Meshfree methods · Open source software

 * David J. Littlewood
 djlittl@sandia.gov

 Michael L. Parks
 parksml@ornl.gov

 John T. Foster
 john.foster@utexas.edu

 John A. Mitchell
 jamitch@sandia.gov

 Patrick Diehl
 patrickdiehl@lsu.edu

1 Center for Computing Research, Sandia National Laboratories, Albuquerque, NM, USA
2 Hildebrand Department of Petroleum and Geosystems Engineering, University of Texas at Austin,

Austin, TX, USA
3 Center of Computation & Technology and Department of Physics and Astronomy, Louisiana State

University, Baton Rouge, LA, USA
4 Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN,

USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s42102-023-00100-0&domain=pdf

119Journal of Peridynamics and Nonlocal Modeling (2024) 6:118–148

1 3

1 Introduction

Peridynamics is a nonlocal extension of classical continuum mechanics that was intro-
duced by Stewart Silling in 2000 [1]. The key characteristic of peridynamics is that the
governing equations do not include spatial derivatives of the displacement field, and are
therefore well suited for modeling material discontinuities such as cracks. As with classi-
cal continuum mechanics, peridynamic simulations are constructed in the form of initial
value problems or boundary value problems, for example, solution of the balance of linear
momentum subject to prescribed initial and boundary conditions. The solution of the initial
or boundary value problem for any nontrivial case requires software tools that implement
the relevant numerical methods.

The Peridigm code was developed for high-fidelity peridynamic simulations over three-
dimensional domains using the meshfree discretization approach of Silling and Askari [2].
Peridigm is an open-source C++ code that utilizes software libraries from the Trilinos [3]
project to enable large-scale parallel simulations. It was designed to facilitate engineering
simulations of solid mechanics problems that include material failure, and also to provide
a software framework for use by peridynamic methods developers. Key features include
a range of constitutive models, bond failure laws, contact models, and support for both
explicit and implicit time integration. A MPI-based design supports simulations on hard-
ware ranging from laptop computers to massively parallel supercomputing platforms.

Peridigm is one of several peridynamic codes that have been documented in the lit-
erature. The first software implementation of peridynamics is the EMU code developed by
Silling and Askari [2]. Many of the subsequent peridynamics code projects are focused on
publicly available, open-source software. Examples include PDLAMMPS [4, 5], PeriPy [6,
7], NLMech/PeriHPX [8–10], PeriPyDIC [11], PD_Shell [12, 13], PyNucleus [14], and
Relation-Based Software (RBS) [15, 16]. The codes PeriPy, PeriPyDIC, and PyNucleus are
written in the Python programming language, and the others in the C++ programming lan-
guage. Peridigm, PDLAMMPS, and PyNucleus utilize MPI, and NLMech/PeriHPX is based
on the asynchronous many-task system, C++ standard library for parallelism and concur-
rency (HPX) [17]. Other codes focusing on GPU acceleration [18–20] are available as well.
To date, LS-DYNA is the only commercial code to provide a peridynamics capability. Spe-
cifically, LS-DYNA provides a bond-based model discretized with the discontinuous Galerkin
finite element method [21]. Peridigm is differentiated from other peridynamic codes primar-
ily by its focus on high-performance parallel computing, its extensibility for the implementa-
tion of new methods, and by a number of advanced capabilities discussed in the following
sections. For additional discussion on peridynamics codes, we refer to [22, §2.1.3].

Peridigm has been utilized by researchers for a wide range of methods development and
engineering applications. Examples of engineering applications include a blind prediction of
ductile fracture in additively manufactured metal in [23, 24]. Peridigm was applied by the
authors of [25, 26] to model shock compaction of granular materials. The authors of [27]
modeled damage due to indentation and scratching in 3C-SiC. Peridigm was used to model
impact of a Al2O3/ZrO2 composite in [28], impact of a Al-Si12/SiC composite in [29], and
compression of SiC foam in [30]. The authors of [31] simulated fracture and shock wave
propagation in a harmonic structured material. In [32], Peridigm was utilized to model
impact response of cellular materials. Peridigm was used in [33] for comparison between
peridynamics and smoothed-particle hydrodynamics for modeling fragmentation of ceramic
tile. The authors of [34–36] used Peridigm to model damage and fragmentation of objects
during atmospheric re-entry. The authors of [37] utilized Peridigm in their work on modeling

120 Journal of Peridynamics and Nonlocal Modeling (2024) 6:118–148

1 3

mode I fracture of phase-separated glasses. Damage in nanoparticle-implanted glass was
modeled using Peridigm in [38, 39]. The influence of probabilistic material property distribu-
tions was investigated using Peridigm in [40]. Peridigm was used to model mixed-mode frac-
ture in PMMA in [41]. The authors of [42] utilized Peridigm in to model particle impact and
interfacial bonding in cold spray processes. A study comparing experimental results against
peridynamic simulations of ring bending tests on float glass plates is described in [43].

Peridigm has proven to be a valuable tool for researchers focusing on methods develop-
ment and algorithms research for peridynamic models. The authors of [13], for example,
used Peridigm in their development of a peridynamic Kirchhoff-Love shell formulation.
The authors of [44] reviewed and extended peridynamic models for frictional contact. Peri-
digm was used in the development of an energetically consistent surface correction method
for bond-based peridynamics in [45]. In [46–48], Peridigm was used to develop a formu-
lation for mean stress and incubation time fracture models. The authors of [49, 50] devel-
oped a peridynamic plasticity model for the dynamic flow and fracture of concrete. Concrete
was also studied in [51], in which the authors implemented a microplane (M7) constitutive
model. Peridigm was employed in [52, 53] for development of a fatigue model for capturing
damage in railway applications. Energy-based failure criteria for peridynamic models were
explored in [54–57]. The authors of [58] investigated the stability of generalized peridynamic
correspondence models. In [59], the authors used Peridigm in their comparison of different
methods for calculating tangent stiffness matrices for peridynamic models. Mesh sensitiv-
ity for quasi-static simulations was investigated in [60]. The use of so-called partial volumes
for improved fidelity and convergence of meshfree peridynamics was explored in [61, 62].
In [63], a touch-aware model of frictional contact for granular materials with arbitrary parti-
cle shapes was introduced. A correspondence energy-based damage model and adaptive Ver-
let time integration scheme were developed in [64] for modeling PMMA. The authors of [65]
also employed Peridigm to model PMMA, in their case for development of a rate-dependent
visco-elastic constitutive model to capture the rate-sensitivity of damage evolution.

Additional use of Peridigm in the literature includes methods development for multiscale
and multi-physics models, often leveraging Peridigm’s extensible software framework. A ther-
momechanical approach for modeling crack initiation and propagation due to thermal loading
was explored in [66]. A peridynamic micromechanical simulation framework for random het-
erogeneous composites is presented in [67]. Peridigm was used in [68] within a multi-physics
approach for modeling intergranular cracking of aluminum alloys. In [69], Peridigm was used
in conjunction with isogeometric analysis to simulate air blast on concrete structures. The
author of [70] utilized Peridigm for development of the MesoEq framework for multi-physics
modeling. In [71], the authors developed a semi-Lagrangian framework for peridynamics. The
authors of [72–74] explored modal analysis of cracked specimens. Peridigm was utilized in
a framework for modeling the crushing of granular media in [75], and for multiscale analy-
sis of shear behavior of granular sand in [76]. Peridigm was used in [77] as a framework to
develop a model that captures the effect of differential mineral shrinkage on crack formation
and network geometry. The author of [78] introduced a hybrid hierarchical model that utilizes
both Peridigm and LAMMPS. Authors in [79–82] utilized Peridigm to investigate strategies for
coupling local and nonlocal models. In [83], the authors explored efficient implementations of
peridynamics for the Sunway TaihuLight supercomputer, and ported and optimized Peridigm
for SIMT accelerators in [84]. A UMAT interface for Peridigm was developed in [85].

This paper presents an overview of Peridigm, including brief discussions of the relevant
theory from the literature. Key methods and algorithms are presented in Section 2. The
workflow for building and running a Peridigm simulation is described in Section 3, which
includes example Peridigm simulations that illustrate its main features and performance

121Journal of Peridynamics and Nonlocal Modeling (2024) 6:118–148

1 3

characteristics. Additional information can be found in the Users’ Guide [86] distributed
with the initial release of Peridigm, and in [87, 88] which provide an in-depth discussion of
software development concepts for peridynamics.

2 Methods and Algorithms

The peridynamic theory of solid mechanics is based on an integro-differential equation for
the balance of linear momentum. Peridynamics is a nonlocal model in which a material
point x interacts directly with all materials points q in the body B that are within a distance
� of x , where � is referred to as the horizon. A peridynamic bond, denoted � , symbolizes
the connection between x and q , and the set of all points bonded with x is referred to as the
family of x , Hx . An illustration of these terms is given in Fig. 1.

The most general form of the peridynamic equation of motion is given by the state-
based formulation of Silling et al. [89], in which the balance of linear momentum for point
x at time t is expressed as

Here, u denotes displacement, � is the density of the material, and dVq is the infinitesimal
volume of material associated with point q . The terms T[x, t] and T

[
q, t

]
 denote the peridy-

namic force states at x and q , respectively, that determine the pairwise force density per unit
volume resulting from the interaction of x and q . The terms in angled brackets, ⟨q − x⟩ and
⟨x − q⟩ , follow the state-based notation given in [89] for the bonds connecting x to q , and q to
x , respectively. Note that this state-based notation is more general than bond-based notation,
for example, allowing for a horizon that varies over B such that q is in Hx but x is not in Hq.

The most common strategy for numerical solution of Eq. (1) is the meshfree approach
of Silling and Askari [2], in which the domain is discretized into a finite number of nodal
volumes and the integral is replaced with a summation,

Equation (2) is a direct colocational discretization of the strong form of Eq. (1) in
which the family Hx is replaced by a set of nodal volumes Nx . We refer to this set of nodal

(1)�(x)ü(x, t) = ∫
Hx

�
T[x, t]⟨q − x⟩ − T

�
q, t

�
⟨x − q⟩

�
dVq + b(x, t).

(2)�(x)ü(x, t) =
�

Nx

�
T[x, t]⟨q − x⟩ − T

�
q, t

�
⟨x − q⟩

�
ΔVq + b(x, t).

Fig. 1 Schematic of a peridy-
namic body B , in which material
points x and q are connected
by a bond � . The maximum
interaction distance for point x is
specified by the horizon, � . The
family H

x
 contains all points in B

that are bonded to x

122 Journal of Peridynamics and Nonlocal Modeling (2024) 6:118–148

1 3

volumes as the neighborhood of x . Each nodal volume is defined by its spatial coordi-
nates and an associated finite volume ΔV . The primary strengths of this meshfree approach
are computational efficiency and the natural ability to accommodate material separation
through the breaking of bonds.

Peridigm solves Eq. (2) on a prescribed discretization for a given set of constitutive
laws, bond failure laws, contact models, initial conditions, and boundary conditions. Peri-
digm software relies heavily on the Trilinos toolset, including libraries for the management
of parallel data structures via MPI [3, 90]. The sections below describe the most significant
methods, algorithms, and software routines in the code.

2.1 Data Structures for Nonlocal Calculations

A key aspect of performing peridynamic calculations is construction and management of
neighborhood lists. Neighborhood lists are the principal data structure for iterating over
sets of nodal volumes, for example, the summation in Eq. (2), for which Nx is typically
O(100) for three-dimensional simulations and may be as large as O(1000) . An illustration
of a meshfree discretization used by Peridigm is given in Fig. 2. Neighborhoods, shown in
green for three points (x1, x2, x3) in the domain, are determined using a spatial proximity
search, where a point q is part of the neighborhood Nx if the distance between points x and
q in the undeformed configuration is less than the horizon, � . Construction and traversal of
neighborhood lists is a major determining factor in the overall computational expense of
peridynamic simulations.

Neighborhood list construction is complicated by parallel decomposition of the domain in
which nodes are distributed across multiple ranks. Figure 2 includes a depiction of parallel
decomposition and its relationship to neighborhood lists. Neighborhood construction requires
search methods to query across processor boundaries, which is accomplished in Peridigm by
creating subsets of points on each processor called framesets. In conjunction with load bal-
ancing implemented using the Trilinos Zoltan library, framesets on each processor are used to

Fig. 2 Schematic of a discretized
computational domain. The
domain boundary is depicted by
a solid black line. A decomposi-
tion corresponding to four MPI
ranks p0 , p1 , p2 , and p3 is shown
in red. The neighborhoods N

x
 for

selected material points are illus-
trated with green circles of radius
� . A bond filter for restricting
the creation of bonds across a
user-defined plane is shown in
blue. A frameset for use with
proximity searches across proces-
sor boundaries is illustrated with
dotted black lines

123Journal of Peridynamics and Nonlocal Modeling (2024) 6:118–148

1 3

collect nodes on adjacent processors within the search distance � . On the basis of this cross-
processor search using only points within a frameset, communication lists are constructed
which allow for parallel communication throughout the simulation. Specifically, each pro-
cessor has a list of owned points and a list of shared points. Off-processor points are shared
points within the distance � of owned (on-processor) points.

Neighborhood lists are constructed using k-d tree search algorithms [91, 92]. On each
processor, trees are constructed from the union of owned and shared points. Construction
and queries approximately scale as O(N log(N)) and O(N1−1∕3 + k) , respectively, where N
is the number of nodes in the tree and k is in number of nodes in a neighborhood. The
number of nodes in a neighborhood is a function of the ratio of the horizon � and the mesh
spacing. The proximity search for neighborhood list construction may be augmented in
Peridigm using bond filters. Bond filters are user-defined planes for specifying fine-scale
geometric features, such as thin notches. Neighborhood list construction filters out bonds
which cross these user-defined planes, as shown in Fig. 2.

Following parallel decomposition and neighborhood list construction, Peridigm groups
on-processor points together into blocks according to material model type and instance.
This allows for efficient evaluation of large groups of nodes within a block without exces-
sive branching or overloading of functionals on the basis of material model type. All on-
processor nodes with the same material type and material properties are grouped together
and material model evaluation is accomplished by passing the neighborhood list for this
set of points to the appropriate subroutines, along with other material model parameters.
These data structures are managed by NeighborhoodData and DataManager objects
in Peridigm. While global operations such as time integration are performed using paral-
lel data structures that span the entire domain, computations corresponding to individual
blocks are conducted using subsets of data stored in a DataManager. The DataMan-
ager handles communication to and from the global data structures and all aspects of
parallel communication. Routines that iterate over neighborhoods do so via information
extracted from corresponding NeighborhoodData objects. This approach allows mate-
rial models, bond damage models, contact models, and compute classes to be written as
serial code, greatly simplifying the process for modifying these important routines and
adding new features to the code.

2.2 Meshfree Discretizations

Peridigm operates on meshfree discretizations comprised of nodal volumes, each defined
by spatial coordinates x and volume ΔV . The geometry of the domain, typically concep-
tualized by the user in terms of geometric primitives, or similar, is captured by the spatial
distribution of the nodal volumes. The sum of all volumes ΔV matches the volume of the
overall domain geometry. There is no topology associated with the meshfree discretiza-
tion, i.e., no link arrays describing connectivity as are associated with typical finite element
meshes. Quadrature is significantly simplified for meshfree discretizations of this type, and
involves only the coordinates of individual nodes and the corresponding volumes.

Peridigm supports two primary file formats for meshfree discretizations: exodus files
and text files. The exodus format is preferred due to its efficiency and compatibility with
many pre-processing utilities, including the SEACAS [93, 94] toolset and the ParaView [95]
visualization code. In practice, it is often convenient to use a finite element mesh generator
to create a hexahedral or tetrahedral mesh of the domain. For example, the CUBIT™ [96]
mesh generator may be used to create a mesh and write it to an exodus file. Peridigm has

124 Journal of Peridynamics and Nonlocal Modeling (2024) 6:118–148

1 3

the ability to read an exodus hexahedral or tetrahedral mesh and convert it to a meshfree
discretization internally, as described in Section 3.2. The text file format offers a more sim-
plistic alternative that may be suitable for users who wish to create a meshfree discretiza-
tion directly, for example, using a standalone script of their own design. A Python script for
conversion from the text file format to the exodus format is distributed with Peridigm.

Peridigm manages the association of material models, boundary conditions, and other
aspects of the simulation with specific regions of the computational domain using blocks
and node sets. Each nodal volume in the discretization belongs to a single block. Within
the Peridigm input script, material specifications are linked to each block in the discretiza-
tion, allowing for evaluation of internal forces using the appropriate material type and its
associated properties. Node sets are groupings of nodal volumes for the purpose of apply-
ing initial conditions, boundary conditions, and body forces. Individual nodal volumes may
belong to any number of node sets. It should be noted that so-called nonlocal boundary
conditions for peridynamic models should be applied over a three-dimensional volumetric
region, as opposed to a two-dimensional surface. Further, following the approach of Silling
and Askari, the meshfree discretizations used by Peridigm do not contain nodes located
directly on the surfaces of the domain (see Fig. 2). Care should be taken in the specification
of initial and boundary conditions and their associations with node sets when creating a
Peridigm simulation.

2.3 Constitutive Models

This section provides an overview of constitutive models available in Peridigm as well as
descriptions of how models can be added or extended. Constitutive models are described
using state-based peridynamics notation. Force states T[x, t] and T

[
q, t

]
 in Eq. (2) must be

evaluated at every time step in a simulation and applied to each bond in the discrete model.
Silling et al. [89] introduced new terminology and notation for handling the mathemat-

ics of peridynamic states, which are essentially generalizations of tensors that provide a
mapping from a bond to a pairwise force density per unit volume. This terminology has
led many researchers to use the adjectives bond-based and state-based when referring to
peridynamics. Here, bond-based refers to constitutive models that derive from a central
force-potential between material points similar to a simple molecular bond, and state-based
refers to the generalized theory. Importantly, bond-based models are a subset of state-based
models, hence the state-based programming interface in Peridigm may be used for either
class of model.

While describing the peridynamic theory in [89] the authors introduced the additional
concepts of ordinary and non-ordinary materials. Ordinary materials are those in which
the application of a force state to a given bond results in a force density per unit volume
that acts in the direction of that bond in the current configuration. Conversely, this rela-
tionship does not hold for non-ordinary materials. An important reason for distinguishing
between ordinary and non-ordinary materials is that ordinary materials satisfy the balance
of angular momentum by construction, whereas this important property must be taken into
account more explicitly when developing non-ordinary materials [1].

Ordinary material models available in Peridigm include the linear peridynamic solid
(LPS) model which is an isotropic elastic model originally presented in [1], isotropic
plasticity and viscoelasticity models developed by Mitchell [97, 98], and the position
aware LPS (PALS) model developed by Mitchell et al. [99]. The PALS model includes

125Journal of Peridynamics and Nonlocal Modeling (2024) 6:118–148

1 3

a correction for the so-called peridynamic surface effect [100], a deviation from the bulk
response at material points for which the neighborhood is less than a full sphere. The sur-
face effect is a result of assumptions made during derivation of the constitutive properties
in relation to their classical analogues, e.g., the elastic shear and bulk moduli.

An implementation of the bond-based prototype microelastic brittle (PMB) model [2]
is also available. This bond-based model will often run at about twice the speed of the
LPS model, and is therefore useful for fast calculations of brittle materials with a Poisson
ratio near 1∕4 . The improved PMB model presented in [101] is implicitly available by using
an LPS model with a fixed Poisson ratio of 1∕4 (cf. [102]). This model reduces the surface
effects of the PMB model, but does not offer the same speedup because of the underlying
implementation details in Peridigm.

Non-ordinary material models are predominantly associated with the constitutive cor-
respondence concept introduced in [89, 103–105] and elsewhere. It is important to point
out that not all non-ordinary models are correspondence models (e.g., [106, 107] develop
non-ordinary models for beams, plates, and shells), and not all correspondence models
are non-ordinary (e.g., [108, 109] present ordinary correspondence models). However, to
date, all the available correspondence formulations in Peridigm are non-ordinary state-
based materials. Correspondence models provide a mechanism to incorporate any classi-
cal stress–strain constitutive model into Peridigm. Additionally, for a particular choice of
meshfree discretization when combined with a non-ordinary correspondence model, direct
connections can be made to classical meshfree methods [110, 111].

In Peridigm, non-ordinary state-based models include a purely elastic formulation, an
elastic perfectly plastic model, a plasticity model with isotropic hardening, and a viscoplas-
tic model implementation of the form introduced by Needleman [112]. These models suffer
from a zero-energy model instability [113], for which the stabilization technique described
in [114, 115] is implemented.

2.3.1 Material Model Programming Interface

In Peridigm, material models inherit from the Material class, which acts as an abstract
base class defining the material model interface. The primary member functions for the
Material class are given in Listing 1.

The computeJacobian() method is exercised when constructing the tangent
stiffness matrix for implicit time integration. If the material model does not imple-
ment the computeJacobian() method, then the Jacobian calculation is automati-
cally carried out by applying a finite difference scheme to the computeForce()
method. Note that it is possible to use the Sacado automatic-differentiation pack-
age from Trilinos to compute algorithmically consistent Jacobians as can be seen in the

126 Journal of Peridynamics and Nonlocal Modeling (2024) 6:118–148

1 3

computeAutomaticDifferentiationJacobian() method in the ElasticMa-
terial class.

The constructor of a material model records the relevant material model parameters
and the field IDs for the variables needed to carry out the internal force density calcu-
lation. As an example, consider the ElasticMaterial class, which implements the
LPS [89] material model. Selected contents of the ElasticMaterial constructor
are shown in Listing 2.

The constructor interacts with the FieldManager class for the management of
field data, such as the volumes, initial coordinates, and current coordinates of the
nodal volumes that will be passed to the material model’s computeForce function
via a DataManager object. The FieldManager and DataManager classes lever-
age the Trilinos framework, which is discussed in more detail in Section 2.8. Peridigm
supports node data, element data, and bond data. Node data fields are allocated over
the entire computational domain, whereas element data are allocated on a per block
basis, for example, to provide fields corresponding to the material model assigned to a
particular block. The notions of node data and element data correspond directly to data
types in the exodus file format. Peridigm supports scalar, vector, and tensor data types
for node and element fields. Bond data are restricted to the scalar data type and are not
generally written to Peridigm output files.

An abstract class CorrespondenceMaterial, derived from Material, is
used as the base class for constitutive correspondence material models. As opposed to
standard peridynamic material models that require implementation of the compute-
Force() method, constitutive correspondence models require implementation of the
computeCauchyStress() method. This method computes the Cauchy stress ten-
sor based on classical measures of deformation, e.g., deformation gradient, allowing
for integration of traditional stress–strain constitutive laws into Peridigm. The Cor-
respondenceMaterial base class computes the deformation gradient and its
decomposition into stretch and rotation tensors using the method of Flanagan and Tay-
lor [116]. The rotation tensor is used to produce a co-rotational Cauchy stress, and
therefore the computeCauchyStress() method can be implemented without con-
cern for material objectivity. Stress tensors computed by a constitutive correspondence
model are converted to pairwise peridynamic forces following [89]. In addition, the
CorrespondenceMaterial class applies a stabilization procedure to the deforma-
tion gradient to suppress zero-energy modes [114, 115].

127Journal of Peridynamics and Nonlocal Modeling (2024) 6:118–148

1 3

Finally, material models are registered by name in the MaterialFactory class.
This class instantiates material model objects if the name associated with the model is
present in the Peridigm input deck. The examples and tests distributed with Peridigm
are an excellent resource for inspecting the structure of input parameters for various
material models.

2.4 Bond Failure

The ability to model damage through the breaking of bonds is one of the most notable fea-
tures of peridynamics. The coalescence of broken bonds to discrete surfaces is what leads
to fracture and fragmentation of solid bodies. The most widely use bond damage criterion
is the critical stretch model introduced in [117]. In this model, the strain energy density in
each bond that crosses a plane of unit area is integrated and equated with the critical value
of energy release rate Gc . For bond-based materials, this leads to a closed form expression
in terms of critical bond stretch sc,

where k is the material’s bulk modulus and the integration has been carried out over a ball
of radius equal to the horizon � . The critical stretch sc can then be compared with s = ΔL

L0
 ,

where ΔL is the change in length of the bond and L0 is the original length. When s > sc , the
bond is irreversibly broken, which is equivalent to setting T⟨�⟩ = 0 for the given bond � .
Note that Eq. (3) applies to three-dimensional formulations of peridynamics, as imple-
mented in Peridigm. For a discussion of corresponding two-dimenstional formulations, the
reader is refered to [118].

Peridigm implements the critical stretch bond breaking criterion as well as several simi-
lar models, e.g., an Interface Aware damage model that uses the smaller of two values of
sc for bonds that span blocks with different damage model parameters. In addition to the
binary breaking of bonds, bonds can utilize a damage function that ranges continuously
in [0, 1] allowing for the gradual decay of bond strength. Two such models implemented
in Peridigm are intended to be used with constitutive correspondence material models:
a Johnson-Cook damage model [119] and a bond damage model based on a simple von
Mises yield criterion. For state-based materials in general, the strain energy in a bond is a
function of the deformation of all bonds in the family and therefore is not a simple func-
tion of the stretch in that bond. Therefore, a more complex technique such as that described
in [120] is preferable as a damage criterion.

In Peridigm, damage models are derived from the base class DamageModel which
requires implementation of the methods given in Listing 3.

(3)sc =

√
5Gc

9k�
,

128 Journal of Peridynamics and Nonlocal Modeling (2024) 6:118–148

1 3

The computeDamage() function acts on field data managed by a DataManager
object, updating values of the Bond_Damage field for each bond associated with a
given block.

2.5 Modeling Contact

Peridigm supports contact modeling using the short-range force approach of Silling and
Askari [2]. The primary use case is capturing interactions between bodies in explicit
dynamics simulations, for example, to model impact. The key algorithmic components of
Peridigm’s contact capabilities are the proximity search and the algorithm for determin-
ing pairwise contact forces. In the case of contact modeling, the proximity search returns
a neighborhood list of points that are separated by a distance less than or equal to rc in the
current configuration, where rc is a user-defined contact radius. Pairs of bonded points are
generally excluded from the contact neighborhood lists, under the assumption that material
points should interact via a material model if they are bonded and should be subject to the
contact model only if they are not bonded.

The short-range force contact model is implemented in Peridigm as follows. Define d as
the vector from point x to point q in the current configuration. Then the pairwise repulsive
contact force acting on q due to its contact interaction with x is determined as

The software infrastructure for modeling contact, in which the proximity search is used
to construct contact neighborhood lists and a contact model is used to determine pairwise
contact forces, is designed to support future implementation of additional contact models.
The proximity search handles all aspects of parallel communication and provides necessary
data via the contact model programming interface, such that the contact model can be writ-
ten as serial code that determines pairwise contact forces based on the locations of points
in the current configuration, as well as any other state data (e.g., velocity).

2.6 Time Integration

Peridigm supports explicit time integration for transient dynamics and implicit time inte-
gration for quasi-statics and implicit dynamics. The primary use cases for explicit dynam-
ics include contact, unstable crack growth, and pervasive damage. Implicit time integration
is favorable for simulations in which large time steps are required and for those in which
the assumption of static equilibrium is valid, i.e., static and quasi-static simulations.

2.6.1 Explicit Time Integration for Transient Dynamics

Time integration for explicit dynamics is achieved using the well-known velocity-Verlet
algorithm:

(4)f =

{
18kc

��4

(rc−|d|)
�

ΔVqΔVx
d

|d| if d ≤ rc

0 otherwise.

129Journal of Peridynamics and Nonlocal Modeling (2024) 6:118–148

1 3

where u , v , and a denote displacement, velocity, and acceleration, respectively, and the
superscripts denote the time steps n and n + 1 , and mid-step calculations at n + 1

2
 . The vast

majority of the computational expense for explicit time integration is in the evaluation of
the material model, bond damage model, and contact model at un+1 and vn+

1

2 , as required to
evaluate an+1.

Stability of explicit time integration is dictated by a maximum stable time step, Δtcrit .
Peridigm provides a point-wise estimate of Δtcrit based on a method proposed by Silling
and Askari for the prototype microelastic brittle material model [2]:

where � is the material density, the index p iterates over all the neighbors of the given
material point, ΔVp is the volume associated with neighbor p, and Cp is evaluated as

where kp is the bulk modulus at point p.
Explicit dynamic simulations can be run using this estimate of the critical time step in

combination with a safety factor specified in the input deck. In this case, the time step is
determined by multiplying the estimate of the critical time step by the specified safety fac-
tor, which is typically in the range of 0.5–0.9. Alternatively, a user-specified time step may
be defined in the input deck, in which case the estimate of the critical time step is ignored.

2.6.2 Implicit Time Integration for Statics and Quasi‑Statics

The governing equation for static and quasi-static problems is found by setting the accel-
eration to zero in Eq. (2),

Solutions to static and quasi-static problems are found by determining the nodal positions
that satisfy Eq. (8) under the specified boundary conditions.

The QuasiStatic time integrator in Peridigm is a nonlinear solver that utilizes Newton’s
methods for the solution of Eq. (8). This approach requires the solution of a global linear system
of equations, KΔu = −r , where Δu is an update to the displacement u , r is a residual obtained
by evaluating the left-hand side of Eq. (8), and K is the tangent stiffness matrix,

(5)

vn+
1

2 = vn +
(
t
n+

1

2 − tn
)
an

un+1 = un + v
n+

1

2Δt

vn+1 = vn+
1

2 +
(
tn+1 − t

n+
1

2

)
an+1,

(6)Δtcrit =

�
2�∑

p ΔVpCp

,

(7)Cp =
18kp

��4
,

(8)
�

Nx

�
T[x, t]⟨q − x⟩ − T

�
q, t

�
⟨x − q⟩

�
ΔVq + b(x, t) = 0.

(9)Kij =
�f int

i
(u)

�uj
,

130 Journal of Peridynamics and Nonlocal Modeling (2024) 6:118–148

1 3

where f int
i

 is the component of internal force corresponding to degree of freedom i, and uj
is the component of the displacement corresponding to degree of freedom j. Multiple strat-
egies are available for computing the tangent stiffness matrix in Peridigm. The Material
class allows for implementation of a material tangent routine using an analytic expression,
if available, or using the automatic differentiation capabilities of the Sacado software pack-
age. If a material tangent routine is not provided for a given material, Peridigm obtains an
approximate value using a finite difference approach.

The NOXQuasiStatic time integrator is an alternative to the QuasiStatic inte-
grator that utilizes the Trilinos NOX solver package [121]. Importantly, the NOXQua-
siStatic solver offers a matrix-free alternative to the global linear solve required by
QuasiStatic. The matrix-free solver generally exhibits much slower convergence,
but has the advantage of not requiring construction of the tangent stiffness matrix. This
is particularly relevant for peridynamic models because the bandwidth of the tangent
stiffness matrix is generally very large relative to classical finite element models, leading
to large memory requirements [87, 88].

2.7 Compute Classes

Peridigm was designed to be extensible. Compute classes allow quantities of interest to be
calculated as a function any state variable and written to the Peridigm output file. Peridigm
is distributed with many compute classes, and a compute class programming interface
allows users to create new compute classes without concern for parallel communication or
output routines. A compute class object is instantiated whenever the output field associated
with that class is requested within the Output section of a Peridigm input deck. The corre-
sponding compute() method is then called whenever output is written to disk.

Compute classes derive from the Compute base class containing the programming
interface described in Listing 4.

Arguments to the constructor are primarily used by compute classes that deal with mul-
tiple material blocks or that need explicit access to the communicator object. The Fiel-
dIDs() function returns a list of field IDs corresponding to the fields that the compute
class operates on. This approach ensures that the required fields are properly allocated and
made available within the compute() method. The initialize() method allows the
compute class to initialize state data before the simulation begins. Lastly, the compute()
method computes the quantity of interest.

As a specific example, consider the very simple Compute_Acceleration compute
class. This class is derived from the Compute base class and contains the private data
shown in Listing 5.

131Journal of Peridynamics and Nonlocal Modeling (2024) 6:118–148

1 3

The constructor of the Compute_Acceleration class is outlined in Listing 6. The
constructor interacts with the FieldManager class, which tracks information for the
allocation, storage, and parallel communication of field data. The FieldManager class
and associated DataManager class leverage the Trilinos framework, which is discussed
in more detail in Section 2.8. As show in Listing 6, the fieldManager object returns
the field IDs for the force density vector and the acceleration vector, allowing for efficient
access to these data structures in subsequent calculations in the compute() routine.

Contents of the compute() method appear in Listing 7. This method loops over each
block in the discretization and extracts the corresponding force density and acceleration
vectors. It initially fills the acceleration vector by copying the force density vector, and then
extracts the density for the material of that block and divides the force by the density to
arrive at the acceleration.

132 Journal of Peridynamics and Nonlocal Modeling (2024) 6:118–148

1 3

2.8 Parallelization

A key aspect of Peridigm’s performance is its use of the Trilinos Epetra library for paral-
lelization [122]. The Petra object model, which includes Epetra and Tpetra, is the frame-
work utilized by Trilinos for distributed memory linear algebra, including the management
of parallel vectors and matrices. Epetra uses map objects to encapsulate the details of data
distribution, assigning entries of a data structure to specific MPI processes. Epetra maps
and the data structures that utilize them operate effectively in both serial and parallel using
an Epetra_Comm communicator.

Peridigm makes widespread use of Epetra_Vector and Epetra_MultiVector
objects for data management. These objects, in turn, utilize Epetra_BlockMap and
Epetra_Map objects to associate subsets of data with specific MPI processes. An Epetra_
BlockMap is used when the per-entry quantity to be stored is vector valued (e.g., force)
and an Epetra_Map when the quantity to be stored is a scalar. Importantly, the Epetra_
BlockMap class supports maps in which the length of individual entries varies on a per-entry
basis. Maps of this type are used for managing bond data, where the lengths of individual
entries are equal to the number of bonds associated with each nodal volume.

An Epetra_Vector implements a finite-dimensional vector distributed over processes
where assignment of data to a process is determined by the associated map. An Epetra_
MultiVector represents a collection of one or more vectors with the same map. Epetra_
Vector and Epetra_MultiVector are used in Peridigm to store data such as volume,
initial coordinates, current coordinates, and velocity, as well as any additional variables that
may be required for a particular simulation. Peridynamic models require frequent passing of
information between bonded material points, including sets of points that may reside in dif-
ferent blocks, on different MPI ranks, or both. This is achieved in Peridigm using Epetra_
Import objects, which transfer data between Epetra objects using communication patterns
based on the underlying maps. Note that for operations such as evaluation of force states, data
are required from all material points within the peridynamic horizon in the reference configu-
ration. In contrast, contact models require data from material points nearby in the current con-
figuration. Thus the processing of bonded neighbors and potential contact interactions requires
two distinct mappings among MPI processes.

Implicit time integration using Newton’s method requires the solution of large linear
systems of equations. In this case, Peridigm utilizes Epetra’s sparse row matrix class
Epetra_FECrsMatrix for storage of the tangent stiffness matrix across MPI ranks.
The Epetra_FECrsMatrix class is a specialization of the more general Epetra_
CrsMatrix class with additional functionality to support the assembly process.
For solution of the global linear system, Peridigm’s QuasiStatic time integrator
utilizes the Belos package, which supports a number of iterative solution methods and
preconditioners [123]. The default Belos solution method in Peridigm is the block
conjugate gradient algorithm. Peridigm’s NOXQuasiStatic time integrator utilizes the
NOX nonlinear solver package [121]. A primary difference between the QuasiStatic
and NOXQuasiStatic time integrators is that the QuasiStatic nonlinear solution
algorithm is implemented directly in Peridigm, utilizing Belos for solving the global
linear system, whereas the NOXQuasiStatic integrator utilizes NOX and related
Trilinos packages for virtually all aspects of the nonlinear solve. The QuasiStatic
approach provides Peridigm developers with direct control over the solution algorithm,
while the NOXQuasiStatic approach reduces developer control but has the advantage
of leveraging advanced features in NOX that would be difficult and time consuming to

133Journal of Peridynamics and Nonlocal Modeling (2024) 6:118–148

1 3

replicate in Peridigm. An example is the Jacobian-Free Newton Krylov solution method
available in NOX, which enables solution of static and quasi-static problems without
construction of the tangent stiffness matrix.

3 Running Simulations with Peridigm

In this section, we discuss the steps for running a Peridigm simulation: obtaining and build-
ing the code, creating a discretization and input deck, running the code, and post-processing
the results. A general overview is given first, followed by two example simulations.

3.1 Obtaining and Building Peridigm

Building Peridigm consists of installing the necessary development tools, building the
required third-party libraries, and building and testing Peridigm itself. Peridigm is compat-
ible with Linux software environments that are typical of engineering workstations and
parallel computing platforms, and is also regularly built and tested on macOS operating
systems. The required software tools include cmake and MPI compiler wrappers such as
MPICH or Open MPI. Peridigm’s primary dependencies are Trilinos, a set of open-source
libraries for high-performance scientific computing, and Boost. The Trilinos dependency
includes the Sandia Engineering Analysis Code Access System (SEACAS) for support of
the exodus file format, which in turn requires HDF5 and NetCDF. The Peridigm code itself
can be obtained from its public repository, currently managed on GitHub® under a three-
clause BSD open-source license [124]. The Peridigm GitHub® website includes additional
detailed instructions on the build process.

The ability to utilize Docker containers for obtaining Peridigm was recently added as
an alternative to the full build process outlined above. Docker images for Peridigm and its
dependencies are available at the Peridigm GitHub® website. The Docker distribution sys-
tem provides users with a highly efficient and simplified process for obtaining a Peridigm
executable, and is a recommended point of entry for new users.

3.2 Preparing a Simulation

The input for a Peridigm simulation consists of a discretization and an input deck. As dis-
cussed in Section 2.2, exodus is the preferred file format for discretizations due to its effi-
ciency and compatibility with a number of third-party software packages. A text file format
is also supported, which provides a simplified alternative for users wishing to construct
discretizations directly using in-house scripts, or similar.

Peridigm operates on meshfree discretizations in which each nodal volume is defined
by its spatial coordinates x and volume ΔV . Groups of nodal volumes are organized into
blocks, and regions for the application of initial conditions, boundary conditions, and body
forces are defined using node sets. The text file format for discretizations supported by
Peridigm utilizes this format directly, i.e., for each nodal volume there is a line in the text
file containing three spatial coordinates, the block number, and the volume ΔV . Node sets
are specified in separate text files containing the node IDs for the nodes in a given node set.
Text file discretizations can be used directly by Peridigm, or they can be converted to an
exodus file using the text_to_genesis.py script distributed with Peridigm.

134 Journal of Peridynamics and Nonlocal Modeling (2024) 6:118–148

1 3

Peridigm supports three types of discretizations in the exodus format: sphere meshes,
hexahedral meshes, and tetrahedral meshes. The sphere format is a general meshfree
discretization format provided by exodus in which nodal volumes are conceptualized as
spheres and defined in terms of the spatial coordinates of the sphere centroid, the radius
of the sphere, and the volume of the sphere. In the case of an exodus sphere mesh, Peri-
digm utilizes the spatial coordinates and volume, and ignores the sphere radius (note that
the exodus sphere mesh format allows users to specify a volume and radius that are not
physically consistent, hence this information is not necessarily redundant). In the case of a
hexahedral or tetrahedral mesh, Peridigm preforms a conversion at the onset of the simula-
tion to create a corresponding meshfree discretization. Each element in the hexahedral or
tetrahedral mesh is converted to a nodal volume such that the spatial coordinates of the
nodal volume are equal to the centroid of the original element, and the volume ΔV is equal
to the volume of the original element. Element blocks are directly preserved, and node
sets are converted such that a nodal volume is assigned to a node set if any node in the
corresponding hexahedral or tetrahedral element was in the node set. Peridigm’s support
for hexahedral and tetrahedral meshes greatly expands the ability of users to utilize finite
element meshing tools to discretize the domain. To date, mesh generators that have been
demonstrated with Peridigm include CUBIT [96] and the combination of the open-source
software Gmsh [125] and the Python package meshio [126]. Additional pre-processing
tools are provided in the SEACAS package, including the exodus.py module for creation
of exodus files using Python scripts.

The Peridigm input deck is a text file in which the user specifies the parameters that
define the simulation. The input deck is organized into multiple sections, for example, sec-
tions for the discretization, material models, damage models, time integrator, and simu-
lation output. In many cases, the organization of the input deck maps directly to blocks
and node sets defined in the discretization file. Peridigm currently supports two input deck
formats, YAML and XML. The XML format was adopted early in the development of
the Peridigm project due to its direct compatibility with many Trilinos packages, includ-
ing the Teuchos::ParameterList data structure. Support for the YAML format was
added later to provide a more user-friendly alternative. Examples of input decks in both
formats can be found in the examples and test subdirectories in the Peridigm code reposi-
tory. Those in the examples subdirectory were constructed specifically to provide an entry
point for new users.

Examples of several input deck sections are given in Listings 8–13. The following sec-
tions are required for all Peridigm simulations: Discretization, Materials, Blocks, Solver,
and Output. For any practical simulation, a Boundary Conditions section must also be
provided. Examples of additional optional sections, for example, the Damage and Contact
sections required for modeling bond failure and contact, respectively, are available in the
example problems distributed with Peridigm.

A basic Discretization section is given in Listing 8, in which the user specifies the name
of the discretization file and the file format.

135Journal of Peridynamics and Nonlocal Modeling (2024) 6:118–148

1 3

A Materials section is shown in Listing 9. Users may define any number of materials,
each of which is given a unique label (My Material in this case) for association with
specific blocks in the discretization.

Note that Peridigm does not explicitly track the units for any input parameters, and
instead utilizes a consistent units approach in which users are free to select the system of
units best suited for the given simulation (e.g., SI, CGS, IPS).

The Blocks section show in Listing 10 maps the material model with label My Mate-
rial to block_1 in the discretization and specifies the horizon for that block. Likewise, the
Blocks section may also be used to associate bond damage models, if any, with specific blocks.

Initial and boundary conditions are specified in the Boundary Conditions section. The
example given in Listing 11 specifies a prescribed displacement Dirichlet boundary condition
for the displacement degree of freedom in the y direction. This boundary condition is a func-
tion of time, t, and the y component of the spatial coordinates in the undeformed configura-
tion. This boundary condition is applied to nodelist_1, as defined in the discretization.

Listing 12 contains an example of a Solver section. In this case, a QuasiStatic solver is
used, and its specific attributes are defined.

136 Journal of Peridynamics and Nonlocal Modeling (2024) 6:118–148

1 3

Finally, an Output section is presented in Listing 13. Parameters include the name of the
output exodus file, the frequency at which data is written to file, and a list of the variables to
be stored. Peridigm supports node variables, element variables (i.e., per block variables), and
global variables. An output frequency of 1 specifies that output will be written to disk at every
load step in the simulation.

3.3 Executing Peridigm

Peridigm is executed from the command line. For serial execution, a single argument is
given, the name of the input deck. For parallel runs, the peridigm command is preceded
by a standard MPI command:

mpirun -np 8 Peridigm my_input_file.yaml

where the -np option specifies the number of MPI ranks. Note that for parallel runs using
exodus discretizations, the discretization files must be partitioned in a pre-processing step.
The SEACAS utility decomp is one option for partitioning an exodus discretization file.

Peridigm writes output to stdout and to one or more exodus files. Exodus files contain
the numerical results of the simulation, while the information written to stdout provides
the user with real-time information on the progress of the simulation.

3.4 Post‑Processing

The exodus output files generated by Peridigm are compatible with a number of third-
party software packages. The SEACAS package, for example, contains multiple utilities,

137Journal of Peridynamics and Nonlocal Modeling (2024) 6:118–148

1 3

including epu for combining decomposed exodus files into a single file and grope for exam-
ining file contents. The freely available code ParaView [127] is a common choice for visu-
alizing output data. Additional options include VisIt [128] and the SEACAS utility blot.
Numerical data can be extracted from exodus files using the exodus.py Python module,
or using the commercial code MATLAB.

Several studies in the literature have considered the analysis of results from peridynamic
simulations, in particular for comparison against experimental data. Analysis of fragmenta-
tion simulations is investigated in Diehl et al. [129] and Littlewood et al. [130]. Visualizing
the progression of fracture is considered in Bussler et al. [131]. For additional discussion,
the reader is referred to [132, §6].

3.5 Example Simulations

We present two example simulations that exercise the core capabilities of Peridigm and
demonstrate its computational performance. The first is a quasi-static simulation of a
tensile test, and the second is an explicit dynamics simulation of an expanding cylin-
der resulting in fragmentation. The simulations are adaptations of example problems
distributed with the Peridigm source code. They have been modified by refining the dis-
cretization and reducing the horizon, which increases the fidelity of the simulation and
allows for an evaluation of code performance for large-scale parallel simulations.

The example simulations were carried out on the Skybridge computing cluster at
Sandia National Laboratories. Skybridge consists of 1848 nodes with dual-socket 8-core
Intel Sandy Bridge E5-2670 CPUs connected using QDR InfiniBand interconnect with a
fat tree topology. Skybridge utilizes a Tri-lab Operating System Software (TOSS3) clus-
ter management software stack based on Red Hat Enterprise Linux 7 and uses a Slurm
workload manager. Peridigm was built using Intel 21.3 compilers and Open MPI 4.0.

3.5.1 Tensile Test Simulation

The simulation of a tensile test illustrated in Fig. 3 demonstrates Peridigm for the solu-
tion of quasi-static problems using implicit time integration. The tensile specimen is
101.6mm in length, with a maximum width of 12.7mm, a minimum width of 6.35mm,
and a thickness of 3.15mm. The discretization of the tensile specimen was created using
the CUBIT mesh generator. CUBIT provides functionality for defining the geometry of
the body in terms of vertices, curves, and surfaces, which allowed for a straightforward
meshing process. The mesh used as input to Peridigm was a hexahedral mesh containing

Fig. 3 Displacement in the loading direction for the tensile test example problem

138 Journal of Peridynamics and Nonlocal Modeling (2024) 6:118–148

1 3

just over one million elements. Peridigm automatically converted the hexahedral mesh
to a meshfree discretization at the onset of the simulation. A value of three times the
nominal mesh spacing was assigned to the horizon, � = 0.432mm . Node sets were
defined for volumetric regions at the ends of the bar, extending a distance of twice the
horizon into the body of the specimen.

The material behavior for the tensile specimen was modeled with a linear elastic cor-
respondence model with values for the bulk and shear moduli set to 150.00GPa and
69.23GPa, respectively. As described in Section 2.3, a stabilization method is available
in Peridigm to suppress low-energy modes of deformation, which can pollute the solu-
tion when correspondence models are used. The stabilization coefficient in this case was
set to 0.02.

Boundary conditions for the tensile test simulation were applied over volumetric
regions at the ends of the bar. A linear displacement field was imposed in the direc-
tion of the tensile load to approximate the expected deformation, as shown in Listing
14. Note that the origin is located at the midpoint of the bar, hence the y component
of displacement is positive for the right-hand side of the bar and negative for the left-
hand side of the bar. Additional fixed-displacement boundary conditions were applied to
selected edges on the ends of the bar to eliminate rigid-body displacements.

Several compute classes were used to model the presence of a strain gauge on the tensile
specimen, providing a means for direct comparison of simulation results to experimental
data. Specifically, the Nearest_Point_Data compute class was utilized to track the
displacement of nodes in locations corresponding to the ends of a 2.476cm strain gauge
positioned in the center of the specimen, and the Block_Data compute class was used
to track the total reaction forces at the ends of the bar. Taken together, these data allow for
calculation of engineering stress and engineering strain, which can then be used to com-
pute Young’s modulus.

Results for the tensile test simulation are shown in Fig. 3. The simulation reproduced
the expected displacements in the loading and off-loading directions, and the calculation of
the Young’s modulus described above yielded 183.7GPa. Performance data for the tensile
bar simulation are given in Fig. 4 for 256, 512, and 1024 MPI ranks. Calculation of a best-
fit line to the data in Fig. 4 yields a slope of −0.89, indicating excellent scaling.

139Journal of Peridynamics and Nonlocal Modeling (2024) 6:118–148

1 3

3.5.2 Fragmenting Cylinder Simulation

Simulation of a fragmenting hollow cylinder, shown in Fig. 5, demonstrates the ability
of Peridigm to capture pervasive material failure. The cylinder has an outer radius of
2.5cm, an inner radius of 2.0cm, and a height of 10.0cm. In this case, the meshfree dis-
cretization was created in text file format using a Python script and converted to the exo-
dus file format using the text_to_exodus.py script distributed with Peridigm. The

Fig. 4 Execution times for the
quasi-static tensile test simula-
tion, displayed on a log-log scale

(a) (b)

(c)

Fig. 5 Simulation of an expanding cylinder resulting in fragmentation. The color scale denotes damage,
which is defined as the percentage of broken bonds at each material point

140 Journal of Peridynamics and Nonlocal Modeling (2024) 6:118–148

1 3

discretization contains just over 11 million nodal volumes. The horizon was assigned a
value of three times the nominal mesh spacing, � = 0.0558cm . Material response is gov-
erned by the ordinary state-based plasticity model developed by Mitchell [97] with the
material parameters given in Listing 15.

Damage was governed by the critical stretch bond failure law, with the critical stretch
sc set to 0.12. The explicit dynamics time integrator was used, with an end time of
4.0 × 10−4 s and a user-specified time step of 1.0 × 10−8s.

Initial outward velocities were applied to the entire domain to approximate the effect
of an internal pressure. The initial velocities were prescribed using a spatially varying,
user-defined function, as shown in Listing 16.

Results for the fragmenting cylinder simulation are shown in Fig. 5. The color scale
indicates damage, computed as the percentage of broken bonds for each nodal volume.
Performance data for the fragmenting cylinder simulation are given in Fig. 6 for parallel
execution using 1024, 2048, and 4098 MPI ranks. Calculation of a best-fit line to the data
in Fig. 6 yields a slope of −0.98, indicating near-optimal scaling.

141Journal of Peridynamics and Nonlocal Modeling (2024) 6:118–148

1 3

4 Summary and Conclusions

Peridigm is a meshfree peridynamics code for the solution of solid mechanics problems, in
particular those involving crack propagation and pervasive material failure. The underlying
meshfree formulation follows Silling and Askari [2], and has been generalized to include
bond-based, ordinary state-based, and non-ordinary state-based (correspondence) mate-
rial models [1, 89]. Additional capabilities include contact modeling and support for both
explicit and implicit time integration.

The Peridigm code was designed for large-scale simulations on parallel computing plat-
forms and provides software interfaces for the implementation of additional material mod-
els, bond failure laws, contact models, and compute classes. It utilizes multiple Trilinos
software packages and is compatible with the SEACAS toolset, CUBIT mesh generator, and
ParaView visualization code. Peridigm has been used to date primarily by methods devel-
opers as a platform for demonstrating new approaches at scale. As shown Section 3.5, Peri-
digm exhibits excellent performance on large discretizations for both implicit quasi-statics
and explicit transient dynamics problems.

Peridigm is managed as an open-source, community driven software project. It is freely
distributed and includes a development environment that enables the implementation and
testing of new capabilities. It is our hope that Peridigm continues to grow as an engineering
tool and a platform for methods development, thereby supporting the overall growth and
adoption of peridynamics and nonlocal methods among the computational mechanics com-
munity and the practitioners it supports.

Acknowledgements The authors would like to thank Masoud Behzadinasab, Alex Vasenkov, Jonas Ritter,
Jake Ostien, and Michael Brothers for their contribution to Peridigm.

Author Contributions David Littlewood, Michael Parks, John Foster, John Mitchell, and Patrick Diehl wrote
the main manuscript text. John Foster prepared Fig. 1, John Mitchell prepared Fig. 2, and David Littlewood
prepared Figs. 3–6. All the authors have made major contributions to the Peridigm software project.

Funding David Littlewood, Michael Parks, and John Mitchell acknowledge funding from the US Depart-
ment of Energy (DOE) Advanced Simulation and Computing (ASC) program and the Laboratory Directed
Research and Development (LDRD) program at Sandia National Laboratories. Patrick Diehl acknowledges
funding from the National Science Foundation (NSF) Phylanx project award #1737785.

Fig. 6 Execution times for the
fragmenting cylinder simulation,
displayed on a log-log scale

50

75

100

125

150

1024 2048 4096
W
al
lc
lo
ck

ti
m
e
(m

in
u
te
s)

Number of ranks

142 Journal of Peridynamics and Nonlocal Modeling (2024) 6:118–148

1 3

Availability of Data and Material The example simulation presented in Section 3.5 are modified versions
of example problems distributed with the Peridigm source code, which can be obtained from the Peridigm
website [124].

Code Availability The Peridigm source code is freely distributed under a three-clause BSD license and is
available at the Peridigm website [124].

Declarations

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology
& Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for
the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.
This paper describes objective technical results and analysis. Any subjective views or opinions that might be
expressed in the paper do not necessarily represent the views of the U.S. Department of Energy or the United
States Government.

Conflict of Interest John Foster is an Associate Editor for the Journal of Peridynamics and Nonlocal Mod-
eling, and David Littlewood and Michael Parks are on the Editorial Board. They played no part in the as-
signment of this manuscript to Associate Editors or peer reviewers and were separated and blinded from the
editorial process from submission inception to decision.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Silling S (2000) Reformulation of elasticity theory for discontinuities and long-range forces. J Mech
Phys Solids 48(1):175–209. https:// doi. org/ 10. 1016/ S0022- 5096(99) 00029-0

 2. Silling S, Askari E (2005) A meshfree method based on the peridynamic model of solid mechanics.
Comput Struct 83(17–18):1526–1535. https:// doi. org/ 10. 1016/j. comps truc. 2004. 11. 026

 3. The Trilinos Project Website. https:// trili nos. github. io. Accessed 12 June 2022
 4. The LAMMPS Peridynamic Pair Styles Website. https:// lammps. sandia. gov/ doc/ pair_ peri. html.

Accessed 12 June 2022
 5. Parks ML, Lehoucq RB, Plimpton SJ et al (2008) Implementing peridynamics within a molecular

dynamics code. Comput Phys Commun 179(11):777–783. https:// doi. org/ 10. 1016/j. cpc. 2008. 06. 011
 6. The PeriPy Project Website. https:// pypi. org/ proje ct/ peripy/. Accessed 12 June 2022
 7. Boys B, Dodwell T, Hobbs M et al (2021) PeriPy - high performance OpenCL peridynamics pack-

age. Comput Methods Appl Mech Eng 21. https:// doi. org/ 10. 1016/j. cma. 2021. 114085
 8. The PeriHPX Project Website. https:// perih px. github. io/. Accessed 12 June 2022
 9. Diehl P, Jha PK, Kaiser H et al (2020) An asynchronous and task-based implementation of peri-

dynamics utilizing HPX—the C++ standard library for parallelism and concurrency. SN Appl Sci
2(12). https:// doi. org/ 10. 1007/ s42452- 020- 03784-x

 10. Jha PK, Diehl P (2021) NLMech: implementation of finite difference/meshfree discretization of non-
local fracture models. J Open Source Softw 6(65). https:// doi. org/ 10. 21105/ joss. 03020

 11. The PeriPyDIC Project Website. https:// github. com/ lm2- poly/ PeriP yDIC. Accessed 12 June 2022
 12. The PD_Shell Project Website. https:// github. com/ masou dbehz adina sab/ PD_ Shell. Accessed 12 June 2022
 13. Behzadinasab M, Alaydin M, Trask N et al (2022) A general-purpose, inelastic, rotation-free Kirchhoff-

Love shell formulation for peridynamics. Comput Methods Appl Mech Eng 389. https:// doi. org/ 10.
1016/j. cma. 2021. 114422

 14. The PyNucleus Project Website. https:// github. com/ sandi alabs/ PyNuc leus. Accessed 12 June 2022
 15. The Relation-Based Software (RBS) Website. https:// github. com/ alije nabi/ Relat ionBa sedSo ftware.

Accessed 12 Feb 2023

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/S0022-5096(99)00029-0
https://doi.org/10.1016/j.compstruc.2004.11.026
https://trilinos.github.io
https://lammps.sandia.gov/doc/pair_peri.html
https://doi.org/10.1016/j.cpc.2008.06.011
https://pypi.org/project/peripy/
https://doi.org/10.1016/j.cma.2021.114085
https://perihpx.github.io/
https://doi.org/10.1007/s42452-020-03784-x
https://doi.org/10.21105/joss.03020
https://github.com/lm2-poly/PeriPyDIC
https://github.com/masoudbehzadinasab/PD_Shell
https://doi.org/10.1016/j.cma.2021.114422
https://doi.org/10.1016/j.cma.2021.114422
https://github.com/sandialabs/PyNucleus
https://github.com/alijenabi/RelationBasedSoftware

143Journal of Peridynamics and Nonlocal Modeling (2024) 6:118–148

1 3

 16. Jenabidehkordi A, Fu X, Rabczuk T (2022) An open source peridynamics code for dynamic fracture in
homogeneous and heterogeneous materials. Adv Eng Softw 168. https:// doi. org/ 10. 1016/j. adven gsoft.
2022. 103124

 17. Kaiser H, Diehl P, Lemoine AS et al (2020) HPX - the C++ standard library for parallelism and con-
currency. J Open Source Softw 5(53). https:// doi. org/ 10. 21105/ joss. 02352

 18. Diehl P (2012) Implementierung eines peridynamik-verfahrens auf GPU. Master’s thesis, University
of Stuttgart (Germany)

 19. Diehl P, Schweitzer MA (2015) Efficient neighbor search for particle methods on GPUs. In: Griebel M,
Schweitzer MA (eds) Meshfree Methods for Partial Differential Equations VII. Lecture Notes in Com-
putational Science and Engineering, Springer, p 81–95. https:// doi. org/ 10. 1007/ 978-3- 319- 06898-5_5

 20. Mossaiby F, Shojaei A, Zaccariotto M et al (2017) OpenCL implementation of a high performance
3D peridynamic model on graphics accelerators. Comput Math Appl 74(8):1856–1870. https:// doi.
org/ 10. 1016/j. camwa. 2017. 06. 045

 21. Ren B, Wu C, Askari E (2017) A 3D discontinuous Galerkin finite element method with the bond-
based peridynamics model for dynamic brittle failure analysis. Int J Impact Eng 99:14–25. https:// doi.
org/ 10. 1016/j. ijimp eng. 2016. 09. 003

 22. Diehl P, Lipton R, Wick T et al (2022) A comparative review of peridynamics and phase-field
models for engineering fracture mechanics. Comput Mech 69:1259–1293. https:// doi. org/ 10. 1007/
s00466- 022- 02147-0

 23. Behzadinasab M, Foster JT (2019) The third Sandia fracture challenge: peridynamic blind prediction
of ductile fracture characterization in additively manufactured metal. Int J Fract 218:97–109. https://
doi. org/ 10. 1007/ s10704- 019- 00363-z

 24. Behzadinasab M, Foster JT (2020) Revisiting the third Sandia fracture challenge: a bond-associated,
semi-Lagrangian peridynamic approach to modeling large deformation and ductile fracture. Int J
Fract 224:261–267. https:// doi. org/ 10. 1007/ s10704- 020- 00455-1

 25. Behzadinasab M, Vogler TJ, Foster JT (2018) Modeling perturbed shock wave decay in granular
materials with intra-granular fracture. In: Chau R, Germann TC, Lane JMD, et al (eds) Shock Com-
pression of Condensed Matter - 2017: Proceedings of the Conference of the American Physical Soci-
ety Topical Group on Shock Compression of Condensed Matter, AIP Conference Proceedings, vol
1979. AIP Publishing. https:// doi. org/ 10. 1063/1. 50448 14

 26. Behzadinasab M, Vogler TJ, Peterson AM et al (2018) Peridynamics modeling of a shock wave per-
turbation decay experiment in granular materials with intra-granular fracture. J Dyn Behav Mater
4:529–542. https:// doi. org/ 10. 1007/ s40870- 018- 0174-2

 27. Xu Y, Zhu P (2022) Peridynamic simulations of damage in indentation and scratching of 3C-SiC. J
Mater Res 37:4381–4391. https:// doi. org/ 10. 1557/ s43578- 022- 00812-x

 28. Postek E, Sandowski T (2021) Impact model of the Al2O3/ZrO2 composite by peridynamics. Compos
Struct 271. https:// doi. org/ 10. 1016/j. comps truct. 2021. 114071

 29. Postek E, Sandowski T, Pietras D (2022) Impact of interpenetrating phase Al-Si12/SiC. Int J Multi-
scale Comput Eng 20(6):61–78. https:// doi. org/ 10. 1615/ IntJM ultCo mpEng. 20220 43186

 30. Postek E, Sandowski T (2022) Dynamic compression of a SiC foam. Materials 15(23). https:// doi. org/
10. 3390/ ma152 38363

 31. de Sousa T, Ahadi A, Sjögren E et al (2021) Peridynamic modelling of harmonic structured materi-
als under high strain rate deformation. In: Proceedings of the 14th World Congress on Computational
Mechanics (WCCM XIV) and 8th European Congress on Computational Methods in Applied Sciences
and Engineering (ECCOMAS 2020), Paris, France. https:// doi. org/ 10. 23967/ wccm- eccom as. 2020. 279

 32. Postek E, Norwak Z, Pȩcherski RB (2022) Viscoplastic flow of functional cellular materials with use
of peridynamics. Meccanica 57:905–922. https:// doi. org/ 10. 1007/ s11012- 021- 01383-7

 33. Masoni R, Manes A, Giglio M (2019) A comparison of state-based peridynamics and solid mesh to
SPH conversion techniques to reproduce fragmentation of a ceramic tile subject to ballistic impact.
Procedia Structural Integrity 24:40–52. https:// doi. org/ 10. 1016/j. prostr. 2020. 02. 004

 34. Morgado F, Peddakotla SA, Carbacz C et al (2022) Fidelity management of aerothermodynamic mod-
elling for destructive re-entry. In: Proceedings of the 2nd International Conference on Flight Vehicles,
Aerothermodynamics and Re-entry Missions & Engineering (FAR), Heilbronn, Germany

 35. Peddakotla SA, Morgado F, Thillaithevan D et al (2022) A multi-fidelity and multi-disciplinary
approach for the accurate simulation of atmospheric re-entry. In: Proceedings of the 73rd Interna-
tional Astronautical Congress, Paris, France

 36. Peddakotla SA, Yuan J, Minisci E et al (2022) A numerical approach to evaluate temperature-dependent
peridynamics damage model for destructive atmospheric entry of spacecraft. Aeronaut J. https:// doi. org/
10. 1017/ aer. 2022. 69

https://doi.org/10.1016/j.advengsoft.2022.103124
https://doi.org/10.1016/j.advengsoft.2022.103124
https://doi.org/10.21105/joss.02352
https://doi.org/10.1007/978-3-319-06898-5_5
https://doi.org/10.1016/j.camwa.2017.06.045
https://doi.org/10.1016/j.camwa.2017.06.045
https://doi.org/10.1016/j.ijimpeng.2016.09.003
https://doi.org/10.1016/j.ijimpeng.2016.09.003
https://doi.org/10.1007/s00466-022-02147-0
https://doi.org/10.1007/s00466-022-02147-0
https://doi.org/10.1007/s10704-019-00363-z
https://doi.org/10.1007/s10704-019-00363-z
https://doi.org/10.1007/s10704-020-00455-1
https://doi.org/10.1063/1.5044814
https://doi.org/10.1007/s40870-018-0174-2
https://doi.org/10.1557/s43578-022-00812-x
https://doi.org/10.1016/j.compstruct.2021.114071
https://doi.org/10.1615/IntJMultCompEng.2022043186
https://doi.org/10.3390/ma15238363
https://doi.org/10.3390/ma15238363
https://doi.org/10.23967/wccm-eccomas.2020.279
https://doi.org/10.1007/s11012-021-01383-7
https://doi.org/10.1016/j.prostr.2020.02.004
https://doi.org/10.1017/aer.2022.69
https://doi.org/10.1017/aer.2022.69

144 Journal of Peridynamics and Nonlocal Modeling (2024) 6:118–148

1 3

 37. Tang L, Krishnan AN, Berjikian J et al (2018) Effect of nanoscale phase separation on the fracture
behavior of glasses: toward tough, yet transparent glasses. Phys Rev Mater 2(11). https:// doi. org/ 10.
1103/ PhysR evMat erials. 2. 113602

 38. Ono M, Miyasaka S, Takato Y et al (2019) Higher toughness of metal-nanoparticle-implanted sodalime
silicate glass with increased ductility. Sci Rep 9. https:// doi. org/ 10. 1038/ s41598- 019- 51733-5

 39. Ono M, Miyasaka S, Takato Y et al (2021) Tuning the mechanical toughness of the metal nanoparticle-
implanted glass: the effect of nanoparticle growth conditions. J Am Ceram Soc 104(10):5341–5353.
https:// doi. org/ 10. 1111/ jace. 17754

 40. Rädel M, Bednarek AJ, Schmidt J et al (2017) Peridynamics: convergence & influence of probabil-
istic material distribution on crack initiation. In: Remmers JJC, Turon A (eds) Proceedings of the
6th ECCOMAS Thematic Conference on the Mechanical Response of Composities (COMPOSITES
2017), Eindhoven, The Netherlands

 41. Caimmi F, Haddadi E, Choupani N et al (2016) Modelling mixed-mode fracture in poly(methylmethacrylate)
using peridynamics. Procedia Structural Integrity 2:166–173. https:// doi. org/ 10. 1016/j. prostr. 2016. 06. 022

 42. Ren B, Song J (2022) Peridynamic simulation of particles impact and interfacial bonding in cold
spray process. J Therm Spray Technol 31:1827–1843. https:// doi. org/ 10. 1007/ s11666- 022- 01409-w

 43. Naumenko K, Pander M, Würkner M (2022) Damage patterns in float glass plates: experiments and
peridynamics analysis. Theor Appl Fract Mech 118. https:// doi. org/ 10. 1016/j. tafmec. 2022. 103264

 44. Kamensky D, Behzadinasab M, Foster JT et al (2019) Peridynamic modeling of frictional contact. J
Peridyn Nonlocal Model 1(2):107–121. https:// doi. org/ 10. 1007/ s42102- 019- 00012-y

 45. Ritter J, Shegufta S, Steinmann P et al (2022) An energetically consistent surface correction method
for bond-based peridynamics. Forces in Mechanics 9. https:// doi. org/ 10. 1016/j. finmec. 2022. 100132

 46. Ignatev M, Kazarinov N, Petrov Y (2020) Peridynamic modelling of the dynamic crack initiation.
Procedia Structural Integrity 28:1650–1654. https:// doi. org/ 10. 1016/j. prostr. 2020. 10. 138

 47. Ignatiev M, Petrov YV, Kazarinov N (2021) Simulation of dynamic crack initiation based on the
peridynamic numerical model and the incubation time criterion. Technical Physics 66(3):422–425.
https:// doi. org/ 10. 1134/ S1063 78422 10300 99

 48. Ignatiev MO, Petrov YV, Kazarinov NA et al (2022) Peridynamic formulation of the mean stress and
incubation time fracture criteria and its correspondence to the classical Griffith’s approach. Contin
Mech Thermodyn. https:// doi. org/ 10. 1007/ s00161- 022- 01159-8

 49. Lammi CJ, Vogler TJ (2014) A nonlocal peridynamic plasticity model for the dynamic flow and frac-
ture of concrete. Technical Report SAND2014-18257, Sandia National Laboratories, Albuquerque,
NM and Livermore, CA, https:// doi. org/ 10. 2172/ 11594 46

 50. Lammi CJ, Zhou M (2017) Multi-scale peridynamic modeling of dynamic fracture in concrete. In:
Shock Compression of Condensed Matter - 2015: Proceedings of the Conference of the American
Physical Society Topical Group on Shock Compression of Condensed Matter, AIP Conference Pro-
ceedings, vol 1793. AIP Publishing. https:// doi. org/ 10. 1063/1. 49716 34

 51. Bazilevs Y, Behzadinasab M, Foster JT (2022) Simulating concrete failure using the microplane (M7)
constitutive model in correspondence-based peridynamics: validation for classical fracture tests and
extension to discrete fracture. Journal of the Mechanics and Physics of Solids 1686. https:// doi. org/ 10.
1016/j. jmps. 2022. 104947

 52. Freimanis A, Kaewunruen S (2018) Peridynamic analysis of rail squats. Appl Sci 8. https:// doi. org/
10. 3390/ app81 12299

 53. Hamarat M, Papaelias M, Kaewunruen S (2022) Fatigue damage assessment of complex rail-
way turnout crossings via peridynamics-based digital twin. Sci Rep 12. https:// doi. org/ 10. 1038/
s41598- 022- 18452-w

 54. Rädel M, Willberg C, Krause D (2019) Peridynamic analysis of fibre-matrix debond and matrix fail-
ure mechanisms in composites under transverse tensile load by an energy-based damage criterion.
Composites Part B: Engineering 158:18–27. https:// doi. org/ 10. 1016/j. compo sitesb. 2018. 08. 084

 55. Willberg C, Rädel M (2018) An energy based peridynamic state-based failure criterion. In: Müller
G, Ulbrich M (eds) Special Issue: 89th Annual Meeting of the International Association of Applied
Mathematics and Mechanics (GAMM). Proceedings in Applied Mathematics and Mechanics
(PAMM), Wiley. https:// doi. org/ 10. 1002/ pamm. 20180 0074

 56. Willberg C, Rädel M, Heinecke F (2019) Verification and validation of a 2D energy based peridy-
namic state-based failure criterion. In: Eberhardsteiner J, Schöberl M (eds) Special Issue: 90th
Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM).
Proceedings in Applied Mathematics and Mechanics (PAMM), Wiley. https:// doi. org/ 10. 1002/ pamm.
20190 0331

https://doi.org/10.1103/PhysRevMaterials.2.113602
https://doi.org/10.1103/PhysRevMaterials.2.113602
https://doi.org/10.1038/s41598-019-51733-5
https://doi.org/10.1111/jace.17754
https://doi.org/10.1016/j.prostr.2016.06.022
https://doi.org/10.1007/s11666-022-01409-w
https://doi.org/10.1016/j.tafmec.2022.103264
https://doi.org/10.1007/s42102-019-00012-y
https://doi.org/10.1016/j.finmec.2022.100132
https://doi.org/10.1016/j.prostr.2020.10.138
https://doi.org/10.1134/S1063784221030099
https://doi.org/10.1007/s00161-022-01159-8
https://doi.org/10.2172/1159446
https://doi.org/10.1063/1.4971634
https://doi.org/10.1016/j.jmps.2022.104947
https://doi.org/10.1016/j.jmps.2022.104947
https://doi.org/10.3390/app8112299
https://doi.org/10.3390/app8112299
https://doi.org/10.1038/s41598-022-18452-w
https://doi.org/10.1038/s41598-022-18452-w
https://doi.org/10.1016/j.compositesb.2018.08.084
https://doi.org/10.1002/pamm.201800074
https://doi.org/10.1002/pamm.201900331
https://doi.org/10.1002/pamm.201900331

145Journal of Peridynamics and Nonlocal Modeling (2024) 6:118–148

1 3

 57. Willberg C, Wiedemann L, Rädel M (2019) A mode-dependent energy-based damage model for
peridynamics and its implementation. J Mech Mater Struct 14(2):193–217. https:// doi. org/ 10. 2140/
jomms. 2019. 14. 193

 58. Behzadinasab M, Foster JT (2020) On the stability of the generalized, finite deformation correspondence
model of peridynamics. Int J Solids Struct 182–183:64–76. https:// doi. org/ 10. 1016/j. ijsol str. 2019. 07. 030

 59. Brothers MD, Foster JT, Millwater HR (2014) A comparison of different methods for calculating
tangent-stiffness matrices in a massively parallel computational peridynamics code. Comput Methods
Appl Mech Eng 279:247–267. https:// doi. org/ 10. 1016/j. cma. 2014. 06. 034

 60. Freimanis A, Paeglitis A (2017) Mesh sensitivity in peridynamic quasi-static simulations. Procedia
Engineering 172:284–291. https:// doi. org/ 10. 1016/j. proeng. 2017. 02. 116

 61. Seleson P, Littlewood DJ (2016) Convergence studies in meshfree peridynamic simulations. Com-
put Math Appl 71(11):2432–2448. https:// doi. org/ 10. 1016/j. camwa. 2015. 12. 021

 62. Seleson P, Littlewood DJ (2018) Numerical tools for improved convergence of meshfree peridynamic
discretizations. In: Voyiadjis GZ (ed) Handbook of Nonlocal Continuum Mechanics for Materials and
Structures. Springer. https:// doi. org/ 10. 1007/ 978-3- 319- 22977-5_ 39-1

 63. Mohajerani S, Wang G (2022) “Touch-aware” contact model for peridynamics modeling of granular
systems. Int J Numer Methods Eng 123(17):3850–3878. https:// doi. org/ 10. 1002/ nme. 7000

 64. Willberg C, Hesse J, Heinecke F (2022) Peridynamic simulation of a mixed-mode fracture experi-
ment in PMMA utilizing an adaptive-time stepping for an explicit solver. J Peridyn Nonlocal Model.
https:// doi. org/ 10. 1007/ s42102- 021- 00079-6

 65. Wu L, Huang D, Bobaru F (2021) A reformulated rate-dependent visco-elastic model for dynamic
deformation and fracture of PMMA with peridynamics. Int J Impact Eng 149. https:// doi. org/ 10.
1016/j. ijimp eng. 2020. 103791

 66. D’Antuono P, Morandini M (2017) Thermal shock response via weakly coupled peridynamic thermo-
mechanics. Int J Solids Struct 129:74–89. https:// doi. org/ 10. 1016/j. ijsol str. 2017. 09. 010

 67. Nayak S, Ravinder R, Krishnan N et al (2020) A peridynamics-based micromechanical modeling approach
for random heterogeneous structural materials. Materials 13(6). https:// doi. org/ 10. 3390/ ma130 61298

 68. Ji Y, Dong C, Wei X et al (2019) Discontinuous model combined with an atomic mechanism simu-
lates the precipitated �′ phase effect in intergranular cracking of 7-series aluminum alloys. Computa-
tional Materials Science 166:282–292. https:// doi. org/ 10. 1016/j. comma tsci. 2019. 05. 008

 69. Shende S, Behzadinasab M, Moutsanidis G et al (2022) Simulating air blast on concrete structures
using the volumetric penalty coupling of isogeometric analysis and peridynamics. Math Models
Methods Appl Sci 32(12):2477–2496. https:// doi. org/ 10. 1142/ S0218 20252 25005 80

 70. Vasenkov AV (2021) Multi-physics peridynamic modeling of damage processes in protective coat-
ings. J Peridyn Nonlocal Model 3. https:// doi. org/ 10. 1007/ s42102- 020- 00046-7

 71. Behzadinasab M, Foster JT (2020c) A semi-Lagrangian constitutive correspondence framework for
peridynamics. J Mech Phys Solids 137. https:// doi. org/ 10. 1016/j. jmps. 2019. 103862

 72. Freimanis A, Paeglitis A (2017) Modal analysis of isotropic beams in peridynamics. In: Proceedings
of 3rd International Conference on Innovative Materials, Structures and Technologies (IMST 2017),
IOP Conference Series: Materials Science and Engineering, vol 251. IOP Publishing. https:// doi. org/
10. 1088/ 1757- 899X/ 251/1/ 012088

 73. Freimanis A, Paeglitis A (2018) Modal analysis of healthy and cracked isotropic plates in peridynam-
ics. In: Mains M, Dilworth BJ (eds) Proceedings of the 36th IMAC, A Conference and Exposition
on Structural Dynamics 2018. Topics in Modal Analysis & Testing, Volume 9, Springer, p 359–361.
https:// doi. org/ 10. 1007/ 978-3- 319- 74700-2_ 41

 74. Freimanis A, Paeglitis A (2021) Crack development assessment using modal analysis in peridynamic
theory. J Comput Des Eng 8(1):125–139. https:// doi. org/ 10. 1093/ jcde/ qwaa0 66

 75. Zhu F, Zhao J (2021) Multiscale modeling of continuous crushing of granular media: the role of grain
microstructure. Comput Part Mech 8:1089–1101. https:// doi. org/ 10. 1007/ s40571- 020- 00355-0

 76. Shi K, Zhu F, Zhao J (2022) Multi-scale analysis of shear behaviour of crushable granular sand under
general stress conditions. Géotechnique. https:// doi. org/ 10. 1680/ jgeot. 21. 00412

 77. Trageser JE, Mitchell CA, Jones RE et al (2022) The effect of differential mineral shrinkage on crack
formation and network geometry. Sci Rep 12. https:// doi. org/ 10. 1038/ s41598- 022- 23789-3

 78. Vasenkov AV (2018) Stent fracture predictions with peridynamics. In: Frontiers in Biomedical
Devices, American Society of Mechanical Engineers (ASME), Minneapolis, Minnesota. https:// doi.
org/ 10. 1115/ DMD20 18- 6866

 79. Azdoud Y, Han F, Littlewood DJ et al (2016) Coupling local and nonlocal models. In: Bobaru F, Geubelle
PH, Foster JT, et al (eds) Handbook of Peridynamic Modeling. Advances in Applied Mathematics, CRC
Press, chap 14, https:// doi. org/ 10. 1201/ 97813 15373 331

https://doi.org/10.2140/jomms.2019.14.193
https://doi.org/10.2140/jomms.2019.14.193
https://doi.org/10.1016/j.ijsolstr.2019.07.030
https://doi.org/10.1016/j.cma.2014.06.034
https://doi.org/10.1016/j.proeng.2017.02.116
https://doi.org/10.1016/j.camwa.2015.12.021
https://doi.org/10.1007/978-3-319-22977-5_39-1
https://doi.org/10.1002/nme.7000
https://doi.org/10.1007/s42102-021-00079-6
https://doi.org/10.1016/j.ijimpeng.2020.103791
https://doi.org/10.1016/j.ijimpeng.2020.103791
https://doi.org/10.1016/j.ijsolstr.2017.09.010
https://doi.org/10.3390/ma13061298
https://doi.org/10.1016/j.commatsci.2019.05.008
https://doi.org/10.1142/S0218202522500580
https://doi.org/10.1007/s42102-020-00046-7
https://doi.org/10.1016/j.jmps.2019.103862
https://doi.org/10.1088/1757-899X/251/1/012088
https://doi.org/10.1088/1757-899X/251/1/012088
https://doi.org/10.1007/978-3-319-74700-2_41
https://doi.org/10.1093/jcde/qwaa066
https://doi.org/10.1007/s40571-020-00355-0
https://doi.org/10.1680/jgeot.21.00412
https://doi.org/10.1038/s41598-022-23789-3
https://doi.org/10.1115/DMD2018-6866
https://doi.org/10.1115/DMD2018-6866
https://doi.org/10.1201/9781315373331

146 Journal of Peridynamics and Nonlocal Modeling (2024) 6:118–148

1 3

 80. D’Elia M, Perego M, Bochev P et al (2016) A coupling strategy for nonlocal and local diffusion mod-
els with mixed volume constraints and boundary conditions. Comput Math Appl 71(11):2218–2230.
https:// doi. org/ 10. 1016/j. camwa. 2015. 12. 006

 81. D’Elia M, Bochev P, Littlewood DJ et al (2018) Optimization-based coupling of local and nonlo-
cal models: applications to peridynamics. In: Voyiadjis GZ (ed) Handbook of Nonlocal Continuum
Mechanics for Materials and Structures. Springer. https:// doi. org/ 10. 1007/ 978-3- 319- 22977-5_ 31-1

 82. Littlewood DJ, Silling SA, Mitchell JA et al (2015) Strong local-nonlocal coupling for integrated frac-
ture modeling. Technical Report SAND2015-7998, Sandia National Laboratories, Albuquerque, NM
and Livermore, CA. https:// doi. org/ 10. 2172/ 12215 26

 83. Li X, Ye H, Zhang J (2020) Large-scale simulations of peridynamics on Sunway Taihulight super-
computer. In: ICPP’20: Proceedings of the 49th International Conference on Parallel Processing,
Edmonton, Alberta, Canada. https:// doi. org/ 10. 1145/ 34043 97. 34044 21

 84. Li X, Ye H, Zhang J (2021) Redesigning Peridigm on SIMT accelerators for high-performance peri-
dynamics simulations. In: Proceedings of the 2021 IEEE International Parallel and Distributed Pro-
cessing Symposium (IPDPS), pp 433–443. https:// doi. org/ 10. 1109/ IPDPS 49936. 2021. 00052

 85. Willberg C, Hesse JT, Garbade M et al (2023) A user material interface for the peridyamic Peridigm
framework. SoftwareX 21. https:// doi. org/ 10. 1016/j. softx. 2023. 101322

 86. Parks M, Littlewood D, Mitchell J et al (2012) Peridigm users’ guide v1.0.0. Technical Report
SAND2012-7800, Sandia National Laboratories, Albuquerque, NM and Livermore, CA. https:// doi.
org/ 10. 2172/ 10556 19

 87. Littlewood D (2015) Roadmap for peridynamic software implementation. Technical Report SAND2015-9013,
Sandia National Laboratories, Albuquerque, NM and Livermore, CA. https:// doi. org/ 10. 2172/ 12261 15

 88. Littlewood DJ (2016) Roadmap for software implementation. In: Bobaru F, Geubelle PH, Foster
JT, et al (eds) Handbook of Peridynamic Modeling. Advances in Applied Mathematics, CRC Press,
chap 5. https:// doi. org/ 10. 1201/ 97813 15373 331

 89. Silling S, Epton M, Weckner O et al (2007) Peridynamic states and constitutive modeling. J Elast
88:151–184. https:// doi. org/ 10. 1007/ s10659- 007- 9125-1

 90. Parks ML, Littlewood DJ, Salinger AG et al (2011) Peridigm summary report: lessons learned in
development with agile components. Technical Report SAND2011-7045, Sandia National Laborato-
ries, Albuquerque, NM and Livermore, CA. https:// doi. org/ 10. 2172/ 10298 29

 91. de Berg M, van Kreveld M, Overmars M et al (1998) Computational geometry: algorithms and appli-
cations, 2nd edn. Springer

 92. Ganti A, Mitchell JA, Onunkwo U et al (2017) High fidelity simulations of large-scale wireless net-
works (PART II - FY2017). Technical Report SAND2017-11512, Sandia National Laboratories,
Albuquerque, NM and Livermore, CA. https:// doi. org/ 10. 2172/ 14898 63

 93. The SEACAS Project Website. https:// github. com/ sandi alabs/ seacas. Accessed 12 June 2022
 94. Sjaardema GD (2017) Sandia Engineering Analysis Code Access System v. 2.0.1. https:// doi. org/

10. 11578/ dc. 20171 025. 2033
 95. Ayachit U (2015) The ParaView guide: a parallel visualization application. Kitware
 96. Skroch M, Owen SJ, Staten ML et al (2022) CUBIT™ geometry and mesh generation toolkit

16.04 user documentation. Technical Report SAND2022-4195W, Sandia National Laboratories,
Albuquerque, NM and Livermore, CA

 97. Mitchell JA (2011) A nonlocal, ordinary, state-based plasticity model for peridynamics. Techni-
cal Report SAND2011-3166, Sandia National Laboratories, Albuquerque, NM and Livermore,
CA. https:// doi. org/ 10. 2172/ 10184 75

 98. Mitchell JA (2011) A nonlocal, ordinary-state-based viscoelasticity model for peridynamics. Tech-
nical Report SAND2011-8064, Sandia National Laboratories, Albuquerque, NM and Livermore,
CA. https:// doi. org/ 10. 2172/ 10298 21

 99. Mitchell JA, Silling SA, Littlewood DJ (2015) A position-aware linear solid constitutive model for
peridynamics. J Mech Mater Struct 10(5):539–557. https:// doi. org/ 10. 2140/ jomms. 2015. 10. 539

 100. Le Q, Bobaru F (2018) Surface corrections for peridynamic models in elasticity and fracture.
Comput Mech 61(4):499–518. https:// doi. org/ 10. 1007/ s00466- 017- 1469-1

 101. Ganzenmüller GC, Hiermaier S, May M (2015) Improvements to the prototype micro-brittle
model of peridynamics. In: Griebel M, Schweitzer MA (eds) Meshfree Methods for Partial Dif-
ferential Equations VII. Lecture Notes in Computational Science and Engineering, Springer, p
163–183. https:// doi. org/ 10. 1007/ 978-3- 319- 06898-5_9

 102. Foster JT (2016) Constitutive modeling in peridynamics. In: Bobaru F, Geubelle PH, Foster JT,
et al (eds) Handbook of Peridynamic Modeling. Advances in Applied Mathematics, CRC Press,
chap 6. https:// doi. org/ 10. 1201/ 97813 15373 331

https://doi.org/10.1016/j.camwa.2015.12.006
https://doi.org/10.1007/978-3-319-22977-5_31-1
https://doi.org/10.2172/1221526
https://doi.org/10.1145/3404397.3404421
https://doi.org/10.1109/IPDPS49936.2021.00052
https://doi.org/10.1016/j.softx.2023.101322
https://doi.org/10.2172/1055619
https://doi.org/10.2172/1055619
https://doi.org/10.2172/1226115
https://doi.org/10.1201/9781315373331
https://doi.org/10.1007/s10659-007-9125-1
https://doi.org/10.2172/1029829
https://doi.org/10.2172/1489863
https://github.com/sandialabs/seacas
https://doi.org/10.11578/dc.20171025.2033
https://doi.org/10.11578/dc.20171025.2033
https://doi.org/10.2172/1018475
https://doi.org/10.2172/1029821
https://doi.org/10.2140/jomms.2015.10.539
https://doi.org/10.1007/s00466-017-1469-1
https://doi.org/10.1007/978-3-319-06898-5_9
https://doi.org/10.1201/9781315373331

147Journal of Peridynamics and Nonlocal Modeling (2024) 6:118–148

1 3

 103. Breitenfeld M, Geubelle P, Weckner O et al (2014) Non-ordinary state-based peridynamic analysis
of stationary crack problems. Comput Methods Appl Mech Eng 272:233–250. https:// doi. org/ 10.
1016/j. cma. 2014. 01. 002

 104. Foster J, Silling S, Chen W (2010) Viscoplasticity using peridynamics. Int J Numer Methods Eng
81(10):1242–1258. https:// doi. org/ 10. 1002/ nme. 2725

 105. Warren T, Silling S, Askari A et al (2009) A non-ordinary state-based peridynamic method to
model solid material deformation and fracture. Int J Solids Struct 46(5):1186–1195. https:// doi.
org/ 10. 1016/j. ijsol str. 2008. 10. 029

 106. O’Grady J, Foster J (2014) Peridynamic beams: a non-ordinary state-based model. Int J Solids
Struct 51(18):3177–3183. https:// doi. org/ 10. 1016/j. ijsol str. 2014. 05. 014

 107. O’Grady J, Foster J (2014) Peridynamic plates and flat shells: a non-ordinary state-based model.
Int J Solids Struct 51(25–26):4572–4579. https:// doi. org/ 10. 1016/j. ijsol str. 2014. 09. 003

 108. Tupek MR (2014) Extension of the peridynamic theory of solids for the simulation of materials
under extreme loadings. PhD thesis, Massachusetts Institute of Technology

 109. Xu X (2009) Generalized variational principles for uncertainty quantification of boundary value
problems of random heterogeneous materials. J Eng Mech 135(10). https:// doi. org/ 10. 1061/
(ASCE) EM. 1943- 7889. 00000 37

 110. Bessa M, Foster J, Belytschko T et al (2014) A meshfree unification: reproducing kernel peridy-
namics. Comput Mech 53(6):1251–1264. https:// doi. org/ 10. 1007/ s00466- 013- 0969-x

 111. Hillman M, Pasetto M, Zhou G (2020) Generalized reproducing kernel peridynamics: unification
of local and non-local meshfree methods, non-local derivative operations, and an arbitrary-order
state-based peridynamic formulation. Comput Part Mecha 7(2):435–469. https:// doi. org/ 10. 1007/
s40571- 019- 00266-9

 112. Needleman A (1989) Dynamic shear band development in plane strain. J Appl Mech 56(1):1–9.
https:// doi. org/ 10. 1115/1. 31760 46

 113. Silling S (2017) Stability of peridynamic correspondence material models and their particle discre-
tizations. Comput Methods Appl Mech Eng 322:42–57. https:// doi. org/ 10. 1016/j. cma. 2017. 03. 043

 114. Littlewood D (2010) Simulation of dynamic fracture using peridynamics, finite element modeling, and
contact. In: Proceedings of the ASME 2010 International Mechanical Engineering Congress and Expo-
sition (IMECE), Vancouver, British Columbia, Canada. https:// doi. org/ 10. 1115/ IMECE 2010- 40621

 115. Littlewood DJ (2011) A nonlocal approach to modeling crack nucleation in AA 7075-T651. In:
Proceedings of the ASME 2011 International Mechanical Engineering Congress and Exposition
(IMECE), Denver, Colorado. https:// doi. org/ 10. 1115/ IMECE 2011- 64236

 116. Flanagan D, Taylor L (1987) An accurate numerical algorithm for stress integration with finite rotations.
Comput Methods Appl Mech Eng 62(3):305–320. https:// doi. org/ 10. 1016/ 0045- 7825(87) 90065-X

 117. Askari E, Bobaru F, Lehoucq R et al (2008) Peridynamics for multiscale materials modeling. In: Pro-
ceedings of SciDAC 2008, Journal of Physics: Conference Series, vol 125. IOP Publishing. https://
doi. org/ 10. 1088/ 1742- 6596/ 125/1/ 012078

 118. Madenci E, Oterkus E (2014) Peridynamic theory and its applications. Springer. https:// doi. org/ 10.
1007/ 978-1- 4614- 8465-3

 119. Johnson G, Cook W (1985) Fracture characteristics of three metals subjected to various strains,
strain rates, temperatures and pressures. Eng Fract Mech 21(1):31–48. https:// doi. org/ 10. 1016/ 0013-
7944(85) 90052-9

 120. Foster J, Silling S, Chen W (2011) An energy based failure criterion for use with peridynamic states.
Int J Multiscale Comput Eng 9(6):675–688. https:// doi. org/ 10. 1615/ IntJM ultCo mpEng. 20110 02407

 121. The NOX and LOCA Project Website. https:// trili nos. github. io/ nox_ and_ loca. html. Accessed 12
June 2022

 122. The Epetra Project Website. https:// trili nos. github. io/ epetra. html. Accessed 12 June 2022
 123. The Belos Project Website. https:// trili nos. github. io/ belos. html. Accessed 12 June 2022
 124. The Peridigm Project Website. https:// github. com/ perid igm/ perid igm. Accessed 12 June 2022
 125. Geuzaine C, Remacle JF (2009) Gmsh: A 3-D finite element mesh generator with built-in pre- and post-

processing facilities. Int J Numer Methods Eng 79(11):1309–1331. https:// doi. org/ 10. 1002/ nme. 2579
 126. The meshio Project Website. https:// github. com/ nschl oe/ meshio. Accessed 12 June 2022
 127. Ahrens J, Geveci B, Law C (2005) Paraview: An end-user tool for large data visualization. In: Hansen

CD, Johnson CR (eds) The visualization handbook. Elsevier, p 717–731. https:// doi. org/ 10. 1016/
B978- 01238 7582-2/ 50038-1

 128. Childs H, Brugger E, Whitlock B et al (2012) VisIt: an end-user tool for visualizing and analyzing
very large data. In: Bethel EW, Childs H, Hansen C (eds) High Performance Visualization–Enabling
Extreme-Scale Scientific Insight. Chapman and Hall/CRC, p 357–372. https:// doi. org/ 10. 1201/ b12985

https://doi.org/10.1016/j.cma.2014.01.002
https://doi.org/10.1016/j.cma.2014.01.002
https://doi.org/10.1002/nme.2725
https://doi.org/10.1016/j.ijsolstr.2008.10.029
https://doi.org/10.1016/j.ijsolstr.2008.10.029
https://doi.org/10.1016/j.ijsolstr.2014.05.014
https://doi.org/10.1016/j.ijsolstr.2014.09.003
https://doi.org/10.1061/(ASCE)EM.1943-7889.0000037
https://doi.org/10.1061/(ASCE)EM.1943-7889.0000037
https://doi.org/10.1007/s00466-013-0969-x
https://doi.org/10.1007/s40571-019-00266-9
https://doi.org/10.1007/s40571-019-00266-9
https://doi.org/10.1115/1.3176046
https://doi.org/10.1016/j.cma.2017.03.043
https://doi.org/10.1115/IMECE2010-40621
https://doi.org/10.1115/IMECE2011-64236
https://doi.org/10.1016/0045-7825(87)90065-X
https://doi.org/10.1088/1742-6596/125/1/012078
https://doi.org/10.1088/1742-6596/125/1/012078
https://doi.org/10.1007/978-1-4614-8465-3
https://doi.org/10.1007/978-1-4614-8465-3
https://doi.org/10.1016/0013-7944(85)90052-9
https://doi.org/10.1016/0013-7944(85)90052-9
https://doi.org/10.1615/IntJMultCompEng.2011002407
https://trilinos.github.io/nox_and_loca.html
https://trilinos.github.io/epetra.html
https://trilinos.github.io/belos.html
https://github.com/peridigm/peridigm
https://doi.org/10.1002/nme.2579
https://github.com/nschloe/meshio
https://doi.org/10.1016/B978-012387582-2/50038-1
https://doi.org/10.1016/B978-012387582-2/50038-1
https://doi.org/10.1201/b12985

148 Journal of Peridynamics and Nonlocal Modeling (2024) 6:118–148

1 3

 129. Diehl P, Bußler M, Pflüger D et al (2017) Extraction of fragments and waves after impact damage in
particle-based simulations. In: Griebel M, Schweitzer MA (eds) Meshfree Methods for Partial Differ-
ential Equations VIII. Lecture Notes in Computational Science and Engineering, Springer, p 17–34.
https:// doi. org/ 10. 1007/ 978-3- 319- 51954-8_2

 130. Littlewood DJ, Silling SA, Demmie PN (2016) Identification of fragments in a meshfree peridynamic
simulation. In: Proceedings of the ASME 2016 International Mechanical Engineering Congress and
Exposition (IMECE), Phoenix, Arizona. https:// doi. org/ 10. 1115/ IMECE 2016- 65400

 131. Bussler M, Diehl P, Pflüger D et al (2017) Visualization of fracture progression in peridynamics.
Comput Graph 67:45–57. https:// doi. org/ 10. 1016/j. cag. 2017. 05. 003

 132. Diehl P, Prudhomme S, Lévesque M (2019) A review of benchmark experiments for the valida-
tion of peridynamics models. J Peridyn Nonlocal Model 1(1):14–35. https:// doi. org/ 10. 1007/
s42102- 018- 0004-x

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://doi.org/10.1007/978-3-319-51954-8_2
https://doi.org/10.1115/IMECE2016-65400
https://doi.org/10.1016/j.cag.2017.05.003
https://doi.org/10.1007/s42102-018-0004-x
https://doi.org/10.1007/s42102-018-0004-x

	The Peridigm Meshfree Peridynamics Code
	Abstract
	1 Introduction
	2 Methods and Algorithms
	2.1 Data Structures for Nonlocal Calculations
	2.2 Meshfree Discretizations
	2.3 Constitutive Models
	2.3.1 Material Model Programming Interface

	2.4 Bond Failure
	2.5 Modeling Contact
	2.6 Time Integration
	2.6.1 Explicit Time Integration for Transient Dynamics
	2.6.2 Implicit Time Integration for Statics and Quasi-Statics

	2.7 Compute Classes
	2.8 Parallelization

	3 Running Simulations with Peridigm
	3.1 Obtaining and Building Peridigm
	3.2 Preparing a Simulation
	3.3 Executing Peridigm
	3.4 Post-Processing
	3.5 Example Simulations
	3.5.1 Tensile Test Simulation
	3.5.2 Fragmenting Cylinder Simulation

	4 Summary and Conclusions
	Acknowledgements
	References

