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Abstract
Localization and nonlocalization are characterized as a measure of degrees of separa-
tion between two material points in material’s discrete framework and as a measure of 
unshared and shared information, respectively, manifested as physical quantities between 
them, in the material’s continuous domain. A novel equation of motion to model the 
deformation dynamics of material is proposed. The shared information between two 
localizations is quantified as nonlocalization via a novel multiscale notion of Local and 
Nonlocal Deformation-Gamuts or DG Localization and Nonlocalization. Its applicability 
in continuum mechanics to model elastoplastic deformation is demonstrated. It is shown 
that the stress–strain curves obtained using local and nonlocal deformation-gamuts are 
found to be in good agreement with the Ramberg–Osgood equation for the material 
considered. It is also demonstrated that the cyclic strain hardening exponent and cyclic 
stress–strain coefficient computed using local and nonlocal deformation-gamuts are com-
parable with the experimental results as well as the theoretical estimations published in 
the open literature.

Keywords Local and nonlocal deformation-gamuts · Degrees of separation · Shared and 
unshared information · Elastoplastic deformation · Peridynamics · Social distance

1 Introduction

Every entity is a notion in itself subjected to the influence of its surroundings. Locality is 
defined as the influence on any entity by its immediate surroundings. Nonlocality is the 
influence on the entity by its far surroundings. The idea of near and far surroundings, how-
ever, is very subjective.
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1.1  Brief Overview of Localization

The concept of localization was conceived from the field theories in classical physics as an 
alternative to the concept of action at a distance. Since then, it has been investigated exten-
sively in many areas of pure and applied mathematical and physical sciences at multiple 
scales. For example, in classical physics the nonlocal laws of attraction such as Newton’s 
universal law of gravitation [1] or Coulomb’s inverse square law [2, 3], are purely based on 
the distance between two localized masses or charges. However, the local laws of resist-
ance, for instance Newton’s laws of motion [4], disregard the distance between a localized 
mass and the entity exerting force on it, and in electromagnetism the localized electromag-
netic field is determined using Maxwell’s equations [5] that completely disregard the dis-
tance between the sources of this field as well. In relativistic dynamics the notion of locali-
zation is contingent upon the invariant physical state of the entity. While general relativity 
addresses the nonlocal interaction between two invariant entities localized in space-time 
continuum, special relativity utilizes the concept of invariant parameter evolution to deter-
mine the relationship between space and time. For example, Einstein’s famous equation 
about mass energy equivalence addresses the relationship between the intrinsic localized 
energy of any mass at rest and the speed of light.

1.2  Nonlocality and Locality in Continuum Mechanics

Nonlocality is a widely used notion in continuum mechanics to model natural development 
of discontinuities in deforming materials. By natural development it is presumed that there 
are no pre-existing discontinuities.

Some local fracture-mechanics-based numerical models, such as the cohesive-crack 
model, extended finite element method, or the cracking particles method, attempt to model 
natural cracking effectively. However, it is required to have a pre-existing crack to model its 
natural propagation via these methods. Cohesive-zone models introduced by Barenblatt [6] 
and Dugdale [7], and later investigated by Xu and Needleman [8], de Borst [9], Hirmand 
and Papoulia [10] and many other researchers in open literature, for example, take into 
account the stress–displacement relationship around the tip of an existing crack in the finite 
element framework. In the extended finite element method, developed by Moë s, Belytschko 
and collaborators [11, 12], the existing discontinuity is categorized as a strong or a weak 
discontinuity in the form of the solution variable of a problem or the derivative of the solu-
tion variable, respectively. The solution space is extended using discontinuous functions. 
In cracked-particle method, proposed by Rabczuk and Belytschko and further studied by 
other authors [13, 14], the displacement field is decomposed into the usual continuous part 
and the enriched discontinuous part. While the discretization of the continuous displace-
ment field is usually done using moving least squares shape functions of linear complete-
ness, the enriched displacement field is obtained as a product of the shape function with 
enrichment functions, identical to the Heaviside step function, attributing the jump.

To address the natural development of discontinuities, Eringen et al. proposed the idea of 
nonlocal continuum field theory [15–19] that independently addresses the state of a material 
point of the body, relative to the state of all the material points of the body influencing the 
behavior of that material point. The constitutive equations defining the state as a relationship 
between response objects and functions of independent objects use integral functionals instead 
of partial spatial derivatives. The volume encompassed by the material points influencing the 
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material point in consideration is defined as its neighborhood. Additionally, Silling considered 
relative change in the states between two material points as well. Silling, thus, modified Erin-
gen’s mathematical framework, resulting in the so-called peridynamics [20–29]. In order to 
address non-uniform neighborhood sizes across the material domain, the concept of dual-hori-
zon peridynamics was proposed by Ren et al. [30]. It was also demonstrated that this concept 
is able to address the “ghost force” issue and thus eliminates the need of surface correction. 
Based on the hypothesis that the nature of locality is inversely dependent on the size of the 
neighborhood, Madenci et al. [31] proposed peridynamic differential operator to convert the 
local form of differential equations to their nonlocal form. Local to nonlocal conversion in the 
peridynamic differential operator is carried out by considering a different infinitesimally small 
incremental neighborhood volume for each material point. A nonlocal operator method was 
proposed by Ren et al. [32] considering “locality” as a special case of “nonlocality”. In this 
method the local differential operators are replaced by several nonlocal differential operators 
to solve partial differential equations.

1.3  Brief Overview of This Study

The frameworks proposed by Eringen et al. and Silling, and the subsequent nonlocal frame-
works, consider nonlocality based on the Euclidean distance between the two material points. 
In these frameworks all the interactions are treated as direct and nonlocal. These frameworks 
do not take into account the degrees of separation of any two interacting material points.

Our study builds on the research conducted thus far in the area of nonlocal continuum 
mechanics. In view of the subjective nature of the idea of near and far surroundings, in 
this study we define localization and nonlocalization as a measure of degrees of separation 
between two material points in material’s discrete framework, and as a measure of unshared 
and shared information, respectively, between them in material’s continuous domain. Based 
on these definitions, we introduce a new, independent, multiscale notion of Local and Nonlo-
cal Deformation-Gamuts or DG Localization and Nonlocalization, and quantify the localized 
and nonlocalized information by means of DG Functional that we developed for continuous 
and discrete domains. In this paper we demonstrate its applicability to model elastoplastic 
deformation in the most natural manner.

This paper is organized as follows. In Sect. 2, we briefly provide preliminary background 
of the underlying computational framework for our study. In Sect. 3, based on our novel notion 
of Local and Nonlocal Deformation-Gamuts, we propose a governing equation of motion to 
model the deformation dynamics of a material. We discuss our notion in detail in the sub-
sections of Sect. 3. Based on the discussion in Sect. 3, we re-express our proposed equation 
of motion in Sect. 4. In the subsections, we propose methodologies to determine the param-
eters used in our notion. In Sect. 5, we simulate specimens of two materials: AL 7075 T651 
(Extruded) and AMS 4911 (BT20) Titanium Alloy, subjected to monotonic and cyclic load-
ings. We compare our results with the theoretical and published experimental results. In the 
final section, we provide concluding remarks.

2  Preliminary Background: Computational Framework

In the following subsections we provide the underlying computational framework for our 
study.
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2.1  Local and Nonlocal Bonds/Interactions1

Consider a system of masses interacting with one another as shown in Fig. 1.
In the context of Fig. 1, for p, q ∈ {1, 2, 3, 4} , mp is a mass illustrated by its respective 

dark circle. It is subjected to an external force Fp . Two masses mp and mq interact with 
each other via bond illustrated by a linear massless spring between them. The bond con-
stant between these masses is Cp,q . We identify the bond constant Cp,q and the interaction 
between the corresponding masses as local if |p − q| = 1 . The bond constant Cp,q and the 
interaction between the corresponding masses are nonlocal if |p − q| ≠ 1.

In general, in computational framework we recognize the interaction between two 
masses as local if the degree of separation, or the “social distance”, between them is one; 
and nonlocal if the degrees of separation between them are two or more.

We indicate the subscript q as q
L
 if its corresponding mass is locally interacting with mp , 

and as q
NL

 if its corresponding mass is nonlocally interacting with mp.

2.2  Local and Nonlocal Elasticity Matrices

The equation of motion for the dynamical system in Fig. 1 is,

(1)��̈ +�
NL
� = �,

Fig. 1  A Dynamical System of Masses Interacting with One Another

1 In this study, the words bond(s) and interaction(s) are interchangeably used according to the context.
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where � =

⎡⎢⎢⎢⎣

m1 0 0 0

0 m2 0 0

0 0 m3 0

0 0 0 m4

⎤⎥⎥⎥⎦
 is the mass matrix, �̈ =

⎛⎜⎜⎜⎝

ü1
ü2
ü3
ü4

⎞⎟⎟⎟⎠
 is the vector valued displace-

ment of masses, � =

⎛⎜⎜⎜⎝

u1
u2
u3
u4

⎞⎟⎟⎟⎠
 is the displacement vector of masses, and � =

⎛⎜⎜⎜⎝

F1

F2

F3

F4

⎞⎟⎟⎟⎠
 is the 

external force vector. We identify,

as Nonlocal Elasticity Matrix.
Assuming that the masses in the system in Fig. 1 interact only locally and that the non-

local bonds do not exist, we express local elasticity matrix, �
L
 , in the Eq. (3) as,

We, thus, distinguish Nonlocal Elasticity Matrix with elements for only local bond con-
stants as Local Elasticity Matrix. A subtle way to look at it is that the local elasticity matrix 
is a special case of nonlocal elasticity matrix in which nonlocal bonds do not have any 
material properties. Thus, for the system in Fig. 1, the local elasticity matrix is a tridiago-
nal nonlocal elasticity matrix with bandwidth 1.

An Indicative Remark: Consider a material domain made up of n material points locally 
and nonlocally interacting with one another. Since the degree of separation between mate-
rial points in local elasticity matrix is one, it is unable to model inelasticity and retrieves a 
brittle material in modeling.

To model inelasticity and to ensure that the dynamics of the material is the same for any 
number of degrees of separation considered, we effectively and strategically distribute the 
material properties associated with the local elements of the local elasticity matrix over the 
local and nonlocal elements of the nonlocal elasticity matrix.

2.3  Nonlocal Force‑Field

We distribute material properties by means of the nonlocal force-field generated from the 
total potential (strain) energy of the material. A force-field is a mathematical expression 
describing the dependence of the energy of a system on the coordinates of its particles. It is 
a widely used notion in Molecular Dynamics (MD). In molecular dynamics, it consists of 
an analytical form of the interatomic potential energy, and a set of parameters entering into 
this form [33]. It is a simplified model, with sufficient details to reproduce the properties of 

(2)�
NL
=

⎡⎢⎢⎢⎢⎣

∑4

q=1
C1,q − C1,2 − C1,3 − C1,4

−C2,1

∑4

q=1
C2,q − C2,3 − C2,4

−C3,1 − C3,2

∑4

q=1
C3,q − C3,4

−C4,1 − C4,2 − C4,3

∑4

q=1
C4,q

⎤⎥⎥⎥⎥⎦

(3)�
L
=

⎡⎢⎢⎢⎣

C1,2 − C1,2 0 0

−C2,1 C2,1 + C2,3 − C2,3 0

0 − C3,2 C3,2 + C3,4 − C3,4

0 0 − C4,3 C4,3

⎤⎥⎥⎥⎦
.
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interest, of the true potential of particles being held by simple harmonic forces. The Nonlo-
cal Force-Field is a special case of energy functions or potentials between material points 
at continuum scale. It represents a set of parameters in a functional form used to calculate 
the potential energy of a system of material points. Nonlocal Force-Field ensures the con-
servation of total potential energy of the material domain. This allows us to strategically 
distribute the material properties over the local and nonlocal elements of Nonlocal Elastic-
ity Matrix.

For a material domain made up of n material points locally and nonlocally interacting 
with one another, the total potential energy while the material is deforming is given as,

In Eq. (4), �p,q is the nonlocal elasticity matrix between material points p and q, and �p 
and �q are their displacements due to the deformation.

In MD, the total energy of the system of n particles (material points / particles) with 
interaction described by an empirical potential is expanded in many-body expansion [34, 
35] as,

In Eq. (5), the superscripted bracketed integers (1), (2) and (3) represent one, two and 
three-body potentials, respectively. Thus, �(1) is a one-body term due to an external field 
or boundary conditions. These potentials represent rigid-body motion and add to 0. �(2) 
is a two-body term or pair potential. In MD, this pair potential is usually expressed using 
any empirical functional with a well-defined potential well-depth as a measure of how 
strongly two particles attract each other, with the right side of the well-depth as the attrac-
tive side and the left side as the repulsive side. �(3) is a three-body term that arises when 
the direct interaction of a pair of atoms or material points is modified by the presence of a 
third atom or material point. This modification in the interaction between a pair of atoms 
or material points happens when some of the interactive potential between them is shared 
as an indirect interaction with the third atom or material point.

Thus, considering parallelism with MD, from Eqs. (4) and (5) we have,

The total internal force that material point p is subjected to, contributing to its nonlocal 
force-field, is given as the vector sum of the forces from all the pair-potentials involving p,

(4)
� =

1

4

n∑
p=1

n∑
q = 1

q ≠ p

(�p − �q)
T�

p,q
(�p − �q).

(5)

�(�1, �2,… , �n) =

n∑
p=1

�
(1)(�p) +

n∑
p=1

n∑
q = 1

q ≠ p

�
(2)(�p, �q) +

n∑
p=1

n∑
q = 1

q ≠ p, r

n∑
r = 1

r ≠ q, p

�
(3)(�p, �q, �r).

(6)
� = �(�1, �2,… , �n) =

n∑
p=1

n∑
q = 1

q ≠ p

�
(2)(�p, �q).

(7)
f⃗ ffp = −

n∑
q = 1

q ≠ p

∇��
�
(2)

p
(�p, �q),
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where the gradient ∇��
 operates on the position �p of the material point p. Any change in 

the total potential energy that results from a displacement of material point p contributes to 
the force acting on the material point p in the direction of displacement. The left-hand side 
in Eq. (7) is the localized force associated with the localized potential at material point p, 
and its right-hand side is the force-field generated by the internal forces in the local and 
nonlocal bonds of p.

In order to obtain a desired distribution of localized potentials of the material points 
over their nonlocal bonds, we introduce a novel notion of local and nonlocal deformation-
gamuts in Sect. 3.

3  Governing Equation of Motion for Deformation Dynamics based 
on Local and Nonlocal Deformation‑Gamuts

Based on the variation in energy states across material’s spatial domain, we express the 
governing equation of motion of a material point � , influencing its local and nonlocal 
domains, as shown in Eq. (8),

The expression in Eq. (8) is motivated by the phenomenon of modification in the direct 
interaction between two material points due to the presence of some third material point. 
This phenomenon is discussed in Subsect. 2.3. In Eq. (8), �

L@�
 is the material’s mass-density 

associated with the local volume around material point � , the subscript L@� is read as “local-
ized at � ”, �̈ is the acceleration of the material point � in the reference configuration, �d(�, t) 
is the external force-density that the local volume around material point � is subjected to, 
V

L
(�) as well as V

NL
(�) are local and nonlocal volumes, respectively, around material point � , 

�′ in V
L
(�) directly interacts with � and �′ in V

NL
(�) indirectly interacts with � . �

L
(�, ��, t) and 

�
NL
(�, ��, t) are local and nonlocal potentials associated with material point � . The parameter 

R�,�′ modifies the direct interaction between two material points � and �′ and thus quantifies 
the indirect interaction between � and some �′ . All these notions are discussed in detail in 
Subsect. 3.1.

For a discretized domain, �
L@�

 , �̈(�, t) and �d(�, t) assume the form of mass matrix, vec-
tor valued displacement of masses and external force vector, respectively, similar to the one 
expressed in Eq. (1). The discretized versions of the remaining parameters in Eq. (8) are 
discussed in Subsect. 3.2.

3.1  DG Functional for Continuous Domain

For a continuous domain, at any instant2 t, the functional at material particle � is expressed 
as,

(8)

𝜌
L@�

�̈(�, t) + ∫
V
L
(�)

(1 −R�,�� )∇�
�

L
(�, ��, t)dV

L
(��) + ∫

V
NL

(�)

∇
�
�

NL
(�, ��, t)dV

NL
(��) = �d(�, t).

2 Since we have considered a snapshot in time, the parameter t is dropped from the discussion.
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and

Equation (9) represents Local Deformation-Gamut or DG Localization. It corresponds 
to the local elasticity matrix �

L
 in discretized domain. Equation (10) represents Nonlo-

cal Deformation-Gamut or DG Nonlocalization. It corresponds to the nonlocal elasticity 
matrix �

NL
 in discretized domain. The term �

L
 is the potential energy between the material 

particles � and �′ in the local domain. It is the energy associated with the local interactions 
in �

L
 . The term �

NL
 is the potential energy between the material particles � and �′ in the 

nonlocal domain. It is the energy associated with the nonlocal interactions in �
NL

.
In order to ensure that the total energy remains conserved, at any instant t, it is required 

that,

In the above equations, material point �′ locally and/or nonlocally interacts with � . The 
subscripts L and NL refer to Local and Nonlocal domains, respectively, and R is a param-
eter that quantifies the amount of potential associated with local interactions to be shared 
with nonlocal interactions. It is defined as,

The terms V
L
 and V

NL
 are local and nonlocal volumes around the material particle � . In a 

discretized domain, these volumes can be distinctly identified with reference to the degrees 
of separation. According to the definitions of local and nonlocal interactions, the volume 
encompassed by local interactions in any matrix, �

L
 or �

NL
 , is local volume in that matrix 

for the corresponding material point. The region made up by the nonlocal interactions in 
both matrices is the nonlocal volume for that matrix.

However, in continuous domain the notion of local or nonlocal volume is very subjec-
tive. We define the local volume as a three-dimensional region within the material where 
the energy-density is more than other regions. The nonlocal volume is the three-dimensional 
region that binds two or more local volumes. The energy-density in this region is relatively 
less than that of the local volumes that it is binding together.

Thus, for a continuous domain characterized over nonlocal elasticity matrix �
NL

 , nonlo-
cal volume is the region shared by local volumes from the domain’s corresponding local 
elasticity matrix �

L
 . This argument, thus, identifies a subtle difference between the local 

elasticity matrix �
L
 and the nonlocal elasticity matrix �

NL
 that, the local elasticity matrix 

represents an undiscretized specimen in which local domains are not bounded. The binding 
of the local domains introduces nonlocality, which is manifested in the nonlocal elasticity 
matrix �

NL
 . The parameter, R , thus quantifies the potency of this binding region.

At any given scale, external energy supplied to the material-domain via some external 
force vector, will propagate through the nonlocal regions to cause the material to release 
corresponding bond potentials, and thus causing degradation in material properties. Since 

(9)DG
L

(�) = ∫
V
L
(�)

R�,���L
(�, ��)dV

L
(��)

(10)DG
NL

(�) = ∫
V
NL

(�)

�
NL
(�, ��)dV

NL
(��).

(11)DG
L

(�) = DG
NL

(�).

R�,��

{
∈ (0, 1) ∶ V

L
(�) defined on �

L
,

= 1 ∶ V
NL
(�) defined on �

NL
.
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there are no binding regions in the domain represented by �
L
 , it retrieves brittle material. 

The binding phenomenon engineers material properties, and the measure of the bind quan-
tifies nonlocality.

3.2  DG Functional for Discretized Domain

For a local interaction and the nonlocal interactions influenced by it, the discretized version 
of the functional is given as,

and

where q
L
 and q

NL
 are the material points interacting with p locally and nonlocally, 

respectively.
In Eqs. (12) and (13) it is assumed that the material point p interacts with all the mate-

rial points in its nonlocal domain with equal intensity. With respect to the parallelism with 
MD, it means that the potential well-depth is the same for all nonlocal interactions that the 
material point p is connected to. If we identify the relative difference between these well-
depths, a more precise version of the functional can be derived as under:

For a particular local interaction, Eq. (12) can be written as,

In Eq. (14), nl
NL

 is the last nonlocal material point interacting with the material point 
under consideration, and weighting factor wp,q

NL

 is a fraction associated with nonlocal inter-
action pq

NL
 . wp,q

NL

 quantifies the percentage of the local potential being distributed that the 
corresponding nonlocal bond bears. It is thus clear that 

∑
q
NL

wp,q
NL

= 1 . These weights estab-

lish a direct relationship with the potential well-depth between the two material points. 
Equation (12) indicates that the well-depth for all the points in nonlocal domain are equal. 
It physically implies that material point p attracts all the material points in its nonlocal 
domain with equal strength. Equation (14) identifies relative differences between the 
strengths, such that each potential well-depth is specific to a particular material point in the 
nonlocal domain.

(12)DG
L

(p) = Rp,q
L

�
L
(p, q

L
)

(13)DG
NL

(p) =
∑
q
NL

�
NL
(p, q

NL
),

(14)

Rp,q
L

�
L
(p, q

L
) =

∑
q
NL

�
NL
(p, q

NL
)

=�
NL
(p, p + 2) + �

NL
(p, p + 3) +⋯ + �

NL
(p, p + nl

NL
)

=wp,p+2Rp,q
L

�
L
(p, q

L
) + wp,p+3Rp,q

L

�
L
(p, q

L
)+

⋯ + wp,p+nl
NL

Rp,q
L

�
L
(p, q

L
)

=
∑
q
NL

wp,q
NL

Rp,q
L

�
L
(p, q

L
)

=
∑
q
NL

∑
q
NL

wp,q
NL

�
NL
(p, q

NL
).
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Thus, for a particular local interaction, the functional for discretized domain can be 
briefly written as,

where 
∑
q
NL

wp,q
NL

= 1 , q
L
 and q

NL
 are the local and nonlocal material points, respectively, 

interacting with p.
In a continuous domain the weighted DG

NL

(�) , for the fraction of local interactions 
between material points � and �′ quantified as ∫

V
L
(�)

R�,���L
(�, ��)dV

L
(��) , is given as,

where ∫
V
NL

(�)

w�,��dVNL
(��) = 1.

DG Functional is capable of modeling material degradation as required. By selecting 
appropriate values of R and w one can produce the inelastic curve as desired. It simu-
lates the specimen in the most natural manner. Inelasticity occurs as the potential energy 
is released when the bond breaks, and as the material loses the corresponding amount of 
elastic modulus. No explicit model for plastic strain is required.

3.3  R as a Function of Material Properties and Ramberg–Osgood Parameters

In this section, we express R as a function of Material Properties and Ramberg–Osgood 
Parameters.

The Ramberg–Osgood equation for stress–strain curve [38] is given as,

It is illustrated by red curve in Fig. 2. Here, � is stress, � is strain, E is the Young’s 
modulus of the material, Kro and nro are Ramberg–Osgood parameters describing the 
hardening behavior of the material. They are material constants. Typically, nro ≥ 5 and 
the yield offset Kro = 0.002 . In Fig. 2, �y is the yield-stress, �y is the yield-strain, �f  is 
the failure-stress, �f  is the failure-strain, �E = E�f  is the failure-stress of the material had 
it been brittle, UT is the modulus of toughness of the material, and US is the modulus of 
softness as defined in the Subsect. 3.3.

Modulus of Softness: We define Modulus of Softness, US , as the total inability of 
the material (or a bond) to absorb elastic energy up to the point of failure. It is the area 
between the black dashed curve and the red stress–strain curve.

Expression for R(E, �y, �y, �f , �f ,Kro, nro) : Based on our definition of the Modulus of 
Softness, we express R(E, �y, �y, �f , �f ,Kro, nro) as,

(15)DG
L

(p) = Rp,q
L

�
L
(p, q

L
)

(16)DG
NL

(p) =
∑
q
NL

∑
q
NL

wp,q
NL

�
NL
(p, q

NL
),

(17)DG
NL

(�) = ∫
V
NL

(�)

∫
V
NL

(�)

w�,���NL
(�, ��)dV

NL
(��)dV

NL
(��),

(18)� =
�

E
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In Eq. (19), we determine UT as,

and US as,

This gives,

(19)R(E, �y, �y, �f , �f ,Kro, nro) =
US

US + UT

.

(20)

UT = �f �f − ∫
�f

0

(
�

E
+ Kro

(
�

�y

)nro
)
d�

= �f �f −
�2
f

2E
−
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nro + 1

(
�f

�y

)nro+1

,

(21)
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2
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f
− �f �f +

�2
f

2E
+

Kro�y
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Fig. 2  Ramberg–Osgood Stress–Strain Curve / Weight-Fractions
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Thus, for elastoplastic materials, 0 < R < 1 ; and for brittle materials, R ≈ 0.
Each material point in the material domain undergoes deformation identical to the 

stress–strain behavior of its corresponding material. Thus, for isotropic materials, all mate-
rial points follow the same stress–strain behavior. However, R at each material point, 
expressed as R� , depends entirely on the modulus of softness localized at � . Each R� can 
be further decomposed into R�,�′ as needed. The variation of R across the material domain 
is discussed in detail in the Subsect. 4.1.

3.4  Calibration of Weights

We further decompose the modulus of softness, US , over any material point p’s nonlocal 
domain using the weight-fractions indicated in Eq. (14).

As shown in Fig. 2, the Modulus of Softness of the material, i.e., the area between the black 
dashed curve and the red stress–strain curve, is discretized into number of trapezoids equal to 
an integral multiple of the number of nonlocal material points in the nonlocal domain of p. For 
the sake of simplicity, let the number of trapezoids is equal to the number of nonlocal material 
points interacting with p. Based on the fact that interactions between p and its nearer nonlocal 
material points release more energy upon deformation, as compared to the interactions 
between the farther nonlocal material points, we associate the trapezoid with the largest area to 
the nearest nonlocal material point. We, then, compute the uncalibrated weight wp,q

NL−UC
 as,

where Aq
NL

 is the area of the trapezoid associated with the nonlocal material point q
NL

.
A typical Uncalibrated Weights vs Distance of the Nonlocal Material Points from p 

curve is shown in Fig. 3. It is noticeable that these uncalibrated weights represent uncali-
brated modulus of softness. Assuming a normal distribution of weights over the nonlocal 
domain of p, and using curve for uncalibrated weights (the red curve in Fig. 3) as reference, 
we determine the correct standard deviation, �stdev@p , at each material point p. The process 
of calibrating weights is essentially the process of “redistributing probabilities” for optimal 

(23)wp,q
NL−UC

=
Aq

NL

US

,

Fig. 3  Typical Uncalibrated and 
Calibrated Weights for any Mate-
rial Point
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dynamics. It is important to preserve areas under both the curves to ensure the conserva-
tion of US . The calibrated weights, as indicated in Eq. (14), are obtained as,

where

In Eq. (25), l is the Euclidean distance between the material points p and q
NL

 in the 
reference configuration. A typical Calibrated Weights vs Distance of the Nonlocal Mate-
rial Points from p curve is shown in Fig. 3. These calibrated weights quantify the correct 
amount of energy released when the interaction ceases and thus quantify the correct gain 
in the inability of the material to absorb elastic energy. The calibrated standard deviation, 
�stdev@p , physically quantifies the length of effective interaction of material point p.

For a continuous nonlocal domain the calibrated weights in Eqs. (24) and (25) are 
expressed as,

where

In Eq. (27), l is the Euclidean distance between the material points � and �′ . It is a func-
tion of their positions in the reference configuration. �stdev@� is the standard deviation of 
the distribution of weight fractions over the nonlocal domain of �.

The methodology to determine �stdev@� is discussed in the Subsect. 4.2.

4  Modified Governing Equation of Motion for Deformation Dynamics 
based on Local and Nonlocal Deformation‑Gamuts

In the context of the discussion in Subsects. 3.1−3.4, Eq. (8) is re-expressed as,

(24)wp,q
NL

=
yq

NL∑
q
NL

yq
NL

,

(25)yq
NL

=
e
−

l2p,q
NL

2�2
stdev@p√

2��2
stdev@p

.

(26)
w�,�� = w(�, ��) =

y(�, ��)

∫
V
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(�)

y(�, ��)d��
,

(27)y(�, ��) =
e
−

l2 (�,�� )
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2��2
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.

(28)
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(��)
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�
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(�, ��, t)dV
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(��)dV
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(��) = �

d
(�, t).
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Conceptual visual representations of the local and nonlocal deformation-gamuts in Eq. 
(28) for some continuous domain are provided in Figs. 4 and 5, respectively.

In the figures, a continuous material domain discretized using optimal number of mate-
rial points is illustrated. Each material point is identified as, either � as a material point 
in consideration, or as �′ as a material point locally and/or nonlocally interacting with � . 
For the discretized framework, they are indexed using p, and q

L
 or q

NL
 , respectively. Local 

deformation-gamuts are shown in Fig. 4 using different gray shades and the direct interac-
tions therein with darker dotted lines. Nonlocal deformation-gamuts are illustrated in Fig. 5 
using a different blue shades and the indirect interactions therein using lighter dotted lines. 
In both the figures, different shades indicate variation in energy states across the material 
domain.

In view of the subjective nature of the local and nonlocal volumes in a continuous 
domain, the boundary of each local and nonlocal domain is chosen arbitrarily. This indi-
cates that there is no limit to the number of material points belonging to the local or nonlo-
cal domain of any particular � , and that any domain is not restricted by any specific physi-
cal boundary measured using Euclidean distance between � and �′.

As identified earlier in this section, two material points � and �′ may interact locally or 
nonlocally, or, locally and nonlocally. Thus, the nonlocal domain can be imagined as an 
“energy-cloud above the local domain that binds local domains together. This is depicted 
in Figs. 6 and 7. In a perfectly isotropic pristine material, if each material point is assumed 
to be interacting with all other material points, then the nonlocal domain may simply be 
visualized as an “energy-cloud” above the local domain.

Fig. 4  Local Deformation-Gamuts
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In Fig.  6, a particular material point � is shown to be interacting locally and nonlo-
cally with many material points �′ s. The gray shade represents direct interactions, and the 
blue shade represents indirect interactions forming the so-called energy-cloud above the 
local domain. A finer visual of this phenomenon is presented in Fig. 7 using three material 

Fig. 5  Nonlocal Deformation-Gamuts

Fig. 6  “Energy–Cloud”
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points. In Fig. 7, material points �′
1
 and �′

2
 are interacting with the material point � locally 

(directly) and nonlocally (indirectly). �′
1
 is local to � for the direct interaction between them, 

and nonlocal for the indirect interaction between them. This indirect interaction between � 
and �′

1
 happens when a fraction of direct interaction between � and �′

2
 is shared with � and 

�′
1
 , and which �′

2
 is relatively inertial to. This causes some modification in the interaction 

between � and �′
2
 . The same applies to the direct interaction between � and �′

2
 , for which �′

2
 

is local to � . �′
2
 is nonlocal to � for the indirect interaction between them.

It is noticeable that if the indirect interactions in the nonlocal domains are considered 
as direct, then the interactions in the local domains are indirect. Thus, local and nonlocal 
deformation-gamuts maintain a duality.

In the following subsections, we provide methodologies to quantify nonlocal deforma-
tion gamuts from local deformation-gamuts and to determine the effective distance of inter-
action of a material point.

4.1  Quantification of Nonlocal Deformation‑Gamuts

As discussed in the Subsect. 3.1, the parameter R quantifies the amount of potential associ-
ated with the local interactions to be shared with nonlocal interactions. It thus quantifies 
nonlocal deformation-gamuts across the material domain.

In order to determine R at each material point, expressed as R� , we consider material’s 
localized static displacement field under any external load.

For a given static displacement field of the material, the fraction of total potential energy 
localized at a material point is expressed as,

Fig. 7  Local/nonlocal interactions
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In Eq. (29), the superscript ∗ represents a dimensionless quantity, �
L
(�, ��) is the poten-

tial energy between the material points � and �′ as discussed in the Subsect. 3.1, and � is 
the total potential energy of the material obtained from its given static displacement field.

As indicated in the Subsect. 3.3, each material point in the material domain under-
goes deformation identical to the stress–strain behavior of its corresponding material. 
Thus, the scaled potential energy, associated with the elastic deformation, localized at � 
when the material fails, is expressed as,

The strain at � , when the material fails, is estimated from Eq. (30) as,

We estimate �f@� , the stress at � when the material fails, by means of the Ramberg–Osgood 
equation as under.

Considering the fact that the notion of R is almost ineffective before the material 
starts yielding, using the Ramberg–Osgood equation, Eq. (18), we determine the pre-
liminary estimation of �f@� as,

Next, using �f@� obtained in Eq. (32), we compute the residual strain at � , �(r)
f@�

 , as,

Using the residual strain at � obtained in Eq. (33), we obtain the residual stress at � 
as,

The corrected stress at � when the material fails, is then obtained as,

Considering �(c)

f@�
 as the new �f@� , this procedure is repeated until �(r)

f@�
 drops below the 

desired tolerance.
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Using Eq. (19), R� is, then, obtained as,

It should be noted here that, R� is positive if material points � are influencing material 
points �′ , and negative otherwise.

At the continuum scale of isotropic materials, R�, �
� = R� is constant for all the 

local interactions of � unless any local interaction is already assigned a different value 
of R�,�′ for the conservation of localized potential energy. However, a problem-specific 
calibration of R�,�′ can be carried out to establish a precise bridge between different 
scales ranging from macro-micro-molecular, to map nonlocal force-fields at differ-
ent scales including MD force-fields for the multiscale modeling of different types of 
materials.

4.2  Effective Nonlocal Deformation‑Gamut of a Material Point

As discussed in the Subsect.  3.4, �stdev@� physically quantifies the length of effective 
interaction of material point �.

In order to estimate �stdev@� from the given static displacement field of the material, 
based on the discussion in Sects. 3.2 and 3.4, we express,

It should be noted that in Eq. (37), �′ in �
NL
(�, ��) and w�,�′ belongs to the nonlocal 

deformation-gamut of � ; and �′ in �
L
(�, ��) and R�,�′ belongs to the local deformation-

gamut of �.
From Eqs. (26), (27) and (37), we get,

We assume that the nonlocal deformation-gamut of any material point � extends 
over the entire material domain, and consider that the influence of � on the material 
points �′ that are far beyond the effective distance of interaction, is negligible. Thus, 
for any two material points ��

qNL=i
 and ��

qNL=j
 , we can deduce from Eq. (38) that,

This gives,
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In the computational framework for Eq. (40), the two nonlocal potentials that we 
choose are the maximum and minimum potentials from the ensemble of uncalibrated 
nonlocal potentials. This is discussed in Sect. 5.

5  Numerical Examples

Consider a one-dimensional prismatic specimen as shown in Fig. 8 with length L, cross 
sectional area A, mass density � , Young’s Modulus E, and Poisson’s Ratio � , is sub-
jected to an external tensile force F on its both ends. Let the specimen be discretized in 
n material points, each indexed by p and q. We allow material points q to interact with 
material points p locally and nonlocally.

We considered specimens for two materials: Al 7075 T651 (Extruded) [39] and 
AMS 4911 (BT20) Titanium Alloy [40], of length = 0.1 m, breadth = 0.01 m, and 
thickness = 0.01 m.

For both materials, the specimens were discretized with 200, 400, 500, 600, 800 
and 1000 local bonds of equal lengths. The simulation was carried out for monotonic 
as well as cyclic loadings. For monotonic loading, an initial external tensile force of 
0.01 N was applied on both ends of the prismatic specimen, and it was increased by 1% 
after every static displacement. For cyclic loading, the tensile force was unloaded in 

(40)�stdev@� =

√√√√√√√
l2(�, ��

qNL=j
) − l2(�, ��

qNL=i
)

2 ln

(
�
NL

(�,��
qNL=i

)

�
NL

(�,��
qNL=j

)

) .

Fig. 8  1-D Discretized Elastic Specimen

Journal of Peridynamics and Nonlocal Modeling (2022) 4:215–256 233



1 3

the similar fashion as the external stress on the specimens became larger than the cor-
responding yield stress.

The simulation procedure for both the materials is given in Sect.  5.1, and the 
results are shown in Sects.  5.2, 5.3 and 5.4. The stress–strain data, to determine 
Ramberg–Osgood parameters, was obtained from web-based engineering toolkits 
and MechaniCalc, Inc. [41]. Unless given, the Ramberg–Osgood parameters for the 
stress–strain curves were determined using methodology provided in MMPDS hand-
book (Chapter 9 in [42]).

5.1  Simulation Procedure

A computer program in MATLAB was written from scratch. The procedures to develop 
local and nonlocal elasticity matrices, used in our simulation, are demonstrated in 
Appendix A.

A general recipe for the simulation is provided underneath along with the equations 
used for our computational framework: 

1. The static displacement field of the material was determined using the local elasticity 
matrix. Rp was estimated for each material point from the static displacement field using 
the discretized version of Eq. (36) as, 

Rp,q
L

 was set as Rp unless assigned any other value in any prior step or iteration.
2. Nonlocal Elasticity Matrix was developed for the computed values of Rp based on the 

procedure given in Appendix A.
3. From the uncalibrated ensemble of nonlocal potentials and weights obtained from the 

nonlocal elasticity matrix computed in step 2, �stdev@p for each material point and the 
corresponding calibrated weights, wp,q

NL

 , were estimated.

• �stdev@p was estimated as under. For the discretized domain, Eq. (39) takes the 
form, 

 Summation of the natural logarithms on both sides of Eq. (42) for the entire gamut 
of nonlocal potentials, gives, 

 The underlying assumption behind Eq. (43) is that interactions between p and its 
nearer nonlocal material points release more energy upon deformation, as compared 
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to the interactions between the farther nonlocal material points. This is discussed in 
the Subsect. 3.4. Equation (43) gives, 

 In Eq. (44), q
NL=farthest

 and q
NL=nearest

 are, respectively, the farthest and nearest nonlocal 
material points from p. The maximum and minimum values of the nonlocal poten-
tials are chosen from the ensemble of the nonlocal potentials associated with p 
obtained from the nonlocal elasticity matrix determined in step 2.

• The calibrated weights were estimated using Eqs. (24) and (25). The denominator 
in Eq. (24) is approximately equal to 1. However, since the development of nonlocal 
elasticity matrix for our framework ensures the orientation of lengths in the same 
direction, the weights were estimated as, 

4. To determine the desired Nonlocal Elasticity Matrix, nonlocal potential for each nonlo-
cal interaction was calibrated using the calibrated weights as, 

The discretized form of the equation of motion, Eq. (8), is given by Eq. (1). It was simu-
lated using implicit Modal Analysis. In order to determine the critical time step, Δtcri , we 
followed the stability analysis described by Bathe (section 9.4.2 in [43]).

Instead of �max , we used the natural frequency of the Nonlocal Elasticity Matrix that is 
nearest to the natural frequency 

(
1

2�

√
E

�L2

)
 of the specimen to determine the critical time 

step. For the simulations, we considered Δt = Δtcri.
In Eq. (46), ‖f⃗ ffp,q

L

‖ is the magnitude of the localized internal force between material 
points p and q

L
 , as discussed in Sect. 2.3. �p,q

NL

 is the strain that bond p, q
NL

 experiences 
during deformation. Equation (46) quantifies the amount of elastic energy that the bond 
p, q

NL
 will absorb before its failure. As discussed before, the calibrated weights quantify the 

correct gain in the inability of the material to absorb elastic energy as the material 
degrades. This inability in terms of elastic energy, associated with an individual bond, is a 
measure of its rate as expressed in Eq. (48),
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From Fig. 2 and Eq. (24), it is clear that any calibrated weight wp,q
NL

 represents the fam-
ily of all the bonds that will collectively gain the inability to absorb elastic energy (area of 
the corresponding calibrated trapezoid) when the specimen experiences the strain corre-
sponding to its calibrated weight. Equation (48) serves as a general failure criterion for a 
nonlocal interaction quantified by Eq. (46). It, thus, initiates dynamic material degradation 
in the nonlocal domain. In the numerical examples considered in this study, material degra-
dation is introduced by breaking all the bonds corresponding to their weight, when the 
specimen experiences the corresponding strain. From MD perspective, it can be interpreted 
from Eq. (46) that the weight wp,q

NL

 splits the homogenized well-depth into specific well 
depths, each of which corresponds to a particular nonlocal bond connected with p. Conclu-
sively, this method inherently determines the “critical stretch” for each bond, beyond which 
the material points cease to interact.

In the following subsections, we present the results for the deformation-gamuts param-
eters, and monotonic as well as cyclic loadings. The material properties are,

For Material: Al 7075 T651 (Extruded) we have, Young’s Modulus E = 71.6 
GPa, �f = 665.8 MPa, �f = 0.115 , �y = 538.6 MPa, �y = 0.009522 , nro = 17.8702 , and 
Kro = 0.002 , Mass Density � = 2810 kg∕m3 , Poisson’s Ratio � = 0.33.

For Material: AMS 4911 (BT20) Titanium Alloy we have, Young’s Modulus 
E = 115.7 GPa, �f = 933 MPa, �f = 0.516 , �y = 867 MPa, �y = 0.009494 , nro = 47.61 , and 
Kro = 0.002 , Mass Density � = 4430 kg∕m3 , Poisson’s Ratio � = 0.31.

Fig. 9  R Mechanism for Al 7075 T651
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5.2  Deformation‑Gamuts Parameters

Deformation-Gamuts parameters are illustrated in this section.
The variations of R� across the length of the specimens of both materials, Al 7075 T651 

and AMS 4911 (BT20) Titanium Alloy, are shown in Figs.  9 and 10, respectively. The 
variation of R� across the Titanium alloy specimen is relatively denser than across the Alu-
minum alloy specimen. This is expected because Titanium is tougher than Aluminum. It 
shares higher percentage of the localized potentials with its nonlocal domain as compared 
to the Aluminum alloy.

The effective length of interaction of each material point for both specimens is shown in 
Figs. 11 and 12.

Figures  13 and 14 show the typical calibrated weights for material points located at 
the distances l = 0 and l = l

8
 of the specimens of both materials. The gap between the two 

curves at l = l

8
 is the local domain of that material point.

5.3  Monotonic Loading

The results for monotonic loading are provided in this section.
Static displacement of each material point, obtained using the Local Elasticity Matrices 

of both materials, is illustrated in Figs. 15 and 16. An external tensile force of 0.01 N was 

Fig. 10  R Mechanism for AMS 4911 (BT20) Titanium Alloy
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applied on both ends of the prismatic specimen to compute the static displacement at each 
time step. The third static displacements of both specimens were considered to compute 
the Nonlocal Elasticity Matrices for both materials.

The simulated numerical values of the total static displacement and the change in the 
total potential energy are provided in Table 1.

The analytical results obtained using equations ΔL =
F×length

breadth×depth×E
 and 

Δ� =
1

2

breadth×depth×E

L
ΔL2 are,

Al 7075 T651 (Extruded): ΔL = 2.79340 × 10−5 m, Δ� = 2.79340 × 10−7 J,
AMS 4911 (BT20) Titanium Alloy: ΔL = 1.72863 × 10−5 m, Δ� = 1.72864 × 10−7 J.
The stress–strain curves for both materials, simulated using the Nonlocal Elastic-

ity Matrices, are illustrated in Figs. 17 and 18. They are found to be in good agreement 
with the stress–strain curve obtained using Ramberg–Osgood equation of the respective 
material.

5.4  Cyclic Loading

We provide the results for cyclic loading in this section.
The response of both the materials subjected to cyclic inelastic loading can be observed 

in the form of stable hysteresis loops in Figs. 19, 20, 21, and 22.

Fig. 11  �
stdev@� for AL 7075 T651
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The log-log plots3 of the stress amplitudes vs. plastic-strain amplitudes obtained from 
the hysteresis loops of both the materials are provided in Figs. 23 and 24. The slopes and 
the y-intercepts of the linear fits were obtained using the “poly1” fit function available in 
MATLAB.

The simulated results for Al 7075 T651 (Extruded) are: Cyclic Strain Hardening Expo-
nent = 0.06244 , Cyclic Stress–Strain Coefficient = 791.6 MPa.

The experimental results obtained by Brammer [39] are: Cyclic Strain Hardening Expo-
nent = 0.0662 , Cyclic Stress–Strain Coefficient = 792.8 MPa.

The simulated results for AMS 4911 (BT20) Titanium Alloy are: Cyclic Strain Hardening 
Exponent = 0.04762 , Cyclic Stress–Strain Coefficient = 1105.4 MPa. The theoretical estima-
tions published by Zhang et al. [40] are: Cyclic Strain Hardening Exponent = 0.0484 (sec-
tion 3.2 in [40]), Cyclic Stress–Strain Coefficient = 1340.5 − 1537.6 MPa (section 4 in [40]).

6  Discussion and Concluding Remarks

In this study, we defined localization and nonlocalization as a measure of social distance 
between two entities in a discrete framework, and as a measure of unshared and shared 
information, respectively, between them in a continuous domain. Based on these definitions 

Fig. 12  �
stdev@� for AMS 4911 (BT20) Titanium Alloy

3 y = log(x) returns the natural logarithm ln(x) in MATLAB.
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we introduced a novel, independent, multiscale notion of DG Localization and Nonlocali-
zation. We demonstrated its applicability in continuum mechanics. Based on the distribu-
tion of energy-density and energy states over the spatial domain of any material, we strate-
gically distributed material properties over the material’s nonlocal domain by means of an 
effective nonlocal force-field. We, then, used our notion to carry out simulation in the most 
natural manner and demonstrated its ability to model elastoplastic deformation even if only 
material’s stress–strain data (engineering or true) is available from experiment.

Nonlocal information is that fraction of local information which is indirectly shared 
with another nonlocal entity. With reference to Nonlocal Elasticity Matrix �

NL
 , it is that 

fraction of information between p and q
L
 that is shared with q

NL
 , and which q

L
 is rela-

tively inertial to. This implies that, in order to ensure the conservation of energy and to 
maintain stability of the system, nonlocality is actually manifested in the higher order 
terms, �(3) , of Eq. (5). As discussed earlier, this term arises when the interaction of a 
pair of atoms or material points is modified by the presence of a third atom or material 
point. These higher order terms are “not taken into account” in theories in which non-
locality is characterized as a measure of Euclidean distance between two entities. In our 
work this modification is inherently manifested.

Based on the assumption that every material point interacts with all other material 
points locally and nonlocally, it is evident that material degradation is dynamically initi-
ated when two material points stop interacting in one of the domains. However, a crack is 
manifested only when two material points cease to interact completely. This means that 
if a material point �′ is interacting with � in its local and nonlocal domains, a crack is 

Fig. 13  Typical Calibrated Weights for material points @ l = 0 and l = l

8
 for Al 7075 T651
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dynamically initiated at the instant when �′ ceases to interact with � in its both domains. 
For scenarios in which �′ is interacting with � in only one of the domains, the dynamic ini-
tiation of crack typically happens when �′ ceases to interact with � in the domain of inter-
action. The dynamic crack initiation is also governed by the Eq. (48). For the dynamic 
material degradation or crack initiation in local domains, �

L
 is to be considered in the 

equation instead of �
NL

 . This addresses one of the challenges in dynamic fracture about 
crack initiation related to the material degradation listed by Cox et al. [44].

DG Functional is a multiscale notion. However, the expression itself is scale inde-
pendent. This means that the expression of the functional as a whole remains the 
same at any scale. However, the expression of the energy, � , may vary while transit-
ing from any continuum scale to molecular scale, as demonstrated in the Appendix A. 
DG Functional, thus, establishes a bridge between continuum mechanics and molecular 
dynamics. In the continuum mechanics framework of our work, the “critical stretch” is 
inherently determined between two material points � and �′ by means of the calibrated 
weight w�,�′ between them. For Lennard-Jones potential used in the Appendix A, the 
typical cut-off distance between two particles is usually 2.5 to 5.5 × van der Waals radius 
[34–37]. The bridge between continuum mechanics and molecular dynamics, thus, 
offers a reconciliation between the atomic-level descriptions of dynamic crack initiation 
with criteria used for initiation in the continuum regime [44]. Conclusively, it can also 
be inferred that a scale-dependent relationship can be developed expressing the transi-
tion of classical parameters to molecular parameters.

Fig. 14  Typical Calibrated Weights for material points @ l = 0 and l = l

8
 for AMS 4911 (BT20) Titanium 

Alloy
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R� provides a measure of the contribution, in terms of the localized modulus of soft-
ness, of a particular material point in the overall deformation dynamics of the material. 
It, thus, governs the micro-mechanism of the shared potential. We observe a substantial 
difference in the variation of R� across the material domains of soft and tough materials. 
The distribution of R� is relatively denser across the material domain of a tough material 
than that of a soft material. As identified in Sect. 3.1, the supplied external energy interacts 
with the shared potentials to cause material degradation or cracks. One of the conditions 
for crack arrest is expressed using energy balance so that the available energy for crack 
propagation is less than the energy absorbed by the material during crack propagation [45, 
46]. It can be thus deduced that R� , to a degree, quantifies the so-called postulated mate-
rial property: “crack arrest toughness” [44], as a difference between the localized external 
energy and the localized modulus of softness.

It is noticeable that as R�,�′ → 0 , the red curve in Fig. 3 moves closer to the verti-
cal axis. The equation of motion proposed for conventional peridynamics [20–29] can, 
thus, be retrieved from the equation of motion, Eq. (8). However, the subtle difference 
between our work and peridynamics is that, in conventional peridynamics nonlocality 
is construed based on the Euclidean distance between two material points. In conven-
tional peridynamic framework, even a direct interaction between two material points 
with one degree of separation is considered nonlocal and bond constants are determined 
by comparing classical strain energy within a horizon with peridynamic strain energy. 
In our work we distinctly identify the near force as a local interaction, by means of the 

Fig. 15  Static Displacement Field for Al 7075 T651
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degree of separation or the social distance between two material points regardless of the 
Euclidean distance between them. Additionally, we use the actual total strain energy of 
the deforming material to determine bond constants. The pair-wise functionals devel-
oped for conventional bond-based or state-based peridynamics attempt to retain locality 
by using coefficients that decay rapidly, and by allowing their effect to be felt only up 
to the horizon limit (for bond-based peridynamics [23]) or twice the size of the hori-
zon (for state-based peridynamics [27]). However, from the discussion in Sects. 3.4 and 

Fig. 16  Static Displacement Field for AMS 4911 (BT20) Titanium Alloy

Table 1  Simulated values of ΔL and Δ�

 Al 7075 T651  AMS 4911 (BT20)

Material Points ΔL Δ� ΔL Δ�

201 2.74952E-05 2.74457E-07 1.70149E-05 1.69843E-07
401 2.76337E-05 2.76003E-07 1.71006E-05 1.70800E-07
501 2.76694E-05 2.76401E-07 1.71227E-05 1.71046E-07
601 2.76958E-05 2.76694E-07 1.71390E-05 1.71227E-07
801 2.77325E-05 2.77105E-07 1.71618E-05 1.71481E-07
1001 2.77574E-05 2.77381E-07 1.71772E-05 1.71652E-07
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4.2, as well as the results obtained in Sects. 5.2, 5.3 and 5.4, we realize that the effec-
tive distance of interaction of a material point � is approximately equal to 3 × �stdev@� 
regardless of the size of the horizon, bond-length, grid-size and the grid-type (uniform 
or non-uniform). Effective distance of interaction is the distance beyond which the two 
material points cease to interact. It can be physically interpreted as the distance between 
two material points at which the change in the potential between them is negligible. 
From Eq. (40), it is also noticeable that in our work every material point determines its 
own effective distance of interaction. It can be noticed from Figs. 11 and 12 that every 
material point is under the influence of many distances of interaction of many material 
points across the domain. Thus, our work, in general, encompasses the idea of dual hori-
zon peridynamics as well.

We showed that explicit knowledge of critical stretch, as well as plastic strain or its 
rate is not needed. In our work plasticity is introduced via potentials associated with 
the nonlocal bonds. These potentials are determined using the calibrated weights that 
quantify the correct gain in the inability of the bond to absorb elastic energy. In this 
study, we have used the same lattice structure for the discretization of local and nonlo-
cal domains. However, in order to understand the precise role of nonlocal domain in slip 
and twinning mechanisms, it can be defined for all fourteen Bravais lattice structures to 
correctly quantify the inner friction and dislocation glide due to the breaking of nonlo-
cal bonds.

Fig. 17  Engineering Stress vs. Strain Curve for Al 7075 T651
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In Appendix B  we have shown that Eq. (8) is consistent to the classical theory of 
elasticity. In this study we have considered only 1D prismatic specimen subjected to 
monotonic and cyclic loadings. In order to extend this theory to 2D/3D cases in which 
complex structural systems are subjected to various loads like, bending, torsion, buck-
ling, thermal, etc., one needs to take into account the coupling of the degrees of freedom 

Fig. 18  Engineering Stress vs. Strain Curve for AMS 4911 (BT20) Titanium Alloy

Fig. 19  Steady-State Cyclic 
Stress–Strain behavior for one of 
the cycles of Al 7075 T651
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as well. Additionally, the challenge lies in identifying when two degrees of freedom of 
different kinds become uncoupled. Speculatively, matrices, similar to the global stiff-
ness matrices used in the finite element analysis, can be developed as local elasticity 
matrices and the corresponding nonlocal elasticity matrices can be generated with dis-
tributed material properties. We wish to explore this further in our follow-up research.

At continuum scale DG Functional is based on the variation in energy-density or energy 
states across the material domain. Since the variation in energy-density and its states could 
be either linear or stochastic, DG Functional is, conclusively, applicable to domains with 
stochastically varying material properties as well.

Fig. 20  Steady-State Cyclic 
Stress–Strain behavior for one of 
the cycles of AMS 4911 (BT20) 
Titanium Alloy

Fig. 21  Steady-State Cyclic 
Stress–Strain behavior of Al 
7075 T651 for Several Cycles
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Fig. 22  Steady-State Cyclic 
Stress–Strain behavior of AMS 
4911 (BT20) Titanium Alloy for 
Several Cycles

Fig. 23  Log-log fit for Stress vs. Plastic-Strain amplitudes of Al 7075 T651
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Appendices

A Methodology to determine Nonlocal Elasticity Matrix by distributing Material 
Properties

For the specimen shown in Fig. 8, let: Length, L = 0.1 m, Breadth = 0.01 m, Depth = 0.01 
m, Mass Density, � = 7850 kg∕m3 = 76982.20272482401 N∕m3 , Young’s Modulus of Elas-
ticity, E = 200 GPa, Poisson’s Ratio, � = 0.27, discretized using five local bonds of equal 
lengths, and six material points of equal mass densities, is subjected to a tensile force of 
1000 N on both the ends. Let every material point is interacting with other material points 
locally and nonlocally. The initial conditions (at ts

0
 ) are, � = [�] and �̇ = [�] . (Conversion: 

1 kg = 9.80665002864 N.)
The mass matrix � (in N) is a 6 × 6 diagonal matrix with each diagonal element 

mp,p = 0.128303N.
The external force vector � =

(
−1000 0 0 0 0 1000

)T
N , and the initial positions of the 

material points, at ts
0
 , are � =

(
0.0 0.02 0.04 0.06 0.08 0.10

)T
m.

The elements of local elasticity matrix are computed as Cp,q
L

=
Ap,q

L
Ep,q

L

lp,q
L

 , where p, q
L
 is the 

local bond, Ap,q
L

 is the cross sectional area of the local element. In this case, it is the same for 
all local elements. Ep,q

L

= E = 200 GPa, and lp,q
L

 is the local bond length.
Let the instant for nth static displacement be given by ts

n
 . Under the external force vec-

tor � , we obtain the static positions of material points using local elasticity matrix as, 

Fig. 24  Log-log fit for Stress vs. Plastic-Strain amplitudes of AMS 4911 (BT20) Titanium Alloy
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� =
(
−0.000004939 0.0199969 0.0399991 0.0600009 0.0800031 0.100004939

)T m at ts
1
 , 

� =
(
−0.000009881 0.0199938 0.0399981 0.0600018 0.0800061 0.100009881

)T m at ts
2
 , 

� =
(
−0.000014827 0.0199907 0.0399971 0.0600028 0.0800092 0.100014827

)T m at ts
3
.

At ts
3
 , the geometry of the specimen is: Length = 0.10002965 m, Breadth = 0.009992 m, 

Depth = 0.009992 m, the local and nonlocal bond lengths are:
Bond Lengths:

and local elasticity matrix is:
�

L
= 109×

The potential energies associated with local bonds due to displacements of the mate-
rial points between ts

2
 and ts

3
 are obtained as,

���L =

The magnitudes of the local internal forces due to displacements of the material 
points between ts

2
 and ts

3
 are obtained as,

fffL = 103×

In Eq. (51), the off-diagonal elements are the potential energies associated with the 
local bonds, and the diagonal elements are the summation of the potential energies from 
the local bonds that the material point is connected with. Similarly, in Eq. (52) the off-
diagonal elements are the magnitudes of the internal forces in the corresponding bonds, 

(49)

⎡⎢⎢⎢⎢⎢⎢⎣

0 0.0200056 0.0400120 0.0600176 0.0800240 0.1000296

0.0200056 0 0.0200064 0.0400120 0.0600184 0.0800240

0.0400120 0.02000642 0 0.0200056 0.0400120 0.0600176

0.0600176 0.04001203 0.02000561 0 0.0200064 0.0400120

0.0800240 0.06001846 0.04001203 0.0200064 0 0.0200056

0.1000296 0.08002405 0.06001763 0.0400120 0.0200056 0

⎤
⎥⎥⎥⎥⎥⎥⎦

m,

(50)

⎡⎢⎢⎢⎢⎢⎢⎣

0.9981201 − 0.9981201 0 0 0 0

−0.9981201 1.9961986 − 0.9980785 0 0 0

0 − 0.9980785 1.9961978 − 0.9981192 0 0

0 0 − 0.9981192 1.9961978 − 0.9980785 0

0 0 0 − 0.9980785 1.9961986 − 0.9981201

0 0 0 0 − 0.9981201 0.9981201

⎤
⎥⎥⎥⎥⎥⎥⎦

N∕m.

(51)

⎡⎢⎢⎢⎢⎢⎢⎣

0.0017376 0.0017376 0 0 0 0

0.0017376 0.0040313 0.0022936 0 0 0

0 0.0022936 0.0040413 0.0017477 0 0

0 0 0.0017477 0.0040413 0.0022936 0

0 0 0 0.0022936 0.0040313 0.0017376

0 0 0 0 0.0017376 0.0017376

⎤
⎥⎥⎥⎥⎥⎥⎦

J.

(52)

⎡
⎢⎢⎢⎢⎢⎢⎣

1.8624765 1.8624765 0 0 0 0

1.8624765 4.0022114 2.1397348 0 0 0

0 2.1397348 4.0076064 1.8678715 0 0

0 0 1.8678715 4.0076064 2.1397348 0

0 0 0 2.1397348 4.0022114 1.8624765

0 0 0 0 1.8624765 1.8624765

⎤
⎥⎥⎥⎥⎥⎥⎦

N.
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and the diagonal elements are the summation of the magnitudes of the forces that the 
material points are subjected to. These diagonal elements also represent the localized 
physical quantities associated with the local volumes in discretized domain. In order to 
obtain the desired material properties, we intend to distribute these potentials and inter-
nal forces over the nonlocal bonds. We follow the procedure as underneath.

As discussed in Sect. 2.3, our framework is parallel to molecular dynamics computa-
tions. In MD, a bond is required to have a well-defined potential well-depth as a measure 
of how strongly the two particles attract each other. As a direct analogy to a spring-mass 
balance, the length of a spring at rest and without any mass attached to it, corresponds to 
the van der Waals radius between two particles. A stretched spring balanced by some mass 
represents the well-depth, the strength with which two particles attract each other. The 
right side of the well-depth is the attractive side, and the left is the repulsive side. When 
the particles are separated, they stop interacting when the change in the potential energy 
between them asymptotically approaches to zero. Thus, any functional that is capable of 
modeling these properties can be used to quantify the bond constant. Developing such new 
functionals is a vast research topic in itself.

In this study, we use Lennard-Jones potential [36, 37], Fig.  25, to compute Nonlocal 
Force-field for the dynamics between times ts

3
 and ts

4
.

Hence from Eq. (6), we have,

Fig. 25  Lennard-Jones Potential
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where �
LJ

 is the interparticle potential between the two particles, �
LJ

 is the well-depth and a 
measure of how strongly the two particles attract each other, �

LJ
 is the distance at which the 

interparticle potential between the two particles is zero. It gives a measurement of how 
close two nonbonding particles can get and is thus referred to as the van der Waals radius. 
It is equal to one-half of the internuclear distance between nonbonding particles. Thus, for 
any given external load, if ts

n
 is the instant at which static displacements of the particles and 

thus the static deflection of the structure or the specimen occurs, it is clear that the distance 
at which the intermolecular potential between the two particles is zero must be computed 
from the positions of the particles at the time step ts

n−2
 . It should be noted here that after 

every static displacement, the specimen will have a new geometry. l
p,q

 is the distance of 
separation between atoms p and q. The term 1

l12
p,q

 signifies the repulsion between atoms when 

they are brought close to each other; and the term 1

l6
p,q

 , dominating at large distance, consti-

tute the attractive part and describes the cohesion to the system.
We start with the material point p = 1 . From � at ts

2
 , we have,

�
LJ1,2

ts
3

= 0.020003728448820 m, �
LJ 1,3

ts
3

= 0.040008012037143 m, 

�
LJ1,4

ts
3

= 0.060011751322506 m, �
LJ1,5

ts
3

= 0.080016034910829 m, 

�
LJ1,6

ts
3

= 0.100019763359649 m.

In order to distribute a fraction of localized potential energies �L and localized force-
fields fffL

 , quantified by R , over their nonlocal domains, we use nonlocal �
LJp,q

ts
3

 to compute 

the homogenized �
LJ p

 for nonlocal domain.
From Eqs. (7) and (53) we obtain the expressions for potential energy and force-field for 

nonlocal domains as,

In Eqs. (54) and (55), p, q
NL

 ’s are nonlocal bonds, l
p,q

NL

 are the bond lengths obtained from Eq. 
(49), and up − uq

NL

 is the relative displacement between material points p and q
NL

 from ts
2
 to ts

3
 . 

Thus, for Rp = 0.0001 , p ∈ {1, 2, 3, 4, 5, 6} , we obtain �
LJ p=1

= 1.218713424263186 J.
The nonlocal quantities are then computed as,

(53)�
LJ
(l

p,q
) = �

(2)

LJ
(l

p,q
) = 4�

LJ

[(
�

LJ

lp,q

)12

−

(
�

LJ

lp,q

)6
]
,

(54)Rp�p = �
LJ p

�
q
NL

12�6

LJ p,q
NL

l8
p,q

NL

⎡⎢⎢⎣
1 − 2

�
�

LJ p,q
NL

l
p,q

NL

�6⎤⎥⎥⎦
(up − uq

NL

)2,

(55)Rpfffp = �
LJ p

�
q
NL

24�6

LJ p,q
NL

l8
p,q

NL

⎡
⎢⎢⎣
1 − 2

�
�

LJ p,q
NL

l
p,q

NL

�6⎤⎥⎥⎦
(up − uq

NL

).

(56)�p,q
NL

=

12�
LJ p

�6

LJ p,q
NL

l8
p,q

NL

⎡⎢⎢⎣
1 − 2

�
�

LJ p,q
NL

l
p,q

NL

�6⎤⎥⎥⎦
(up − uq

NL

)2,
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In both Eqs. (56) and (57), p, q
NL

 ’s are nonlocal bonds. After distributing the quantified 
fraction of the physical quantities over the nonlocal domain of p = 1 , we get,

���NLts
3

=

fffNL ts
3

= 103×

Since the system in the example is semi-definite, and symmetric from both ends, 
nonlocal domains of p = 1 and p = n have the same distribution in Eqs. (58) and (59).

We follow the same procedure to quantify the nonlocal domains of the remaining 
material points. After summing up the off-diagonal elements of each row for its diago-
nal element, we obtain the energy distribution and nonlocal force-field as,

���NLts
3

=

fffNL ts
3

= 103×

We then compute the elements of nonlocal elasticity matrix as the ratio of the inter-
nal bond forces to the equivalent relative displacement of the material point p i.e., 

(57)fffp,q
NL

=

24�
LJ p

�6

LJ p,q
NL

l8
p,q

NL

⎡
⎢⎢⎣
1 − 2

�
�

LJ p,q
NL

l
p,q

NL

�6⎤⎥⎥⎦
(up − uq

NL

).

(58)

⎡⎢⎢⎢⎢⎢⎢⎣

0 0.0017375023 0.0000000682 0.0000000444 0.0000000341 0.0000000269

0.0017375023 0 0 0 0 0.0000000341

0.0000000682 0 0 0 0 0.0000000444

0.0000000444 0 0 0 0 0.0000000682

0.0000000341 0 0 0 0 0.0017375023

0.0000000269 0.0000000341 0.0000000444 0.0000000682 0.0017375023 0

⎤
⎥⎥⎥⎥⎥⎥⎦

J,

(59)

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1.8622903 0.0000731 0.0000476 0.0000365 0.0000288

1.8622903 0 0 0 0 0.0000365

0.0000731 0 0 0 0 0.0000476

0.0000476 0 0 0 0 0.0000731

0.0000365 0 0 0 0 1.8622903

0.0000288 0.0000365 0.0000476 0.0000731 1.8622903 0

⎤
⎥⎥⎥⎥⎥⎥⎦

N.

(60)

⎡⎢⎢⎢⎢⎢⎢⎣

0.0017376761 0.0017375023 0.0000000682 0.0000000444 0.0000000341 0.0000000269

0.0017375023 0.0040313142 0.0022934104 0.0000002183 0.0000001488 0.0000000341

0.0000000682 0.0022934104 0.0040413746 0.0017476331 0.0000002183 0.0000000444

0.0000000444 0.0000002183 0.0017476331 0.0040413746 0.0022934104 0.0000000682

0.0000000341 0.0000001488 0.0000002183 0.0022934104 0.0040313142 0.0017375023

0.0000000269 0.0000000341 0.0000000444 0.0000000682 0.0017375023 0.0017376761

⎤
⎥⎥⎥⎥⎥⎥⎦

J,

(61)

⎡⎢⎢⎢⎢⎢⎢⎣

1.8624765 1.8622903 0.0000731 0.0000476 0.0000365 0.0000288

1.8622903 4.0022114 2.1395209 0.0002162 0.0001474 0.0000365

0.0000731 2.1395209 4.0076064 1.8677485 0.0002162 0.0000476

0.0000476 0.0002162 1.8677485 4.0076064 2.1395209 0.0000731

0.0000365 0.0001474 0.0002162 2.1395209 4.0022114 1.8622903

0.0000288 0.0000365 0.0000476 0.0000731 1.8622903 1.8624765

⎤
⎥⎥⎥⎥⎥⎥⎦

N.
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�ffp,q
NL

ts
3

�eq
p
ts
3

 . In order to keep the internal forces, and the total potential energy of the bonds 

conserved, it is necessary to consider the equivalent relative displacement of the mate-
rial point p. It is given as,

where �ff  ’s are as defined earlier, Cp,q
L ts

3

 is the local bond constant for the bond p, q
L
 at the 

time step ts
3
 , as found in the Local Elasticity Matrix �

L
 ; and Cd

p,q
NL ts

3

 ’s are the bond constants 

of the bonds p, q
NL

 ’s at the time step ts
3
 that have been computed in the Nonlocal Elasticity 

Matrix �
NL

 already.
For Rp = 0.0001 , p ∈ {1, 2, 3, 4, 5, 6} , we obtain the Nonlocal Elasticity Matrix �

NL
 as,

�
NL
= 109×

Young’s modulus of Elasticity can then be distributed as Ep,q =

Cp,qlp,q
ts
3

Ap,q
ts
3

 , where Cp,q ’s are 

the elements of �
NL

 as given in Eq. (63).
As a quantity of interest, �

LJ p
 for the local domain may be computed as,

where, �p,q
L

 is obtained from Eq. (60), l
p,q

L

 is obtained from Eq. (49), and �
LJ p,q

L

 as well as 
the relative displacements are obtained as discussed earlier in this appendix.

B Consistency with the Classical Theory of Elasticity

The underlying ideology behind distributing material properties over the local and non-
local domains is to ensure that the dynamics of the material is the same for any number 
of degrees of separation considered regardless of the Euclidean distance between the two 
material points. To ensure that the elastic deformation is consistent with the one obtained 
with classical theory of elasticity, we rewrite Eq. (8) as,

(62)�eq

p
ts
3

=

∑
q

�ffp,q
L ts

3

−
∑
q

�dffp,q
NL ts

3∑
q

Cp,q
L ts

3

−
∑
q

Cd
p,q

NL ts
3

,

(63)

⎡⎢⎢⎢⎢⎢⎢⎣

0.9981201 − 0.9980202 − 0.0000391 − 0.0000255 − 0.0000196 − 0.0000154

−0.9980202 1.9961986 − 0.9979787 − 0.0001070 − 0.0000729 − 0.0000196

−0.0000391 − 0.9979787 1.9961978 − 0.9980473 − 0.0001070 − 0.0000255

−0.0000255 − 0.0001070 − 0.9980473 1.9961978 − 0.9979787 − 0.0000391

−0.0000196 − 0.0000729 − 0.0001070 − 0.9979787 1.9961986 − 0.9980202

−0.0000154 − 0.0000196 − 0.0000255 − 0.0000391 − 0.9980202 0.9981201

⎤
⎥⎥⎥⎥⎥⎥⎦

N∕m.

(64)
�
LJ p

=
�p,q

L

12�6

LJ p,q
L

l8
p,q

L

[
1 − 2

(
�
LJ p,q

L

l
p,q

L

)6
]
(up − uq

L

)2

,
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Upon integrating Eq. (65) over all the local domains we obtain,

This gives,

The underlying fact behind integrating over all the local domains is that this integra-
tion covers the entire material body, and thus, all material points interact with one another 
either locally or nonlocally. Thus, the second and third terms on the right hand side of Eq. 
(67) balance out each other. Hence,

This gives,

Equation (69) indicates that the external energy supplied to the entire body is either 
converted to the kinetic energy or potential energy without any loss. This shows that Eq. 
(8) is consistent with the classical theory of elasticity. It is also noticeable from Eq. (69) 
that when the kinetic energy is zero, all of the external energy is converted to the poten-
tial (strain) energy and is distributed over the local bonds as per the governing physics. 
Thus, discretization done using only local bonds will give correct static displacements of 
the material points and thus the correct static deformation of the material overall.
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(65)

�
d
(�, t) − 𝜌

L@�
�̈(�, t) = ∫

V
L
(�)

∇
�
�

L
(�, ��, t)dV

L
(��) − ∫

V
L
(�)

R�,��∇�
�

L
(�, ��, t)dV

L
(��)

+ ∫
V
NL

(�)

∇
�
�

NL
(�, ��, t)dV

NL
(��).

(66)

∫
L

(
�
d
(�, t) − 𝜌

L@�
�̈(�, t)

)
dL = ∫

L

∫
V
L
(�)

∇
�
�

L
(�, ��, t)dV

L
(��)dL − ∫

L

∫
V
L
(�)

R�,��∇�

�
L
(�, ��, t)dV

L
(��)dL + ∫

L

∫
V
NL

(�)

∇
�
�

NL
(�, ��, t)dV

NL
(��)dL.

(67)

∫
L

(
�d(�, t) − 𝜌

L@�
�̈(�, t)

)
dL = ∫

L

�
L
(�, ��, t)dL − ∫

L

R�,���L
(�, ��, t)dL + ∫

L

�
NL
(�, ��, t)dL.

(68)∫
L

(
�d(�, t) − 𝜌

L@�
�̈(�, t)

)
dL = ∫

L

�
L
(�, ��, t)dL.

(69)∫
L

�d(�, t)dL = ∫
L

𝜌
L@�

�̈(�, t)dL + ∫
L

�
L
(�, ��, t)dL.
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 12. Belytschko T, Parimi C, Moë s N, Sukumar N, Usui S (2003) Structured Extended Finite Element 

Methods for Solids Defined by Implicit Surfaces. Int J Numer Meth Engng 56:609–635
 13. Rabczuk T, Belytschko T (2004) Cracking Particles: A Simplified Meshfree Method For Arbitrary 

Evolving Cracks. Int J Numer Meth Engng 61:2316–2343
 14. Rabczuk T, Song J, Belytschko T (2009) Simulations of Instability in Dynamic Fracture by the 

Cracking Particles Method. Eng Fract Mech 76(6):730–741
 15. Eringen AC, Eeelen DGB (1972) On Non-local Elasticity. Int J Engng Sci 10:233–248
 16. Eringen AC (1972) Linear Theory of Non-local Elasticity and Dispersion of Plane Waves. Int J 

Engng Sci 10:425–435
 17. Eringen AC, Kim BS (1977) Relation Between Non-local Elasticity and Lattice Dynamics. Crystal 

Lattice Defects 7:51–57
 18. Eringen AC (2002) Nonlocal Continuum Field Theories, Springer. ISBN 0-387-95275-6
 19. Eringen AC (1999) Microcontinuum Field Theories - I: Foundations and Solids, Springer.  ISBN 

0-387-98620-0
 20. Silling SA (2000) Reformulation of elastic theory for discontinuities and long-range forces. J Mech 

Phys Solids 48:175–209
 21. Silling SA, Zimmermann M, Abeyaratne R (2003) Deformation of a Peridynamic Bar. J Elast 

73:173–190
 22. Silling SA, Askari E (2005) A meshfree method based on the peridynamic model of solid mechanics. 

Comput Struct 83:1526–1535
 23. Macek RW, Silling SA (2007) Peridynamics via finite element analysis. Finite Elem Anal Des 

43:1169–1178
 24. Silling SA, Lehoucq RB (2008) Convergence of Peridynamics to Classical Elasticity Theory. J 

Elast 93:13–37
 25. Weckner O, Brunk G, Epton MA, Silling SA, Askari E (2009) Comparison between local elasticity 

and Non-local peridynamics, SAND2009-1109J,, Sandia National Laboratories. www. sandia. gov/ 
sasil li/ SAND2 009- 1109J. pdf

Journal of Peridynamics and Nonlocal Modeling (2022) 4:215–256 255

http://creativecommons.org/licenses/by/4.0/
http://www.sandia.gov/7esasilli/SAND2009-1109J.pdf
http://www.sandia.gov/7esasilli/SAND2009-1109J.pdf


1 3

 26. Silling SA, Epton M, Weckner O, Xu J, Askari E (2007) Peridynamic States and Constitutive Mod-
eling. J Elast 88:151–184

 27. Silling SA (2010) Linearized Theory of Peridynamic States. J Elast 99:85–111
 28. Foster JT, Silling SA, Chen WW (2009) Viscoplasticity using Peridynamics. Int J Numer Meth 

Engng. https:// doi. org/ 10. 1002/ nme. 2725
 29. Warren TL, Silling SA, Askari E, Weckner O, Epton MA, Xu J (2009) A non-ordinary state-

based peridynamic method to model solid material deformation and fracture. Int J Solids Struct 
46(5):1186–1195

 30. Ren H, Zhuang X, Cai Y, Rabczuk T (2016) Dual-horizon Peridynamics. Int J Numer Meth Engng 
108:1451–1476. https:// doi. org/ 10. 1002/ nme. 5257

 31. Madenci E, Barut A, Futch M (2016) Peridynamic differential operator and its applications. Comput 
Methods Appl Mech Engrg 304:408–451

 32. Ren H, Zhuang X, Rabczuk T (2020) A nonlocal operator method for solving partial differential 
equations. Comput Methods Appl Mech Eng 328:112621

 33. González MA (2011) Force Fields and Molecular Dynamics Simulations. Collection SFN 
12:169–2000

 34. Lewars EG (2011) Computational Chemistry, Second Edition, Springer. ISBN 978-90-481-3860-9
 35. Zhigilei LV (2014) MSE 4270/6270: Introduction to Atomistic Simulations - Lecture Notes, 

Spring, Department of Materials Science and Engineering, University of Virginia
 36. Lennard-Jones JE (1931) Cohesion, The Proceedings of The Physical Society 43(5):240
 37. Lennard-Jones JE (1924) On the Determination of Molecular Fields. - II. From the Equation of 

State of a Gas, Proceedings of the Royal Society of London. Series A, Containing Papers of a 
Mathematical and Physical Character 106(738):463–477

 38. Ramberg W, Osgood WR (1943) Description of Stress-Strain Curves by Three Parameters, NACA 
Technical Note No. 902, National Advisory Committee for Aeronautics, Washington

 39. Brammer AT (2013) Experiments and Modeling of the Effects of Heat Exposure on Fatigue of 6061 
and 7075 Aluminum Alloys, MS Thesis, The University of Alabama

 40. Zhang Z, Qiao Y, Sun Q, Li C, Li J (2009) Theoretical Estimation to the Cyclic Strength Coefficient 
and the Cyclic Strain-Hardening Exponent for Metallic Materials: Preliminary Study. J Mater Eng 
Perf 18(3):245

 41. MechaniCalc, Inc., https:// www. mecha nicalc. com/
 42. Metallic Materials Properties Development and Standardization (2003) DOT/FAA/AR-MMPDS-01 - 

Scientific Report, Office of Aviation Research, Washington, D.C. 20591
 43. Bathe KJ (2006) Finite Element Procedures - Sixth Printing, Prentice Hall, ISBN 81-203-1075-6
 44. Cox BN, Huajian G, Dietmar G, Rittel D (2005) Modern Topics and Challenges in Dynamic Fracture. 

J Mech Phys Solids 53:565–596
 45. Wiesner CS (2000) Crack Arrest - When Brittle Fracture Stops, In the life of a Crack: Initiation - 

Growth - Fracture. Edited by M Koçak
 46. https:// www. twi- global. com/ techn ical- knowl edge/ faqs/ faq- what- is- crack- arrest

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Journal of Peridynamics and Nonlocal Modeling (2022) 4:215–256256

https://doi.org/10.1002/nme.2725
https://doi.org/10.1002/nme.5257
https://www.mechanicalc.com/
https://www.twi-global.com/technical-knowledge/faqs/faq-what-is-crack-arrest

	A Novel Notion of Local and Nonlocal Deformation-Gamuts to Model Elastoplastic Deformation
	Abstract
	1 Introduction
	1.1 Brief Overview of Localization
	1.2 Nonlocality and Locality in Continuum Mechanics
	1.3 Brief Overview of This Study

	2 Preliminary Background: Computational Framework
	2.1 Local and Nonlocal BondsInteractions1
	2.2 Local and Nonlocal Elasticity Matrices
	2.3 Nonlocal Force-Field

	3 Governing Equation of Motion for Deformation Dynamics based on Local and Nonlocal Deformation-Gamuts
	3.1 DG Functional for Continuous Domain
	3.2 DG Functional for Discretized Domain
	3.3  as a Function of Material Properties and Ramberg–Osgood Parameters
	3.4 Calibration of Weights

	4 Modified Governing Equation of Motion for Deformation Dynamics based on Local and Nonlocal Deformation-Gamuts
	4.1 Quantification of Nonlocal Deformation-Gamuts
	4.2 Effective Nonlocal Deformation-Gamut of a Material Point

	5 Numerical Examples
	5.1 Simulation Procedure
	5.2 Deformation-Gamuts Parameters
	5.3 Monotonic Loading
	5.4 Cyclic Loading

	6 Discussion and Concluding Remarks
	Acknowledgements 
	References




