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Abstract

Peridynamic equation of motion is usually solved numerically by using meshless
approaches. Family search process is one of the most time-consuming parts of a peri-
dynamic analysis. Especially for problems which require continuous update of family
members inside the horizon of a material point, the time spent to search for family members
becomes crucial. Hence, efficient algorithms are required to reduce the computational time.
In this study, various family member search algorithms suitable for peridynamic simula-
tions are presented including brute-force search, region partitioning, and tree data structures.
By considering problem cases for different number of material points, computational time
between different algorithms is compared and the most efficient algorithm is determined.

Keywords Peridynamics - Family search - Spatial search - Tree structures

1 Introduction

The peridynamic (PD) theory was first introduced by Silling in the year of 2000 [1]. It
is basically the re-formulation of classical continuum mechanics (CCM) equations using
integro-differential equations, in which derivatives only come into picture with time deriva-
tives of displacements. Both theories assume that a domain, V, can be discretized into many
infinitesimal volumes, i.e. material points and their interactions. In CCM, the material point
at position x only interacts with its nearest neighbors whereas in PD theory it can interact
with material points x” which are not only limited to the nearest neighbors of x. The former
local interactions are in the form of traction vectors, T as opposed to the nonlocal force den-
sities, t and t” in PD theory. In CCM, the traction vectors are expressed in the form of stress
tensor, ¢;; and its equation of motion can be expressed as

pIi(x,7) =0, ; +b(x,1) with i&j=1,23 (@8]
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where comma in the subscript of the stress tensor indicates the differentiation over a space
and u and b are the displacement and body load vectors, respectively. Moreover, p and ¢
denote the density of the material and time, respectively. On the other hand, peridynamic
theory has the following form of equation of motion

p(X)(X, 1) = / tx —x,u —u) —t'(u—u))dHy + b(x, 1) 2)
Hy

where integration region Hy includes all interactions between the main material point x
and its family members x’. The range of interactions, generally called as bonds, is limited
with the horizon, § around the material point x. The force density, t arises from the relative
displacements of all material points, x” with respect to material point x with in the horizon
of material point x. The force density, t’ is exerted upon the material point x in the opposite
direction in ordinary state-based peridynamic formulation. In the original form of PD theory,
which is named as bond-based PD theory, it is assumed that the force densities have the same
magnitude and this assumption causes a restriction on material constants which lead to one
material constant instead of two constants for isotropic materials. PD theory has attracted
attention of many researchers all over the world. The reason of this is mainly the capability
of PD theory for modeling discontinuities over a domain. Many researchers succeeded to
solve many challenging and diverse problems involving discontinuities using peridynamics
especially after the publication of successive papers by Silling and Askari [2] and Macek and
Silling [3]. The former concentrated on numerical implementation part of the bond-based
PD theory and the latter is its demonstration by using commercial FE software, Abaqus.

Following the introduction of most general forms of PD theory by Silling et al. [4], which
are so called ordinary and non-ordinary state-based theories, the interest on PD theory has
been dramatically increased, since the limitation on material constants was removed and
it paved the way of modeling more challenging problems such as plastic deformation [5].
Moreover, the application of peridynamics has also been extended to other fields such as
thermal diffusion [6], electric flow [7], and hydrogen diffusion [8]. The book by Madenci
and Oterkus [9] presents the numerical implementation areas of PD theory including com-
plex laminated composite materials. Moreover, a recent book by Madenci et al. [10] brings
a new aspect on solving many formidable differential equations by using PD differential
operator.

The peridynamic equation of motion is usually solved by using meshless discretization
methods as explained in previously mentioned publications. Emmrich and Weckner [11]
compared all of the solution methods including the finite element (FE) method for a one-
dimensional PD problem which does not contain any discontinuities. In that case, the FE
method has the best accuracy amongst the others. However, it requires more computational
time to solve the matrix equations. Besides, the meshless methods are the most convenient
ones for PD problems with discontinuities. The solution does not involve any jump terms
as in the CCM theory because the governing equation of PD theory is derivative-free. For
this reason, most of the researchers ([3, 9]) prefer meshless midpoint rule for numerical
implementation of PD theory. It is simple and easily applicable when discontinuities exist
in the body. Therefore, the peridynamic equation of motion given in Eq. 2 can be written in
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a discrete form as

PXH)UXg), 1) =
N
D wxG) — Xy Uy — u@) — ¥ (Xe) — Xy, u — u)) Vi)
j=1
+b(xq), 1) (3)

where N; is the number of material points inside the horizon of the material point at x(;, and
V(j) is the volume of the material point at X(;) .
The most general in-house PD code mainly contains the following steps:

Ist step - Constructing material points: The body is composed of many small finite
volumes and the center of each volume is represented by a material point located at
the center of the volume. In this step, the material points are created while determining
their locations in a global coordinate system.

2nd step - Family member search: Family member points, which reside inside the
horizon of each main material point, are determined and the family member array is
created.

3rd step - Surface correction: The horizon is usually truncated near the boundaries of a
surface and this results in reduction of material point stiffness. Hence, the stiffness of
material points near the free surfaces is corrected (see Chapter 4 of ref. [9]).For more
information about different surface correction approaches available in the literature
please see Le and Bobaru [13].

4th step - Time integration: The PD equations are solved dynamically or statically.

When it comes to efficiency of PD codes, apart from the time integration step, the most
time-consuming part is the family member search algorithm. The time consumption is very
dependent on the horizon size, § of a material point. If PD domain is going to be solved
statically, the stiffness matrix must be constructed by considering family members of each
material point. Stiffness matrix created in this manner will have higher density when com-
pared with finite element (FE) implementation of CCM. Constructing such a populated
global stiffness matrix can be very time consuming and this process, if not done in a most
possible efficient way, can seriously impede the in-house PD code’s efficiency. Further-
more, commonly used mesh-free methods in peridynamics experience serious issues with
accuracy and convergence due to rough approximation of the contribution of family nodes
close to the horizon boundary [12]. This means that when creating efficient and accurate
PD codes, one needs to take into account not only family search or surface corrections, but
also accurate computation of volumes near the boundary of the horizon.

The family search is basically a ranged query process where the goal is to find the
members which reside inside the horizon of each material point. Although it may not
be always necessary, family members of a material point need to be updated if adaptive
search is needed depending on the type of the problem, such as using the updated Eulerian
description.

Another factor that can influence family search is the way in which surface correction
factors are calculated. As explained in Le and Bobaru [13], there are several surface effect
correction methods such as volume method, force density method, energy method, force
normalization method, and fictitious nodes method. Most of these methods do not influence
the family search process as they do not add any additional spatial data into the peridynamic
model and mainly modify either the bond stiffness or the force state for bonds near the
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boundaries of the surface. Only exception is the fictitious nodes method where a layer of
extra nodes (fictitious nodes) are added around surface boundaries so that every real node
has a full horizon. In order for this approach to work, the size of the layer of fictitious nodes
needs to be at least equal to one horizon size around the original PD domain. This extra layer
of points will naturally increase to the number of PD points that need to be searched and
increase the family search time. According to Le and Bobaru [13], although this approach
practically eliminates PD surface effects, it has certain limitations especially when dealing
with non-straight boundaries since family members definition becomes rapidly complex.
On the other hand, peridynamic models with irregular and non-uniform discretized solution
domains can also influence family search process [14]. Irregular mesh can have a large
impact on gridding algorithms (Verlet list, cell-linked lists or Partitioning algorithm) as it
will increase unnecessary distance computations between points.

In literature, there are few studies on family member search algorithms related with
Peridynamics. Diyaroglu [15] introduced an efficient way of searching family members
of each material point by utilizing localized squares for 2-dimensional (2D) and cubes for
3-dimensional (3D) configurations. Liu et al. [16] also showed a similar family search algo-
rithm named “Family-member search with link list” which utilizes an equidistant grid of
squares holding certain number of points.

On the other hand, there is an extensive body of work on near-neighbor search algo-
rithms in molecular dynamics. Methods that are predominantly investigated are Verlet List
and cell-linked list. Dominguez et al. [17] investigated the efficiency of these methods and
proposed a novel neighbor search algorithm based on a dynamic updating of the Verlet List.
In a study by Viccione et al. [18], numerical sensitivity analysis of Verlet List and cell-
linked list efficiency was conducted. In this work, efficiency was studied as a function of
Verlet List size and cell dimensions. Another interesting study was done by Howard et al.
[19] where a novel approach based on linear bounding volume hierarchies (LBVHs) for
near-neighbor search was introduced. In essence, bounding volume hierarchies (BVHs) are
tree structures and mainly used in collision detection and ray tracing. They are very similar
to R-tree structures that are investigated in this paper. Furthermore, these authors compared
the LBVHs with the state-of-the-art algorithm based on stenciled cell lists and found that
LBVHs outperformed the stenciled cell lists for systems with moderate or large size dis-
parity and dilute or semi-dilute fractions of large particles (conditions typical in colloidal
systems).

As a summary, peridynamics is a very attractive approach especially problems including
discontinuities. Researchers are always in quest of efficient and fast codes in order to solve
complex engineering problems statically or dynamically. Therefore, the main aim of this
study is to compare various family member search algorithms available in the literature and
propose the most convenient form for peridynamic analysis depending on the type of the
problem.

2 Family Search Algorithms
The fundamental family search algorithms available in the literature from weak to robust are

investigated in this section including brute-force search, region partitioning, and tree data
structures.
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2.1 Brute-Force Search

The most straightforward algorithm for family member search is the so-called brute-force
search or exhaustive search algorithm in which all possible candidates, so-called material
points, are systematically enumerated. Thus, all material points, which are active in the
domain, are looped over and they are checked if they satisfy a certain criterion. The criterion
in this case is whether the member material point is in the range of horizon size, 4§, i.e.
[Xj) — X@i| < 8. As shown in Fig. 1, if the reference length between two material points
X(j and X(;) or the size of a bond is bigger than the specified horizon size, the material point
is skipped and other points inside the domain are checked for family members of the main
material point X;).

It is a very simple search algorithm to implement and it always determines the correct
family members of a material point. Hence, all researchers without any effort can use it
to solve the problems of small size, which does not consume substantial time in family
search part. The computational cost is proportional to the number of candidate material
points and it tends to grow very quickly as the size of the problem increases, which causes
combinatorial explosion. Combinatorial explosion occurs in computing environment in the
following sense: if a system has n Boolean variables, which gives two possible states (true
and false), the system will have 2" possible states. If the system has n variables that can have
M possible states, the system will have M" possible states. Thus, the brute-force algorithm
has the worst case complexity of O (n"), where n is the number of material points and O(.)
represents amount of time to run the algorithm or so-called time complexity.

2.2 Region Partitioning

The region-partitioning algorithm proposed by Diyaroglu [15] is elaborated in this section.
In this technique, the solution domain is divided into square grids as shown in Fig. 2. Instead
of searching for the entire solution domain as in brute-force search algorithm, only the main
grid, which keeps the main material point x and the neighboring grids, is searched for its
family member points, xX’. It is very easy to implement and the gain in speed is substantial
compared with the basic brute search. However, the oddly shaped bodies would decrease
the efficiency of this algorithm. Since the grid shapes can only be in square or cubic forms,

Fig.1 Brute-force search -
algorithm for the material points, B fOf 1= l’ N

X(i)

- for j=1,N
I |xgy — x| < 8
count = count + 1

fmem(i)(count) = j
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Fig.2 Material points inside the domain of interest with square grids

the extra time would be spent for the points outside the main region. These points, which
are outside the problem domain, must be deactivated later as shown in Fig. 2.

Note that Mattson and Rice [20] proposed an approach similar to Diyaroglu [15] to
deal with near-neighbor calculations for molecular simulation techniques such as molecular
dynamics or Monte Carlo. In their work, they tried to make improvement on conven-
tional cell-linked lists method as they divide the domain into a grid of cells populated by
atoms and near-neighbor search was done over main cell and its neighboring cells. In their
work, they proposed a modified cell-linked list method which should substantially decrease
unnecessary internuclear distance computations (neighboring cells contain more atoms than
necessary).

A rectangular problem domain with PD material points inside the square grids is shown
in Fig. 3. The size of square grids, which partition the problem domain, is determined based
on the size of the horizon, § and in this example case § = 3A in which A denotes the
discretization size (distance between the material points). Region partitioning algorithm
can be broken down into two sections including construction of material points and family
member search parts. In the first section, each square region is constructed with 6 points
along x and y directions except for the end regions. The region numbers are shown in red
color. Thus, the family members of each main material point can only reside in its own and
neighboring regions. The following scalars and arrays can be constructed accordingly;

ncl: Number of columns along x-axis

nrw: Number of rows along y-axis

Istncl: Number of points in the last column along x-axis

Istnrw: Number of points in the last row along y-axis

nrgn: Total number of regions

region: An array which gives the first material point’s number at each region.

For a rectangular domain shown in Fig. 3, these scalars and arrays are defined as;
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Fig.3 Partitioned rectangular problem domain

ncl =5, nrw =4, Istncl = 1, Istnrw = 2, nrgn = 20

region (1) = 1, region (6) = 40, region (11) =79, region (16) = 118
region (2) = 10, region (7) = 49, region (12) = 88, region (17) = 124
region (3) = 19, region (8) = 58, region (13) = 97, region (18) = 130
region (4) = 28, region (9) = 67, region (14) = 106, region (19) = 136
region (5) = 37, region (10) = 76, region (15) = 115, region (20) = 142

In the second section, the family members of each main material point are determined.
Thus, the following arrays can be generated;

nfmem: Total number of family members for each main material point
fmem: Family member point numbers for each main material point
indx: Index array which defines the main material point’s location in the fmem array

In order to create these arrays in a most efficient way and reduce the search time dramat-
ically, the advantage of region partitioning completed in the first section is utilized. First,
the main region’s number and its neighboring region’s numbers are defined and they are
searched for family member points of main point. For instance, if the region 14 is chosen as
the main region, the search for the family members is only performed inside the neighbor-
ing regions of 8, 9, 10, 13, 15, 18, 19, and 20. Figure 4 shows the family member material
point search for the main material point 109. The regions are enumerated locally with a blue
color. At this level, the following scalars/arrays can be created;

Jfpoint: The first point’s number (106) inside the main region.

Ipoint: The last point’s number (114) inside the main region.

neighrw(1:9): The number of material points along x-axis at each locally numbered
region;

neighrw(1) = 3, neighrw(4) = 3, neighrw(6) = 3, neighrw(8) = 1

neighrw(2) = 3, neighrw(5) = 1, neighrw(7) = 3, neighrw(9) =3

neighrw(3) = 1

neighcl(1:9): The number of material points along y-axis at each locally numbered
region;
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neighcl(1) = 2, neighcl(4) = 3, neighcl(6) = 3, neighcl(8) =3
neighcl(2) = 2, neighcl(5) = 3, neighcl(7) = 3, neighcl(9) =3
neighcl(3) =2

Thus, the family members of the main material point 109 inside the main region 14 are
determined. This search algorithm can further be improved by using pink colored rectangle
shown in Fig. 4. The regions along x- and y-axes are numbered in the base of three as
depicted in pink color. By doing so, the family member search is only allowed to be done
in rectangular region with 7x7 points. Please see Appendix for family search algorithm for
3-dimensional configurations.

Although this approach gives significant amount of boost and speed in family search
process, it is crude and inflexible way to organize and query the spatial data. This approach
works fine for highly symmetrical meshes and straight boundaries, where the majority of
the portioned regions have the optimal number of points defined by the horizon size. How-
ever, it suffers for highly irregular meshes. Furthermore, the partitioning is dependent on
horizon size and any change in horizon size necessitates the repartitioning of the problem
domain. These observations are self-evident when having a closer look at the algorithm,
which divides the solution domain into a square grid and the family search is only done
for the main region that holds the main material point and its neighboring grids. When
using this approach, partitioning algorithm works on the assumption that it needs to search
only the immediate neighboring grids as it expects that all the family points are contained
within them. This assumption comes from the fact that the mesh has an equidistant spac-
ing between material points which is not the case for irregular meshes. Moreover, as it was
mentioned earlier, partitioning depends on the horizon size, which means that if the hori-
zon size is changed, the partitioning needs to be updated. Updating could be done by two
approaches; either number of points in each region needs to be changed or if the number of
points is kept constant, then number of neighboring regions needs to be adjusted.

Fig.4 The neighboring regions

for the material point 109 2 * 1P —~<e—
| 130 O . ol 3% i;

o [
e ol d00d D
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()8'0090.01‘
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2.3 Tree Data Structures

The storage and queries of peridynamic points can be achieved with many data structures.
The most basic data structure is a simple array. An array is a static data structure, which
can be randomly accessed and it is easy to implement as in brute-force search algorithm.
On the other hand, the linked-list data structures are in essence a linear collection of data
elements and each element points to the next which are dynamic in nature and are ideal
for frequent operations such as adding, deleting, and updating. The main drawbacks of
linked-list structures compared with static arrays are the high memory consumption and the
sequentially accessed data. Other data structures including stacks, queues, and hash table
are specialized for complex problems.

The main disadvantage of using array or linked-list data structures to store material points
is the time necessary to search for a specific point or set of points, i.e. family members.
Since static arrays and linked-list structures are linear, the query time is proportional to the
size of data set. This can be nicely visualized if we imagine the data set with a size of n.
The number of comparisons required to find an item in the worst case scenario is O(n).
Therefore, efficient data structures are needed to store and search the data.

The evolved form of linked data structure (linked-list, vector, stack, and queue) is a tree
(Fig. 5), which represents collection of nodes and their relations (parent-child relationship).
As compared with other linear (sequential) data structures, a tree is in non-linear or hierar-
chical form. A tree is either empty or comprising a root node with zero or more subtrees
called children. A rooted tree form is the main interest of the current study and it has the
following properties:

—  One node is distinguished as the root which is node 1.

—  Each node may have zero or more children.

— Every node (exterior to root) is connected with directed edge from exactly one to other
node and its direction is parent to children.

In Fig. 5, node 1 is a parent (root node) and nodes 2, 3, and 4 are its children or subtrees.
On the other hand, node 2 is a parent to nodes 5, 6, and 7. Each node can have arbitrary

® @ O &
5

Fig.5 General concept of a tree structure
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number of children. Nodes with no children are called leaves, or external nodes. In Fig. 5,
nodes 3, 5, 7, 9, and 10 are the leaves and other nodes are called as internal nodes. Internal
nodes have at least one child. Nodes with the same parent are called siblings. In Fig. 5,
nodes 2, 3, and 4 are the siblings. The depth of a node is the length of the path from root
to the node. For instance, the depth of node 9 is 3. The height of a node is the length of the
path from node to the deepest leaf. The height of node 1 is 3. The height of a tree is equal to
height of a root. The size of a node is equal to the number of nodes available in the subtree
of that node (including itself). The size of node 2 is 5.

2.3.1 Binary Tree

Binary tree is a specialized case of general tree structure where each node has at most two
children called the left and right child. If each node has exactly zero or two children, it is
named as full binary tree. In a full tree, there are no nodes with exactly one child. A complete
binary tree is completely filled from left to right with a possible exception of the bottom
level. Figure 6 shows full- and complete-tree structures. A complete-tree with a height of &
has between 2 and 2+D — 1,

Other types of binary tree are the balanced and unbalanced binary tree structures (Fig. 7).
The height of balanced tree differs at most one from its left to the right. A balanced binary
tree is also known as an AVL (Adelson Velskii Landis) tree which is developed by Adelson
et al. (1962).

2.3.2 Binary Search Trees

A Binary Search Tree (BST) is a data structure which can be traversed/searched according
to an order. A binary tree is actually a binary search tree (BST) if and only if it is in an
ordered sequence. The idea of a BST is the data stored in an order so that it can be retrieved
very efficiently. The nodes can be sorted as shown in (Fig. 8) and in the following way:

— Each node contains one unique key (value used to compare nodes—in case of PD this
would be x,y, z position).

— The keys in the left subtree are less than the key in its parent node (L subtree).

— The keys in the right subtree are greater than the key in its parent node (R subtree).

Fig.6 Two types of binary tree: a full- and b complete-tree structures
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a

Fig. 7 Balanced versus unbalanced binary tree: a balanced and b unbalanced

— Duplicating node keys are not allowed.

If BST is built in a balanced form, log time access is required for each element. In other
words, algorithm needs to do at worst log, (rn) comparisons in order to find a specific node.
An arbitrary BST with a height of / has total possible number of nodes equal to 2! — 1. In
order to find a particular node only one comparison needs to be performed at each level, or
a maximum of A+1 in total. This is because each node can only have two children and only
one of them satisfies the search condition. If the number of nodes, # in a tree is known, the
number of comparisons to fully traverse the tree can be calculated as

2h+1_1:n

which leads to
h =log,(n) — 1 = O(log,(n))

Thus, a balanced binary search tree with n nodes has a maximum order of log, (n) levels
meaning that at most log, (n) comparisons are needed to find a particular node. The main
problem of achieving O(log, (n)) is the necessity of balanced-tree form and it is not a trivial
task. One of the ways to achieve the balanced-tree form is to distribute the data randomly.
The probability of forming balanced-tree structure would be high. However, if the data
has already a pattern (sorted list of peridynamic points), a simple FIFO (first in first out)
insertion into a binary search tree will result in growing tree either to the right or to the left

Fig.8 Binary Search Tree (BST)
with left and right subtrees

R
subtree

@ Springer



70 Journal of Peridynamics and Nonlocal Modeling (2020) 2:59-84

side of the root node. This kind of unbalanced binary search tree is no more efficient than
the regular linked-list. To this end, a great care needs to be taken in order to keep the tree
as balanced as possible. There are many techniques for balancing tree structures as given in
refs. [21] and [22].

2.3.3 Spatial Search Trees

Spatial data or geospatial data is the information of a physical object which can be repre-
sented with numerical values in a geographic coordinate system. In peridynamic sense, this
corresponds to material points with their volumes and positions in a coordinate system. The
Geographic Information Systems (GIS) or other specialized software applications can be
used to access, visualize, manipulate, and analyze geospatial data.

Spatial data has two fundamental query types: nearest neighbors and range queries. Both
serve as a building block for many geometric and GIS problems. Solving both problems (big
data problems within a realistic time span) at a scale requires defining a spatial index. Spatial
indices are used to optimize the spatial queries. Conventional index types (binary search
tree) do not efficiently handle the spatial queries; for instance, the query of the distance
between two material points if they reside within the spatial area of interest. Some of the
efficient spatial index methods such as R-tree and K-d tree searches can overcome this
deficiency.

Data changes are usually less frequent than the queries, which means that incurring an
initial time cost of processing data into an index is a fair price to pay for instant searches
afterwards. This is especially true for most of the PD simulations in which initial family
members do not change during the analysis.

Almost all spatial data structures share the same principle to enable efficient search;
branch and bound. This means arranging data in a tree-like structure and discarding
branches if they do not fit our search criteria. The well-known spatial trees are R-tree and K-
d tree. R-tree has tree data structures used for spatial access methods as proposed by Antonin
Guttman [23]. The R-tree access method organizes any-dimensional data in a tree-shaped
structure called an R-tree index. The index uses a bounding box which is in a rectilinear
shape such that it contains the bounded objects (in case of PDs, the objects are the material
points). Bounding boxes can enclose the data objects or other bounding boxes. In Fig. 9, an
R-tree with two levels of bounding boxes is shown. There are nine red boxes at the upper
level and each red bounding box contains nine purple bounding boxes as the lower level.
Grey points represent the peridynamic points sorted into this R-tree.

Fig.9 First two levels of R-tree
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On the other hand, Bentley [24] introduced K-d tree which is similar to R-tree. In this
method, the points are sorted into two halves (around a median point) either left and right,
or top and bottom, alternating between x and y, or x, y, and z or any other n-dimensions
split at each level. Figure 10 shows the two initial splits with a red line along x-axis and
subsequent splits along y-axis depicted as purple line.

Compared with R-tree, K-d tree search usually only contains points (not the rectangles)
and it cannot handle the adding and removing points. However, it is easier to implement and
it is usually very fast. Both R-tree and K-d tree searches share the principle of partitioning
data into axis-aligned tree nodes. Since PD mesh is defined with material points which
are in essence spatial data, selection of K-d or R- trees represents a logical choice when
it comes to family search. In following sections, in-depth reviews of K-d tree and R-tree
algorithms developed in BOOST libraries are provided and their implementation to PD
codes are demonstrated.

2.3.4 R-Tree Search

R-tree is a hierarchical data structure based on B+ tree. B+ tree is a binary tree but the
parent node can have more than two child nodes. R-tree is used for dynamic organization
of a set of d-dimensional geometric objects (PD points can either be in 2-dimensional or
3-dimensional forms) and they can be represented by minimum bounding d-dimensional
rectangles (MBRs). Each node of R-tree corresponds to the MBR that bounds its
children.

It must be pointed out that the MBRs surrounding different nodes may overlap with each
other. Furthermore, MBR can include (in a geometrical sense) many nodes, but it can be
associated only one of them. This means that a spatial search may visit many nodes before
confirming the existence of a given MBR. This also can lead to false alarms when repre-
senting geometric object with their MBRs. To avoid these kinds of mistakes, the candidate
objects must be examined. For example, Fig. 11 illustrates the case where two peridynamic
material points and their horizons (red circles) which are not intersecting but their MBRs do.
Therefore, R-tree represents a filtering mechanism for reduction of extremely costly direct
examination of geometric objects.

An R-tree is defined by its order (n, N) and it has the following characteristics:

— Each leaf node (unless it is the root) can host up to N entries (peridynamic points),
whereas the minimum allowed number of entries is n < N /2. Each entry has the form

Fig. 10 First two levels of K-d
tree )
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Fig. 11 Intersecting MBRs,
where peridynamic family
member points are only in MBR
A

of (mbrID, oID), where mbrID represents the identifier of MBR that spatially contains
the object and oID is the object’s identifier (peridynamic point).

—  Each internal node can store between n < N /2 and N entries (MBRs). Each entry is
of the form (mbrID, p), where p is a pointer to the child of the node and mbrID is the
MBR that spatially contains the MBRs contained by child p.

—  The minimum allowed number of entries in the root node is 2, unless it is a leaf. When
the node is a leaf, it can contain zero or single entry because leaf nodes represent the
end of a tree.

—  All leaves of the R-tree are at the same level.

R-tree is a height-balanced tree with all leaves are at the same level. Since, R-trees are
dynamic data structures, the global re-organization does not require to handle insertions
or deletions. It is one of the main advantages of R-tree compared with K-d tree and AVL
tree. Figure 12 shows a set of MBRs with some data geometric objects. This can represent
PD points. The MBRs are from number 1 to 32 and they are stored at the leaf level of R-
tree. Five MBRs (A, B, C, D, and E) organize the aforementioned rectangles (where each
contains 9 peridynamic points) into an internal node of R-tree. Assuming N =10 and n =5,
Fig. 13 depicts corresponding MBRs.

Fig. 12 MBR data and their
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Fig. 13 MBRs data and their

. A|B|C|D|E
inner nodes
1|28 18|19|20
69|10 15116127 22|23|24
21|25
92 [7]1 26[27]28]29
11112|13|14 3031132

2.3.5 K-d Tree Search

A K-d tree, or k-dimensional tree, is a binary data structure, which stores k-dimensional
data, for organizing number of points in a space with k dimensions [24]. Each level of
K-d tree splits all children with specific dimension. Each level of the tree is compared
against one dimension. This means that every node has 2 children each corresponding to an
outcome of the comparison of two records based on a certain key which can be chosen as
“discriminator.” In a similar manner with standard binary tree, the K-d tree subdivides the
data at each recursive level of the tree. Unlike standard binary tree, which uses only one
key for all tree levels, the K-d tree uses k keys and it cycles through these keys for every
successive tree level. In order to build 2-dimensional K-d tree (2-d tree) which comprises (x,
y) coordinates, the keys would be cycled as x, y, x, y and so on for all the successive levels
of K-d tree [25].

Figure 14 demonstrates the working mechanism of K-d tree. An array of points is inserted
(first node in the array is a root node) to the system which eventually produces unbalanced
tree. The array is given as follows:

Ar=1(8,9), (5, 11), (15, 10), (10, 7), (5. 3), (2,6), (12, 4), (1, 7)]

The first cutting plane is in the x direction (blue line) and the next cutting plane is in the y
direction (red line) and so on. This process is repeated until the leaf level is reached meaning
that there are no more points to insert.

2.3.6 Balanced K-d Tree Search

When building a K-d tree, due to the use of different keys at successive levels of the tree, it is
not possible to employ rebalancing techniques.Building K-d tree data structure would cause
unbalanced structures. The reason of this is the use of different keys at successive levels
of tree data. Moreover, it is not possible to employ rebalancing techniques. Rebalancing
techniques are used to build self-balancing AVL tree [26], where if the height of two child
subtrees of any node differ by more than one. In that case, rebalancing is performed to
restore the height. Another self-balancing tree is the so-called the red-black tree ([21] and
[22]), where each node of the binary tree has an extra bit. This bit is often interpreted as
the color (red or black) of a node. These color bits are then used to ensure that the tree
remains approximately balanced during the insertions and deletions. Since it is not possible
to employ rebalancing techniques, the typical approach to building a balanced K-d tree is to
find the median of the data for each recursive subdivision of the data. Bentley [24] showed
that if the median of n elements is found in O(n) time, it would be possible to build a
depth-balanced K-d tree in O(nlog (n)) time. In order to find the median of n elements,
sorting algorithm needs to be applied to the data. Most widely used sorting algorithms are
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Quicksort, Merge Sort, and Heapsort. Quicksort [27] is a divide and conquer algorithm.
It picks an element as pivot and partitions the given array around the picked pivot. In the
best case scenario, Quicksort finds the median in O(nlog (n)) time and in the worst case
scenario, the time increases up to o). Merge Sort [28] is also a divide and conquer
algorithm. The idea behind the Merge Sort is to divide the unsorted list into n sublists. Each
sublist contains one element and a list of one element is considered as sorted. Afterwards,
Merge Sort repeatedly merges sublists to produce a new sorted sublists until there is only
one sublist remaining. On the other hand, Heap sort is a comparison-based sorting technique
based on Binary Heap data structure. It is similar to selection sort which finds the maximum
element. Merge sort and Heapsort find the median in the best case of O(nlog n), which leads
to O(n log2 n) time for a balanced K-d tree [29].

An alternative approach to building a balanced K-d tree would be the presorting data
prior to building a tree [25]. The algorithms developed by Brown [25] are implemented in
our in-house PD solver. The PD points are presorted in each of k dimension prior to building
K-d tree. Thus, it maintains the order of these k sorts when building a balanced K-d tree.
This in return achieves a worst-case complexity of O(knlogn).

Basic concepts of balanced K-d tree algorithm can be explained with the following sim-
ple example. A small sample of spatial data is considered. This data can be viewed as a set
of PD points from which a K-d tree is created. The data set consists of 15 (x, y, z) tuples
(PD points) which are stored into a list of elements numbered from O through 14 as shown
in Fig. 15. First step is to presort the PD points using merge sort. The points are sorted via
super keys; x:y:z, y:z:x, and z:x:y which represent cyclic permutations of x, y, and z. The
points are not sorted independently through x, y, and z coordinates but each part of the super
key (x, y, and z) has a certain level of significance. Hence, for example, the super key y:z:x
is composed from y as a primary key, z as a secondary key, and x as a tertiary key. This
means that during the merge sort, if the two points have identical primary keys, then they
are compared using secondary key, and if their secondary keys are identical, they are com-
pared using the tertiary key. In case of all the three keys are the same with two identical
points, one of the points is removed.

y
X
Y
(5.11)
L 5.9) (15.10)
X
4(10.7)
'(2.6)
e e Y
¢ (53) z4)
°
(.7)

Xy

a Cutting planes

Fig. 14 2-d tree
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PD Points Initial Indices After First Split  After Second Split

(x.y,2) XYZ YZX ZXYy XYZ YZX ZXY XYZ YZX ZXY
0 |(233) 11]13] 9 11[13] 9 13|13 9
1 [(5,4,2) 13| 4|6 13| 9|1 09|13
2 (9,6,7) 0|51 o|o |13 9|ofo
3 [4,7,9 10197 10/1]0
4 |(8,1,5) 3|0(13 31010 11|10]10
5 [(7,2,6) 1|60 1]11]|12 10|11 |11
6 [(9,4,1) 91|12 9|33 3|3(3
7 (84,2 5|7 |10
8 [(9,7.8) 410 4|4 4|6
9 [(6,3,1) 7 |12
10 | (3,4,5) 14| 2 |14 14| 7 |12 6|74
11 [(1,6,8) 6112 6|12| 4
12 (9,5,3) 1214|121 12| 2 |14 14| 2 |14
13 [(2,1,3) 2|88 2 |14| 2 2|14
14 |(8,7.6) 8|33 8|88 8|88

Fig. 15 2-d tree

In order to have initial array of points untouched and to save on memory consumption,
the merge sort does not work with initial array of PD points. Instead, it reorders three index
arrays whose elements point to array indices. The initial order of indices produced by merge
sort is shown in (Fig. 15) (see xyz, yzx and zxy columns under “Initial Indices”). The next
step is to partition the points in x direction, which is the first splitting dimension, by using
x:y:z super key. There, the partition location is specified by the median element of the xyz-
index array under “Initial Indices.” The partition results are shown in (Fig. 15) under “After
first split” column in which the partitioning does not reorder the array of PD points. Instead,
it reorders the yzx- and zxy-index arrays. Please note that xyz-index array requires no parti-
tioning as it is already sorted in x direction and this was done when “Initial Indices” arrays
were created. However, the yzx- and zxy-index arrays require partitioning in x direction by
using the x:y:z super key defined by median point 7:2:6. The partitioning of yzx index array
is achieved as follows:

1. The elements of yzx-index array are compared with super key (median element of index
array—7:2:6)

2. They are copied either in upper half if they are less than the x value or in lower half if
they are bigger than the x value from xyz super key.

3. The same procedure is repeated for zxy-index array.

The columns of “After First Split” reveal that the index value of 5 is absent from the
index arrays since it represents the partitioning value. It also becomes the root of nascent
K-d tree, as shown in Fig. 16. The same procedure is also repeated for y direction, and the
partitioned values (see column “After Second Split” in Fig. 15) are removed and stored as
children nodes of the root node. This recursive process is repeated until index array consists
of only one, two, or three elements. In the case of only one point is left after the final split, it
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<>

Fig. 16 A K-d tree built from (x, y, z) tuples

is automatically stored as a new node of K-d tree. If there are two or three points left, these
points are already sorted in the index array. So, the determination of which point referencing
a new node and which point referencing from children is trivial.

2.3.7 Boost R-Tree Algorithm

R-tree is currently the only spatial index implemented in “Boost.Geometry.Index” library
which is a part of overall Boost library [30]. The intended use of “Boost.Geometry.Index” is
to gather data structures defined as spatial indexes which can be used to accelerate searching
for objects in multidimensional spaces. In general, spatial indexes store representations of
geometric objects which allows the end user to search for objects occupying some space or
object close to some point in a space.

R-tree is a tree data structure used for spatial queries and it is first proposed by Antonin
Guttman [23]. Since all objects lie within a bounding rectangle, a query, that does not
intersect the bounding rectangle, also cannot intersect any of the objects contained in the
bounding rectangle. Similar to B-tree, R-tree is also a self-balanced search tree. The key
part of balancing algorithm is the node splitting algorithm ([31] and [32]). Each algorithm
produces different splits such that the internal structure of a tree may become different for
each one of them. This means that more complex algorithms can better analyze the ele-
ments and produce less overlapping nodes. The tree with less overlapping nodes is more
efficient in a search process because less nodes must be traversed in order to find desired
objects. The downside of higher complexity algorithms is that analysis takes more time. In
general, faster inserting results in slower querying and vice versa. Performance of R-tree is
contingent on balancing algorithm, parameters, and the data inserted into a container.

Most trees with searching algorithms (e.g., intersection, spatial search, nearest neighbor
search) are rather simple. The key idea is to use the bounding boxes to decide whether or not
to search inside a subtree. This means that most of the nodes in a tree are traversed during
the search. R-trees are suitable for large data sets and databases, where the nodes can be
paged to memory as needed and the whole tree cannot be kept in the main memory.
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The main problem with an R-tree is that the rectangles do not encompass too much
empty space and do not overlap too much (fewer subtrees need to be processed during the
search). On the other hand, they are balanced (leaf nodes have the same height). Most of the
research and improvements of R-trees are aimed at improving the tree building process and
they are defined by two main objectives: 1—Building an efficient tree from scratch (bulk-
loading) and 2—Performing changes on an existing tree (insertion and deletion). Boost R-
tree implements several building algorithms which are linear algorithm, quadratic algorithm,
R*-tree algorithm, and packing algorithm (bulk loading algorithm). As can be seen from
Table 1, packing algorithm is faster when building the R-tree and also R-trees with better
internal structure gives faster spatial and k nearest neighbors (knn) queries.

3 Comparative Performance of Search Algorithms

In order to compare performance between brute-force search algorithm, region partition-
ing search algorithm, balanced K-d tree, and boost R-tree with packing algorithm, several
example cases were considered. Multiple cubic 3-dimensional PD meshes were created,
ranging from 27000 to 8000000 points. Maximum number of family points for the 3D mesh
with a horizon of 3A is 122. The configuration of the machine used for testing is Intel(R)
Core(TM) i7-4510U @ 2.0GHz, 8GB RAM, MS Windows 10 x64. In Table 2, timings for
family search are presented. Figure 17 presents the data from Table 2 except the brute-force
search since those times are not comparable with the rest of the algorithms. In Table 3 and
Fig. 19, times for building the K-d&R-tree structure are shown. Because the brute-force and
region partitioning algorithm do not require any specific structure except for an array of
points, there was no need to include them in Table 3 and Fig. 19.

As it can be seen from Table 2, brute search is the worst performing algorithm as it would
be expected. This should indicate that the brute search algorithm should only be used when
doing initial testing of the PD algorithm on relatively small mesh and not as a strategy for
complex problems. Comparing the rest of the algorithms, it can be seen that region parti-
tioning search algorithm performed best. This is further supported when different horizon
sizes are used as it can be seen from Fig. 18 where all tree algorithms are tested for two
different horizon sizes H = 3A and 6 A. Number of family points for horizon sizes 3A and
6A is 122 and 924, respectively. All of these benefits come with several caveats. First of
all, this algorithm is not scalable. As it can be seen from Table 2, both R and K-d trees have

Table 1 Example structures of trees created by different algorithms and their operations times

Linear Quadratic R* -tree Packing

algorithm algorithm algorithm

LY
iR
=
17
[ oH=E]
Lo

]

Y -1
[=m
Example structure E ] C i g g [, v

IM Values inserts 1.76s 2.47s 6.19s 1.67s
100k spatial queries 2.21s 0.51s 0.12s 0.07s
100k knn queries 6.37s 2.09s 0.64s 0.52s

(https://www.boost.org/doc/libs/1_55_0/libs/geometry/doc/html/geometry/spatial _indexes/introduction.html)
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Table 2 Family search time comparison

Number of Brute-force Region partitioning Balanced Boost R-tree with
PD points search algorithm search algorithm K-d tree packing algorithm
27000 8.428 s 0.156 s 0.339s 0.289 s

64000 57.561s 0.328 s 0.776 s 0.648 s

125000 218.537 s 0.797 s 1.58s 1.353s

216000 641.56 s 1.094 s 2.763 s 2.393s

343000 1544.48 s 1.531s 4.382s 3.841s

512000 3211.89s 2.016's 6.581 s 6.229 s

729000 6266.8 s 2.348 s 9.692 s 8.421s

1000000 11460.5 s 4.28s 13.507 s 11.364 s
8000000 590930.51 s 80.4's 112.498 s 94.343 s

more or less linear increase of family search time between 1,000,000 and 8,000,000 points
but region partitioning algorithm does not. Moreover, region partitioning algorithm is built
to fit a specific purpose, which is family search of very regular meshes, preferably rectangu-
lar or cubic shaped. Secondly, all of the arrays are either statically allocated or dynamically
allocated, but with a purely defined sizes; for example in region partitioning algorithm size
of the family members array for a 3-dimensional configuration and horizon size of 3A is
defined as number of points x 150 (max size of family members for one point is 122 for this
specific horizon). Although this can be easily changed, we would still allocate more mem-
ory space than necessary as not all points will have max number of family points (points
close to edges of the mesh). Thirdly, if the horizon size changes or horizon shape is not a
circle/sphere, user would need to thoroughly rewrite the algorithm which is not easy as the
code itself is very complex. This algorithm could be used also for initial testing of the PD
algorithm that would require large but symmetrical meshes where use of third party libraries
is not possible.

120 | —o— Region partitioning search algorithm |
Balanced K-d tree
100 | —6— Boost R-tree with packing algorithm

80

60 |- a

Time [s]

40 |- a

20

A

I
0 27 64 125 216 343 512 729 1000 8000
Number of points (x103)

Fig. 17 Time comparison for different family search algorithms
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Table 3 Times necessary for building the tree structure

Number of Balanced Boost R-tree with
PD points K-d tree packing algorithm
27000 0.046 s 0.014 s

64000 0.095 s 0.026 s

125000 0.186 s 0.049 s

216000 0.339s 0.1s

343000 0.54s 0.158 s

512000 0.782 s 0.225s

729000 1.251s 0.327 s

1000000 1.62s 0411s

8000000 17.252 s 4.12s

Comparing balanced K-d tree to the boost R-tree with packing algorithm, it is obvious
from the timings that boost R-tree performs better. R-tree performs better in building the tree
structure and family search (Table 3 and Fig. 19). Furthermore, one of the problems with
balanced K-d tree is relatively high memory consumption when building the tree structure,
compared with the boost R-tree. The reason behind this is the need for constant sorting of
points after each split in order to keep the tree balanced. This makes boost R-tree more
memory friendly for extremely large meshes. Moreover, with the boost R-tree, it is easy
to change the shape of the horizon as the user can overload the geometry definition of
the bounding box with different shapes when doing spatial queries. Only possible negative
side for the boost R-tree is dependence on third party development and maintenance of the
necessary libraries. In conclusion, boost R-tree seems currently the best option if there is a
need for highly scalable, relatively fast, and versatile spatial query algorithm.

100 ‘
90 - —c— Region partitioning search algorithm
Balanced K-d tree
80 —o— Boost R-tree with packing algorithm
70 |- .
— 60
h
@ I N
E 50
& 40
30 .
20
10 M |
0 |
3 4 5 6 7

Horizon n

Fig. 18 Time comparison for different horizon sizes H = nA for 1000000 points
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20

181 Balanced K-d tree i
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Fig. 19 Time comparison for building the tree structure between balanced K-d tree and boost R-tree with
packing algorithm

4 Conclusion

In this study, four different family search algorithms were considered including brute-force
search, region partitioning search, balanced K-d tree, and boost R-tree with packing algo-
rithm. By varying the number of material points inside the solution domain, computational
time spent for family member search was determined. According to the results, brute-force
search is the worst performing algorithm and it should be used for small number of mate-
rial points and testing purposes. Although region partitioning search algorithm performed
very well, it is limited to large and symmetrical meshes. Finally, it was concluded that boost
R-tree is the best option amongst all four different algorithms considered in this study.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

Appendix: Region Partitioning Search Algorithm for 3D Domain

Family member search of 3-dimensional (3D) body is the extended version of 2D code.
As shown in Fig. 20, the body is partitioned into many regions in the 1st—Constructing
material points step. Each region is constructed with 3 material points for § = 3A along x,
v, and z directions except the end regions. The region scalars/arrays can be constructed as
follows.

— ncr(1): Number of regions along x-axis
— ncr(2): Number of regions along y-axis
— ncr(3): Number of regions along z-axis
— Istncr(1): Number of points in the last region along x-axis
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Fig. 20 Partitioned rectangular 3D domain

— Istner(2): Number of points in the last region along y-axis

— Istner(3): Number of points in the last region along z-axis

—  nrgn: Total number of regions.

—  region: An array which gives the first material point’s number for each region.

Above parameters for an example 3D body take the values of
ncr(1) =5, ner(2) = 4, ner(3) = 3, Istner(1) = 1, Istner(2) = 2, Istner(3) = 2, nrgn = 60
and

region (1) =1, region (26) =547, region (56) = 1093,
region (2) =28, region (27) =574, region (57) = 1105,
region (3) =55, region (28) =601, region (58)=1117,
region (4) =82, region (29) =628, region (59)=1129,
region (5) =109,  region (30) = 655, region (60) = 1141,

In the 2nd—Family member search step of the code, the family members of each material
point are determined and nfmem, fimem, and indx arrays are created. The main region’s
number and its neighboring region’s numbers are defined and searched for family member
points. For example, if region 34 is chosen as the main region from Fig. 20, its neighboring
regions are 8, 9, 10, 13, 14, 15, 18, 19, 20, 28, 29, 30, 33, 35, 38, 39, 40, 48, 49, 50, 53, 54,
55, 58, 59, and 60. Figure 21 shows search mechanism for main material point 754 and the
regions are numbered locally which are in blue color. The following scalars and arrays can
be created;

fpoint: the first point’s number, which is 745, inside the main region.
Ipoint: the last point’s number, which is 771, inside the main region.

neighrw(1:27): the number of material points along x-axis for each locally numbered region
and they are given as,
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Fig.21 The neighboring regions 19 0 2
for the main point 754 {1- : T > j oA L 4 :
P VY R g V1) (g
58 59 60
23 24

neighrw(l) =3, neighrw(13) =3, neighrw(25) =3,
neighrw(2) =3, neighrw(14) =3, neighrw(26) = 3,
neighrw(3) =1, neighrw(15) =1, neighrw(27)=1,

neighcl(1:27): the number of material points along y-axis for each locally numbered region
and they are given as,

neighcl(1) =2, neighcl(13) =3, neighcl(25)=3
neighcl(2) =2, neighcl(14) =3, neighcl(26) =3
neighcl(3) =2, neighcl(15) =3, neighcl(27)=3

neighth(1:27): the number of material points along z-axis for each locally numbered region
and they are given as,

neighth(1) =3, neighth(13) =3, neighth(25) =2,
neighth(2) =3, neighth(14) =3, neighth(26) =2,
neighth(3) =3, neighth(15) =3, neighth(27)=2,

As in 2D code, the family member search can further be reduced with numbering regions
along x-, y-, and z-axis in the base of 3 which are depicted in pink color (Fig. 21). For
instance, the main point 754 possesses the numbers 0, 1, and 2 in the base of 3 in x, y
and z directions, respectively. Thus, the borders of a smaller rectangular prism take the
same numbers in the base of 3. Thus, the family member search is only allowed in this
rectangular prism for points. To conclude, all regions are sought for family member points
and family member array is created. The total number of family members of each main
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point is calculated and stored. Also, the index number for the main material points should
be written to the indexing array.
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