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Abstract
Peridynamics is a non-local continuum formulation and material points inside an influ-
ence domain, named horizon, can interact with each other. Peridynamics also has a capa-
bility to represent wave dispersion which is observed in real materials especially at shorter 
wave lengths. Therefore, wave frequency and wave number have a nonlinear relationship 
in peridynamics. In this study, we present wave dispersion characteristics of peridynamics 
and compare with lattice dynamics to determine the horizon size for different materials 
including copper, gold, silver and platinum through an iterative process for the first time 
in the literature. This study also shows the superiority of peridynamics over classical con-
tinuum mechanics by having a length scale parameter, horizon, which allows peridynamics 
to represent the entire range of dispersion curves for both short and long wave lengths as 
opposed to limitation of classical mechanics to long wave lengths.
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1 Introduction

Peridynamics is a new continuum mechanics formulation [1]. Peridynamic equations of 
motion are integro-differential equations and they do not contain spatial derivatives as 
opposed to classical continuum mechanics which uses partial differential equations. As 
opposed to semi-analytical approaches [2] and finite element methodology, this brings 
a significant advantage to predict crack initiation and propagation since the displace-
ment field is discontinuous if cracks exist in the structure and spatial derivatives are not 
defined along the crack surfaces. Moreover, peridynamics is a non-local continuum for-
mulation so that material points inside an influence domain, named horizon, can interact 
with each other. Horizon is a length scale parameter which does not exist in classical con-
tinuum mechanics. Peridynamics also has a capability to represent wave dispersion which 
is observed in real materials especially at shorter wave lengths. Therefore, wave frequency 
and wave number have a nonlinear relationship in peridynamics.
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There has been a significant progress on peridynamics. Amongst these, Alpay and 
Madenci [3] performed fully coupled thermomechanical peridynamic analysis to predict 
crack growth. Basoglu et al. [4] investigated the potential of micro-cracks to deflect crack 
propagation. Celik et al. [5] utilised peridynamics to simulate nanoindentation experiments 
for thin films. De Meo et  al. [6] predicted how cracks initiate and propagate from cor-
rosion pits by using peridynamics. Diyaroglu et  al. [7] developed peridynamic wetness 
approach to determine moisture concentration in electronic packages. In order to reduce 
computational time of peridynamic simulations, Guski et  al. [8] performed peridynamic 
investigation of the microstructural behaviour of plasma sprayed coatings. Huang et al. [9] 
developed a new peridynamic model for visco-hyperelastic materials. Imachi et  al. [10] 
investigated dynamic crack arrest in peridynamic framework. Karpenko et al. [11] inves-
tigated the effect of small defects such as holes and micro-cracks on crack propagation. 
Kefal et  al. [12] performed peridynamic topology optimisation study of structures with 
cracks. Liu et al. [13] studied fracture of graphene sheets by using peridynamics. Madenci 
et al. [14] developed weak form of peridynamics for nonlocal essential and natural bound-
ary conditions. Naumenko and Eremeyev [15] presented a non-linear direct peridynamic 
plate theory. Oterkus and Madenci [16] demonstrated peridynamic formulation to consider 
torsional and antiplane shear deformations. Ren et al. [17] introduced dual horizon peri-
dynamics to take into account varible horizons in the solution domain. Vazic et  al. and 
Candas et al. [18–20] studied the interaction of macro and micro-crack under dynamic con-
ditions. In another study, Vazic et al. [21] presented peridynamic Mindlin plate formula-
tion by considering Winkler elastic foundation. Vazic et al. [22] compared different fam-
ily member search algorithms that can be used in peridynamic simulations. Peridynamic 
Timoshenko beam and Kirchhoff plate formulations are provided in Yang et al. [23] and 
[24], respectively. Peridynamic formulations for higher-order beams and plates are given 
in Yang et al. [25] and [26], respectively. Zhu et al. [27] studied polycrystalline fracture by 
using peridynamics.

Dispersion relationships were also investigated in peridynamic framework. Butt et  al. 
[28] presented wave dispersion and propagation in state-based peridynamics. Bazant et al. 
[29] compared wave dispersion and basic concepts of peridynamics to classical nonlocal 
damage models. Gu et al. [30] performed peridynamic wave dispersion analysis for con-
crete. Dayal [31] used strain-gradient expansions to approximate peridynamic dispersion 
relation using Taylor series. Mutnuri and Gopalakrishnan [32] examined the wave disper-
sion properties in bond-based peridynamics. Wildman [33] presented discrete micromodu-
lus functions for reducing wave dispersion in linearized peridynamics. Zhang et  al. [34] 
investigated wave dispersion and propagation in linear peridynamic media. However, none 
of these studies utilised dispersion relationships to calculate the horizon size. Therefore, 
in this study, peridynamic dispersion relationships for bond-based peridynamics are com-
pared with the ones obtained from lattice dynamics and optimum values of horizon sizes 
for different materials are obtained including copper, gold, silver and platinum for the first 
time in the literature.

2  Dispersion Relationships in Peridynamic Theory

Peridynamics is a non-local continuum mechanics formulation since a material point can 
interact with other material points inside a region called horizon. The peridynamic equa-
tion of motion for a material point located at � can be written as f ollows:
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where � is mass density, t is time, � and �̈� represent the displacement and acceleration of 
the material point located at � , and � is the body load acting on the material point at � . �′ is 
the location of the material point inside the horizon of the material point located at � , H

�
 . 

Peridynamic force density, � , between material points located at � and �′ can be expressed 
as follows:

where c is the bond constant and the stretch, s , can be defined as follows:

Next, both one- and two-dimensional dispersion relationships in peridynamic theory will 
be presented.

2.1  One‑Dimensional Dispersion Relationships

To obtain the dispersion relationship for one-dimensional structures, the plane wave solution

 can be utilised where � is the angular frequency, k is the wave number and U is the con-
stant amplitude.

Substituting the plane wave solution given in Eq.  (4) into the peridynamic equation of 
motion given in Eq. (1) yields the dispersion relationship as follows:

where c = 2E∕(A�2) , E is the elastic modulus, � is the horizon size,A is the cross-sectional 
area and � is the Euler gamma constant.

2.2  Two‑Dimensional Dispersion Relationships

To obtain the dispersion relationship for two-dimensional structures, first, the plane wave solu-
tion for the longitudinal (x-) direction can be considered as follows:

where � is the unit vector of the wave propagation direction. For a wave propagating in the 
longitudinal direction, the unit vector is � = �x . Moreover, the tangential displacements are 
specified as zero, i.e. v(�, t) = 0.

Substituting the plane wave solution given in Eq. (6) into the peridynamic equation of 
motion given in Eq. (1) yields the dispersion relationship in the longitudinal direction as 
follows:

(1)��̈�(𝐱, t) = ∫
H𝐱

𝐟
(
𝐮
� − 𝐮, 𝐱� − 𝐱

)
dV � + 𝐛(𝐱, t)

(2)� = cs
(�� + ��) − (� + �)

|(�� + ��) − (� + �)|

(3)s =
|(�� + ��) − (� + �)| − |�� − �|

|�� − �|

(4)u(x, t) = Uei(kx−�t)

(5)�2
pd

=
4E

��2
(� − cosintegral(k�) + ln (k�))

(6)u(�, t) = Uei(k�⋅�−�t)
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where c = 9E∕(�h�3) , h is plate thickness and BesselJ[m,…] is Bessel function of the m 
kind. The dispersion relationship for the transverse (y-) direction can be obtained similarly 
as follows:

where StruveH[m,…] is Struve function of the m kind.

3  Dispersion Relationships in Lattice Dynamics

The nature of the crystal vibration and their interactions has been described with various 
methodologies. Born-von Karman (BvK) proposed a BvK model [35, 36] which assumes 
the ion-ion central interactions acting between one atom and its neighbours. Thus, the 
potential energy is a function of the distance between atomic pairs, where the displace-
ments that change between the atoms will contribute to the force constants.

A monatomic, face centred cubic (FCC) structural lattice with lattice constant ‘a’ has 
been studied, in which central forces are assumed to act between one atom and its first 
second and second nearest neighbours. This is due to the potential decays rather rapidly 
beyond the first few neighbours.

The determinant for calculating phonon frequencies for the normal modes of the vibra-
tions of the lattices is written as [36] follows:

where D is the 3 × 3 element of the determinant (dynamic matrix), M is the atomic mass, I 
is the unit matrix and � is the angular frequency of phonons in rad/sec. The explicit expres-
sion for the various element of the various diagonal and non-diagonal elements is given by 
the following:

and

where A1 and A2 are the central force constants in first and second nearest neighbours, 
respectively.

where qn is the phonon wave vector and n = i, j, k.
Suppose qi = q , qj = qk = 0 , (1,0,0) axis, in this case, the non-diagonal elements are 

Dij = 0 , and

(7)�L =

√
9E

� �3

(
� −

2BesselJ[1, �k]

k

)

(8)�T =

����� 9E

� �3

⎛⎜⎜⎝
� −

BesselJ[1, �k](−2 + �k� StruveH[0, �k])

k
+

� BesselJ[0, �k] (−2 + � StruveH[1, �k])

⎞⎟⎟⎠

(9)[
|||D − �2MI

||| = 0

(10)Dii = 2A1

[
2 − Ci

(
C − Ci

)]
+ 4A2S

2
i

(11)Dij = 2A1SiSj

(12)Si = sin
(
1

2
aqn

)
,Ci = cos

(
1

2
aqn

)
,C = Ci + Cj + Ck
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Therefore, dispersion relationships can be written as follows:

The central force constants A1 and A2 can be related to the elastic constants as follows:

4  Numerical Results

In this section, dispersion relationships for four different materials obtained from peridy-
namics and lattice dynamics will be presented. By comparing the dispersion relationships 
obtained from peridynamics and lattice dynamics approaches through an iterative process 
will provide the horizon size value for a particular material.

4.1  Copper

In the first case, copper material is considered. The material properties of the copper are 
presented in Table 1.

Peridynamic dispersion curves for copper can be obtained using the 1-Dimensional 
dispersion relationship given in Eq. (4). By comparing peridynamic relationship with the 
one obtained from lattice dynamics given in Eq. (15), the horizon size can be obtained as 
� = 2.405 × 10−10 m (Fig. 1a).

(13)

Dxx = 4A1

[
1 − cos
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1

2
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)]
+ 4A2sin

2
(
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2
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= 8A1sin

2
(
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4
aq

)
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2
(
1

2
aq

)
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2
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1

4
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)

(15)

⎧⎪⎨⎪⎩
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1
=
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+

4A2
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�
1

2
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�

�2
2
= �2

3
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�
1

4
aq
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(16)A1 = aC44

(17)A2 =
a

4

(
C11 − C12 − C44

)

Table 1  Material properties of 
copper

Parameters Value Units

Atomic mass 1.055e-25 kg
Density 8960 Kg/m3

Lattice constant 3.598 A
Young’s modulus 130 GPa
Poisson’s ratio 0.34 -
Elastic constant,  C11 [37] 1.69 1012dyn/cm2

Elastic constants,  C12 [37] 1.22 1012dyn/cm2

Elastic constants,  C44 [37] 0.754 1012dyn/cm2
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Peridynamic dispersion curves for copper for both longitudinal and transverse direc-
tions can be obtained from Eqs. (7) and (8), respectively. By comparing peridynamic 
relationships with the ones obtained from lattice dynamics given in Eq. (15), the hori-
zon size can be obtained as � = 2.569 × 10−10 m (Fig. 1b).

4.2  Gold

In the second case, gold material is considered. The material properties of the gold are 
presented in Table 2.

Peridynamic dispersion curves for gold can be obtained using the 1-dimensional dis-
persion relationship given in Eq. (4). By comparing peridynamic relationship with the 
one obtained from lattice dynamics given in Eq. (15), the horizon size can be obtained 
as � = 2.903 × 10−10 m (Fig. 2a).

Peridynamic dispersion curves for gold for both longitudinal and transverse direc-
tions can be obtained from Eqs. (7) and (8), respectively. By comparing peridynamic 
relationships with the ones obtained from lattice dynamics given in Eq. (15), the hori-
zon size can be obtained as � = 3.0875 × 10−10 m (Fig. 2b).

Fig. 1  Dispersion relationships for copper: a 1-D; b 2-D

Table 2  Material properties of 
gold

Parameters Value Units

Atomic mass 3.2707137e-25 kg
Density 19,320 Kg/m3

Lattice constant 4.064 A
Young’s modulus 79 GPa
Poisson’s ratio 0.42 -
Elastic constant,  C11 [37] 1.89 1012dyn/cm2

Elastic constant,  C12 [37] 1.59 1012dyn/cm2

Elastic constant,  C44 [37] 0.426 1012dyn/cm2
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4.3  Silver

In the third case, silver material is considered. The material properties of the silver are pre-
sented in Table 3.

Peridynamic dispersion curves for silver can be obtained using the 1-dimensional dis-
persion relationship given in Eq.  (4). By comparing peridynamic relationship with the 
one obtained from lattice dynamics given in Eq. (15), the horizon size can be obtained as 
� = 2.991 × 10−10 m (Fig. 3a).

Peridynamic dispersion curves for silver for both longitudinal and transverse directions 
can be obtained from Eqs. (7) and (8), respectively. By comparing peridynamic relation-
ships with the ones obtained from lattice dynamics given in Eq. (15), the horizon size can 
be obtained as � = 3.173 × 10−10 m (Fig. 3b).

4.4  Platinum

In the final case, platinum material is considered. The material properties of the platinum 
are presented in Table 4.

Peridynamic dispersion curves for platinum can be obtained using the 1-Dimensional 
dispersion relationship given in Eq. (4). By comparing peridynamic relationship with the 

Fig. 2  Dispersion relationships for gold: a 1-D; b 2-D

Table 3  Material properties of 
silver

Parameters Value Units

Atomic mass 1.7911901e-25 kg
Density 10,490 Kg/m3

Lattice constant 4.079 A
Young’s modulus 85 GPa
Poisson’s ratio 0.37 -
Elastic constant,  C11 [37] 1.22 1012dyn/cm2

Elastic constant,  C12 [37] 0.92 1012dyn/cm2

Elastic constant,  C44 [37] 0.446 1012dyn/cm2



468 Journal of Peridynamics and Nonlocal Modeling (2023) 5:461–471

1 3

one obtained from lattice dynamics given in Eq. (15), the horizon size can be obtained as 
� = 3.185 × 10−10 m (Fig. 4a).

Peridynamic dispersion curves for platinum for both longitudinal and transverse 
directions can be obtained from Eqs. (7) and (8), respectively. By comparing peridy-
namic relationships with the ones obtained from lattice dynamics given in Eq. (15), the 
horizon size can be obtained as � = 3.375 × 10−10 (Fig. 4b).

By considering all comparisons between peridynamic dispersion curves and those 
obtained from lattice dynamics, a very good match was obtained for 1-dimensional 
peridynamic model for all four materials considered in this study. However, for 
2-dimensional peridynamic models, the difference between peridynamics and lattice 
model results is slightly higher for copper with respect to gold, silver and platinum. 
By comparing the material properties of all four materials, atomic mass, density and 
lattice constant of copper are lower with respect to other three materials which may be 
the reason behind this difference.

Fig. 3  Dispersion relationships for silver: a 1-D; b 2-D

Table 4  Material properties of 
platinum

Parameters Value Units

Atomic mass 3.2394457e-25 kg
Density 21,450 Kg/m3

Lattice constant 3.912 A
Young’s modulus 171 GPa
Poisson’s ratio 0.38 -
Elastic constant, C11 [37] 3.467 1012dyn/cm2

Elastic constant, C12 [37] 2.507 1012dyn/cm2

Elastic constant, C44 [37] 0.756 1012dyn/cm2
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5  Conclusion

In this study, one-dimensional and two-dimensional dispersion relationships were obtained 
from peridynamics and lattice dynamics. Dispersion relationships from both approaches 
have nonlinear characteristic as observed in real materials. Finally, optimum horizon sizes 
for peridynamics for different materials including copper, gold, silver and platinum were 
obtained by comparing peridynamic dispersion curves against dispersion curves obtained 
from lattice dynamics through an iterative process for the first time in the literature. This 
study also shows the superiority of peridynamics over classical continuum mechanics by 
having a length scale parameter, horizon, which allows peridynamics to represent the entire 
range of dispersion curves for both short and long wave lengths as opposed to limitation of 
classical mechanics to long wave lengths.
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