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Abstract
In this study, a peridynamic model is presented for a Mindlin plate resting on a Winkler
elastic foundation. In order to achieve static and quasi-static loading conditions, direct
solution of the peridynamic equations is utilised by directly assigning inertia terms to zero
rather than using widely adapted adaptive dynamic relaxation approach. The formulation
is verified by comparing against a finite element solution for transverse loading condition
without considering damage and comparing against a previous study for pure bending of
a Mindlin plate with a central crack made of polymethyl methacrylate material having
negligibly small elastic foundation stiffness. Finally, the fracture behaviour of a pre-
cracked Mindlin plate rested on a Winkler foundation subjected to transverse loading
representing a floating ice floe interacting with sloping structures. Similar fracture
patterns observed in field observations were successfully captured by peridynamics.

Keywords Mindlin plate . Peridynamics . Ice fracture

1 Introduction

In many engineering applications including marine, civil and transport engineering, analysis of
structures resting on an elastic foundation is an important problem of interest [1]. To represent
the elastic foundation, Winkler and Pasternak formulations are widely utilised. In Winkler
formulation, the elastic foundation is represented by the distribution of springs to resist the
lateral deflection of the structure resting on the elastic foundation. On the other hand, Pasternak
formulation can capture the shear interaction between springs [1].

Although there are numerous studies in the literature considering elastic foundation prob-
lem, only few of them investigated the behaviour of an existing crack inside a structure resting
on an elastic foundation. Amongst these, Matysiak and Pauk [2] performed stress analysis near
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a crack tip in an elastic layer resting on a Winkler foundation by using the method of Fourier
transforms and dual integral equations. Farjoo et al. [3] investigated rolling contact fatigue
cracks in railway tracks and used a simplified finite element model (FEM) and extended finite
element method (XFEM). They observed that the elastic foundation leads to an additional
bending stress which increases the crack growth rate significantly. In another study, Attar et al.
[1] investigated the free vibration of a shear deformable beam with multiple open edge cracks
using lattice spring model. Finally, Nobili et al. [4] presented a full-field solution for the linear
elastostatic problem of a homogeneous infinite Kirchhoff plate with a semi-infinite rectilinear
crack resting on a two-parameter elastic foundation. They calculated stress intensity factors for
both symmetric and skew-symmetric loading conditions.

In this study, an alternative approach, peridynamics [5], is used for the analysis of a Mindlin
plate resting on a Winkler type elastic foundation. Peridynamics was originally introduced to
overcome the limitations of classical continuum mechanics. The equations of motion in
peridynamics are in the form of integro-differential equations, and they do not contain any
spatial derivatives. Therefore, these equations are valid regardless of discontinuities.
Peridynamics has been successfully used to analyse different material systems and geometrical
configurations [6–14]. An extensive literature survey on peridynamics is given in Madenci and
Oterkus [15] and Javili et al. [16]. Aforementioned benefits of peridynamics have attracted
interest in solving solid mechanics problems particularly those involving damage and fracture.
Majority of such attempts deal with full 3D models or 2D plane stress/plane strain models.
There are relatively few peridynamic models considering structures resisting transverse defor-
mation with one dimension (e.g. the thickness) significantly smaller than the other two (e.g.
aircraft fuselage, ship hull, pressure vessel) including Silling and Bobaru [17] for 2D mem-
branes, Taylor and Steigmann [18], O’Grady and Foster [19], Diyaroglu et al. [20] and Reddy
et al. [21] for plates and flat shells, and Chowdhury et al. [22] for shells. This study is an
extension of the Mindlin plate formulation developed by Diyaroglu et al. [20]. A similar
approach was presented by Di Paola et al. [23] for non-local modelling of a beam on an elastic
foundation. The current formulation is capable of analysing Mindlin plates resting on an elastic
Winkler foundation with damage prediction capability. Moreover, the direct solution approach
(Bobaru et al. [24], Breitenfeld et al. [25]) is presented to obtain the solution in static
conditions rather than using widely adapted adaptive dynamic relaxation (ADR) scheme
[26]. Finally, several verification and demonstration cases including a Mindlin plate with or
without an initial crack subjected to transverse loading or pure bending loading conditions are
presented to validate the current formulation and demonstrate its capabilities.

2 Peridynamic Theory

Peridynamic (PD) theory was introduced by Silling [5] as an alternative continuum
mechanics formulation to classical continuum mechanics (CCM). As opposed to the
localised concept of CCM, PD theory is based on non-local interactions between
material points. Therefore, material points which are far from each other but within
their interaction range, called horizon, can interact with each other (see Fig. 1).
Material points, x′, inside the horizon, Hx, of the material point, x, can be considered
as the family members of the material point, x. Moreover, PD theory uses displace-
ments rather than derivatives of displacements. Therefore, the equation of motion of a
material point is expressed as an integro-differential equation
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ρ
::
u x; tð Þ ¼ ∫

Hx

f u x
0
; t

� �
−u x; tð Þ; x0

−x
� �

dVx0 þ b x; tð Þ ð1Þ

and this equation is valid anywhere in the structure regardless of discontinuities such as cracks.
In Eq. (1), u is the displacement vector, b is the body load, ρ is the mass density and dVx0

denotes the volume of the material point x′. ‘Dot’ symbol represents the time derivative, and f is
the peridynamic force density vector representing the force that the material point x′ exerts on
the material point x. The relative position and relative displacements of the material points x′

and x are defined, respectively, as

ξ ¼ x
0
−x ð2Þ

and

η ¼ u x
0
; t

� �
−u x; tð Þ ð3Þ

In the original peridynamic formulation, i.e. bond based peridynamics, peridynamic force
for an elastic and isotropic material can be expressed as

f η;ξð Þ ¼ ξþ η
jξþ ηj f jξþ ηj;ξð Þ ð4Þ

where f(| ξ +η| , ξ) is a scalar-valued function which depends on the bond stretch, s, and the
bond constant, c, as

f jξþ ηj;ξð Þ ¼ cs ð5Þ
The bond stretch can be defined as

s ¼ jξþ ηj−jξj
jξj ð6Þ

Fig. 1 The material point x interacts with other material points inside its horizon Hx

Journal of Peridynamics and Nonlocal Modeling (2020) 2:229–242 231



The bond constant, c, can be specified in terms of elastic modulus, E, and horizon size δas

c ¼ 2E

Aδ2
1Dð Þ; 9E

πhδ3
2Dð Þ; 12E

πδ4
3Dð Þ ð7Þ

where h is the thickness and A is the cross-sectional area. In PD theory, the material damage is
included as part of the constitutive relationship by introducing a failure parameter, so that if the
stretch exceeds a critical stretch value, failure parameter reduces the peridynamic force value to
zero. In other words, the peridynamic bond between two initially interacting material points is
broken.

In order to solve the PD equation of motion given in Eq. (1), the meshless method is widely
used. Therefore, Eq. (1) can be rewritten in a discrete form as

ρ
::
u x kð Þ; t
� � ¼ ∑

N

i¼1
f u x jð Þ; t

� �
−u x kð Þ; t

� �
; x jð Þ−x kð Þ

� �
V kð Þ þ b x kð Þ; t

� � ð8Þ

where k is the main material point, j is the family member and N is the number of material
points inside the horizon of the material point k.

3 Peridynamic Mindlin Plate Formulation

The peridynamic formulation presented in the previous section is for material points having
translational degrees of freedom only. If rotational degrees of freedom are desired to be
included to represent Mindlin plate formulation in peridynamics, appropriate changes to the
original PD formulation should be made as explained in Diyaroglu et al. [20]. In Mindlin plate
formulation, each material point has three degrees of freedom including transverse deflection,
w and rotation of planes around x- axis, ϕy and y-axis, ϕx(see Fig. 2).

As presented in Diyaroglu et al. [20], the transverse shear angle and curvature can be
respectively expressed in peridynamic form as

φ kð Þ jð Þ ¼
w jð Þ−w kð Þ
jξ jð Þ kð Þj

−
ϕx jð Þcosθþ ϕy jð Þsinθ

� �
þ ϕx kð Þcosθþ ϕy kð Þsinθ
� �

2
ð9Þ

Fig. 2 Initial and deformed configuration of a Mindlin plate [20]
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and

κ kð Þ jð Þ ¼
ϕx jð Þ−ϕx kð Þ
jξ jð Þ kð Þj

� �
cosθþ ϕy jð Þ−ϕy kð Þ

jξ jð Þ kð Þj
� �

sinθ ð10Þ

where θ is the peridynamic bond orientation with respect to x-axis. Moreover, the peridynamic
equations of motion for the material point k can be derived using the principle of virtual work
as

ρh
::
w kð Þ ¼ cs ∑

N

j¼1
φ kð Þ jð ÞV jð Þ þ bb kð Þ ð11Þ

ρ
h3

12

::
ϕx kð Þ ¼ cb ∑

N

j¼1
κ kð Þ jð ÞcosθV jð Þ þ 1

2
cs ∑

N

j¼1
jξ jð Þ kð Þjφ kð Þ jð ÞcosθV jð Þ þ ebx kð Þ ð12Þ

ρ
h3

12

::
ϕy kð Þ ¼ cb ∑

N

j¼1
κ kð Þ jð ÞsinθV jð Þ þ 1

2
cs ∑

N

j¼1
jξ jð Þ kð Þjφ kð Þ jð ÞsinθV jð Þ þ eby kð Þ ð13Þ

Using transverse shear angle and curvature equations given in Eqs. (9) and (10), Eqs. (11)–(13)
can be rewritten as

ρh
::
w kð Þ ¼ cs ∑

N

j¼1

w jð Þ−w kð Þ
jξ jð Þ kð Þj −

ϕx jð Þ þ ϕx kð Þ
� �

2
cosθ−

ϕy jð Þ þ ϕy kð Þ
� �

2
sinθ

0@ 1AV jð Þ þ bb kð Þ ð14Þ

ρ
h3

12

::
ϕx kð Þ ¼ cb ∑

N

j¼1

ϕx jð Þ−ϕx kð Þ
jξ jð Þ kð Þj

� �
cosθþ ϕy jð Þ−ϕy kð Þ

jξ jð Þ kð Þj
� �

sinθ

� �
cosθV jð Þ

þ 1

2
cs ∑

N

j¼1
jξ jð Þ kð Þj

w jð Þ−w kð Þ
jξ jð Þ kð Þj −

ϕx jð Þ þ ϕx kð Þ
� �

2
cosθ−

ϕy jð Þ þ ϕy kð Þ
� �

2
sinθ

0@ 1AcosθV jð Þ þ ebx kð Þ

ð15Þ

ρ
h3

12

::
ϕy kð Þ ¼ cb ∑

N

j¼1

ϕx jð Þ−ϕx kð Þ
jξ jð Þ kð Þj

� �
cosθþ ϕy jð Þ−ϕy kð Þ

jξ jð Þ kð Þj
� �

sinθ

� �
sinθV jð Þ

þ 1

2
cs ∑

N

j¼1
jξ jð Þ kð Þj

w jð Þ−w kð Þ
jξ jð Þ kð Þj −

ϕx jð Þ þ ϕx kð Þ
� �

2
cosθ−

ϕy jð Þ þ ϕy kð Þ
� �

2
sinθ

0@ 1AsinθV jð Þ þ eby kð Þ

ð16Þ
where

cs ¼ 9E

4πδ3
k2s ð17Þ
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cb ¼ E
πδ

3h2

4δ2
þ 27

80
k2s

� �
ð18Þ

and ks represents the shear correction factor. To describe mode-I and mode-III type fracture
modes, Diyaroglu et al. [20] defined critical curvature and critical shear angle parameters,
respectively, as

κc ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
4GIc

cbhδ
4

s
ð19Þ

φc ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
4GIIIc

cshδ
4

s
ð20Þ

where GIc and GIIIc represent mode-I and mode-III critical energy release rates, respectively.

4 Direct Solution of the Peridynamic Mindlin Plate Formulation

In peridynamics, the static solution can be obtained by using adaptive dynamic relaxation
(ADR) [26] or direct approach [24]. In ADR, artificial damping is introduced to the system and
the solution converges to the static solution after a certain number of iterations. In the direct
approach, the inertia term is specified to zero and a matrix solution is required. Therefore, the
PD force function can be expressed in terms of the second-order micromodulus tensor C as [5]

f ¼ C ξð Þη ð21Þ
where

C ξð Þ ¼ ∂ f
∂η

0;ξð Þ ð22Þ

In the case of PD Mindlin plate formulation, micromodulus tensor, C can be defined as a
Jacobian matrix which is a matrix of all first-order partial derivatives of a vector-valued
function. Therefore, for the force vector function f which is a function of shear angle φ and
curvature κ, the micromodulus tensor can be defined as:

C ¼

∂ f z
∂φ

∂ f z
∂κ

∂mϕx

∂φ
∂mϕx

∂κ
∂mϕy

∂φ
∂mϕy

∂κ

26666664

37777775 ð23Þ

where fz, mϕx
and mϕy

represent force or moment functions between material points arising

from transverse shear deformation and bending. Utilising peridynamic equations given in Eqs.
(11)–(13), force and moment functions can be obtained as

f z ¼ csφ ð24Þ
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mϕx
¼ cbκcosθþ cs

2
jξjφcosθ ð25Þ

mϕy
¼ cbκsinθþ cs

2
jξjφsinθ ð26Þ

Therefore, using Eq. (23) micromodulus tensor C takes the form of

C ¼
cs 0

cs
2
jξjcosθ cbcosθ

cs
2
jξjsinθ cbsinθ

2664
3775 ð27Þ

Substituting Eq. (27) into Eq. (21) results in

f z
mϕx

mϕy

8<:
9=; ¼

cs 0
cs
2
jξjcosθ cbcosθ

cs
2
jξjsinθ cbsinθ

2664
3775 φ

κ

	 

ð28Þ

The force and moment functions between material points j and k can be rewritten by
substituting Eqs. (9) and (10) into Eq. (28) as

f z kð Þ jð Þ
mϕx kð Þ jð Þ
mϕy kð Þ jð Þ

8<:
9=; ¼

cs 0
cs
2
jξ jð Þ kð Þjcosθ cbcosθ

cs
2
jξ jð Þ kð Þjsinθ cbsinθ

2664
3775

w jð Þ−w kð Þ
jξ jð Þ kð Þj

−
ϕx jð Þcosθþ ϕy jð Þsinθ

� �
þ ϕx kð Þcosθþ ϕy kð Þsinθ
� �

2
ϕx jð Þ−ϕx kð Þ
jξ jð Þ kð Þj

� �
cosθþ ϕy jð Þ−ϕy kð Þ

jξ jð Þ kð Þj
� �

sinθ

8>>>><>>>>:

9>>>>=>>>>;
ð29Þ

After reorganising Eq. (29), the following matrix expression of force and moment functions
can be obtained as

f z kð Þ jð Þ
mϕx kð Þ jð Þ
mϕy kð Þ jð Þ

8<:
9=; ¼

cs
jξ jð Þ kð Þj

cs
2
cosθ

cs
2
sinθ −

cs
jξ jð Þ kð Þj

cs
2
cosθ

cs
2
sinθ

cs
2
cosθ

cs
4
jξ jð Þ kð Þj þ cb

jξ jð Þ kð Þj
� �

cos2θ
cs
4
jξ jð Þ kð Þj þ cb

jξ jð Þ kð Þj
� �

cosθsinθ −
cs
2
cosθ

cs
4
jξ jð Þ kð Þj− cb

jξ jð Þ kð Þj
� �

cos2θ
cs
4
jξ jð Þ kð Þj− cb

jξ jð Þ kð Þj
� �

cosθsinθ

cs
2
sinθ

cs
4
jξ jð Þ kð Þj þ cb

jξ jð Þ kð Þj
� �

cosθsinθ
cs
4
jξ jð Þ kð Þj þ cb

jξ jð Þ kð Þj
� �

sin2θ −
cs
2
sinθ

cs
4
jξ jð Þ kð Þj− cb

jξ jð Þ kð Þj
� �

cosθsinθ
cs
4
jξ jð Þ kð Þj− cb

jξ jð Þ kð Þj
� �

cos2θ

26666664

37777775
w kð Þ
ϕx kð Þ
ϕy kð Þ
w jð Þ
ϕx jð Þ
ϕy jð Þ

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
ð30Þ

For static and quasi-static problems, the acceleration terms,
::
w,

::
ϕx and

::
ϕy can be omitted from

the equation of motion as

∑
N

j¼1
f kð Þ jð ÞV jð Þ þ b kð Þ ¼ 0 ð31Þ

where f kð Þ jð Þ ¼ f z kð Þ
h

jð Þ mϕx kð Þ jð Þ mϕy kð Þ jð Þ� T and b kð Þ ¼ bb kð Þ ebx kð Þ eby kð Þ
h iT

.

Substituting force/moment functions given in Eq. (30) into Eq. (31) leads to

∑
N

j¼1

cs
jξ jð Þ kð Þj

cs
2
cosθ

cs
2
sinθ −

cs
jξ jð Þ kð Þj

cs
2
cosθ

cs
2
sinθ

cs
2
cosθ

cs
4
jξ jð Þ kð Þj þ cb

jξ jð Þ kð Þj
� �

cos2θ
cs
4
jξ jð Þ kð Þj þ cb

jξ jð Þ kð Þj
� �

cosθsinθ −
cs
2
cosθ

cs
4
jξ jð Þ kð Þj− cb

jξ jð Þ kð Þj
� �

cos2θ
cs
4
jξ jð Þ kð Þj− cb

jξ jð Þ kð Þj
� �

cosθsinθ

cs
2
sinθ

cs
4
jξ jð Þ kð Þj þ cb

jξ jð Þ kð Þj
� �

cosθsinθ
cs
4
jξ jð Þ kð Þj þ cb

jξ jð Þ kð Þj
� �

sin2θ −
cs
2
sinθ

cs
4
jξ jð Þ kð Þj− cb

jξ jð Þ kð Þj
� �

cosθsinθ
cs
4
jξ jð Þ kð Þj− cb

jξ jð Þ kð Þj
� �

cos2θ

26666664

37777775
w kð Þ
ϕx kð Þ
ϕy kð Þ
w jð Þ
ϕx jð Þ
ϕy jð Þ

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
V jð Þ þ b kð Þ ¼ 0

ð32Þ
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5 Peridynamic Mindlin Plate Resting on an Elastic Foundation

In this study, the Winkler foundation is considered as the elastic foundation and
coupled with PD Mindlin formulation presented in Section 4. Winkler foundation
was originally introduced by Winkler [27] for modelling the soil-structure interactions.
Winkler method assumes that vertical translation of the soil, w, at a point depends
only upon the contact pressure, p, acting at that point in the idealised elastic
foundation and a proportionality constant, k, as

p ¼ kw ð33Þ
The proportionality constant, k, is commonly referred to as the modulus of subgrade
reaction or the coefficient of subgrade reaction. This model was first used to analyse
the deflections and resultant stresses in railroad tracks. In the following years, it has
been applied to many different soil/fluid-structure interaction problems, and it is
known as die Winkler model (Fig. 3).

In order to combine the Winkler foundation with PD Mindlin plate matrix formulation,
Winkler foundation formulation can be written in matrix form as

kh
V jð Þ

0 0 −
kh
V jð Þ

0 0

0 0 0 0 0 0
0 0 0 0 0 0

2664
3775

w kð Þ
ϕx kð Þ
ϕy kð Þ
w jð Þ
ϕx jð Þ
ϕy jð Þ

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
þ b kð Þ ¼ 0 ð34Þ

where k is the spring stiffness and h is the thickness of the plate. It is assumed that the Winkler
foundation only affects transverse deflection.

6 Numerical Results

As part of the numerical results, simple static loading conditions are considered first to
compare the PD predictions with the finite element analysis (FEA) results using ANSYS, a
commercial FEA software. Next, a plate with a central crack under pure bending resting on a
Winkler foundation with very small spring stiffness is considered as a validation case to
compare against results obtained in Diyaroglu et al. [20]. Then, fracture behaviour of a pre-
cracked ice sheet floating on water under transverse loading condition is investigated.

Fig. 3 Mindlin plate on a Winkler foundation
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6.1 Mindlin Plate Rested on a Winkler Foundation Subjected to Transverse Loading

In the first example, a Mindlin plate rested on a Winkler foundation under half
circular edge pressure is considered (see Figs. 4 and 5). This problem was first
introduced by Lu et al. [28] to simulate displacement distribution for a finite size
ice floe interacting with sloping structures.

As it was stated by Lu et al. [28], there is no analytical closed-form solution to calculate the
deflection and stress distribution of a finite plate with free edges under evenly distributed edge
pressure within a half circular area. Therefore, a numerical solution is adopted in order to
verify PD results. The length of the square plate is L = 0.43 m with a thickness of h = 0.01 m.
The radius of the loading area is R = 0.2 L. The Young’s modulus of the plate is specified as

Fig. 4 Illustration of the model utilised to study displacement and rotation distributions [28]

Fig. 5 Peridynamic discretization of Mindlin plate subjected to the transverse loading (grey area)
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E = 5.5 GPa. Only a single row of material points (collocation) in the thickness direction is
necessary to discretize the domain. The distance between material points is Δx = 0.00215 m.
The loading is applied to a single row of material points at the half circular area as a resultant

body load of bb ¼ 86:12N=m2 for the transverse loading. The Winkler foundation modulus to
represent the fluid base is k = ρwg = 1025 (kg/m3) ⋅ 9.81(m/s2) = 10055.25 Pa/m, with ρw and g
being the fluid density and gravitational acceleration, respectively.

The peridynamic solutions for transverse displacement and rotations are compared
with finite element solutions obtained by using ANSYS shell element, which is
suitable for thick/thin shell structures. As depicted in Figs. 6 and 7, PD and FE
solutions are in good agreement with each other and this verifies that the PD direct
solution correctly captures the deformation behaviour of the Mindlin plate rested on
an elastic foundation.

6.2 Pre-cracked Mindlin Plate Rested on a Winkler Foundation Subjected to Pure
Bending Conditions

In the second example, a verification study is considered as in Diyaroglu et al. [20] to
investigate the behaviour of a pre-existing crack in a Mindlin plate. A square plate

Fig. 6 FEA results for displacement w (m) (a) and rotations ϕx (b) and ϕy (c)
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with an initial central crack aligned with the y-axis is considered as shown in Fig. 8.
The length and width of the square plate are L =W = 1 m with a thickness of h =
0.1 m. Plate thickness to crack length is h/2a = 0.5 where 2a is the initial crack
length.

The Young’s modulus of the plate is specified as E = 3.227 GPa, and the shear
modulus is G = 1.21 GPa. The distance between material points is Δx = 0.01 m. The
horizon size is chosen as δ = 3.015Δx. The stiffness of the Winkler foundation is set
to be a very small value, k = 10−9 N/m, in order to represent the original example of
Diyaroglu et al. [20] which is free from the elastic foundation. The material is chosen
as polymethyl methacrylate (PMMA), which shows brittle fracture behaviour. Mode-I
fracture toughness of this material is given as 1.33 MPa

ffiffiffiffi
m

p
[29]. In order to show

simple mode-I crack growth, a bending moment loading is applied to a single row of
points at horizontal boundary regions of the plate. Small increments of resultant body

load of Δebx = 0.05 N/m are induced in order to obtain a stable crack growth. Crack

starts to grow approximately at ebx = 284 N/m as shown in Fig. 9, and a similar crack
pattern is obtained as in Diyaroglu et al. [20].

Fig. 7 Peridynamic Mindlin plate results for displacement w (m) (a) and rotations ϕx (b) and ϕy (c)
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6.3 Pre-cracked Mindlin Plate Rested on a Winkler Foundation Subjected
to Transverse Loading

This case represents a further development of the example presented in Section 6.1. Ice floe
length is specified as L = 3.01 m. Load area radius representing the sloping structure load is set
to R = 0.086 m. The thickness of the plate is h = 0.01 m (Fig. 4). Ice is modelled as an isotropic
material with Young’s modulus of E = 5.5 GPa and shear modulus of G = 2.0625 GPa. The
distance between material points is Δx = 0.01935 m. The horizon size is chosen as δ = 3.015Δx.
Winkler foundation stiffness k is set to k = 10055.25 Pa/m which roughly approximates water
behaviour. Ice is a complex material and can exhibit either ductile or brittle fracture properties
depending on the conditions [30]. For this example case, sea ice is considered a brittle material
as considered in Lu et al. [28]. Mode-I fracture toughness of sea ice is given as 0.12 MPa

ffiffiffiffi
m

p
[30]. To the authors’ knowledge, there is no available value for mode-III fracture toughness of
sea ice in the current literature. We assumed mode-III toughness to be 7 times greater than
mode-I by comparing the ratios to other brittle materials such as PMMA.

In order to generate initial damage, a small initial crack was introduced into the model. The
size of the initial crack was set to 6Δx and crack orientation was perpendicular to the free edge.
Initial load is set to 0, and then small increments of resultant body load, Δbbz = 0.1 N/m2, are
induced in order to obtain a stable crack growth.

Fig. 8 a Pre-cracked Mindlin plate under pure bending condition. b Peridynamic discretization of pre-cracked
Mindlin plate resting on an elastic Winkler foundation

Fig. 9 Crack propagation for PMMA pre-cracked plate resting on a Winkler foundation
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According to Lu et al. [28] and Nevel [31], the specified plate size in this problem case can
be considered as a semi-infinite plate. According to observations in the field made by Kerr
[32], the failure mechanism of a semi-infinite ice plate subjected to a force P at the free edge
proceeds as follows. First, a radial crack forms, which starts under the load and propagates
normal to the free boundary. This is followed by the formation of a circumferential crack that
causes final failure. This behaviour is clearly captured by peridynamics and shown in Fig. 10
where Fig. 10 a shows initial crack before the plate is loaded, Fig. 10 b shows crack

propagation at bbz = 161 N/m2 and Fig. 10 c shows circumferential crack reaching the free

surface at bbz = 304 N/m2.

7 Final Remarks

In this study, a new peridynamic model is presented for a Mindlin plate resting on a Winkler
type elastic foundation. The formulation is validated by comparing against FEA results for a
transverse loading condition for a plate without a crack. For a pure bending loading condition
applied to a plate with a central crack free from the elastic foundation provided a similar crack
pattern that was obtained in an earlier study. Finally, a pre-cracked ice sheet floating on water
under transverse loading conditions was investigated. As observed in field observations,
peridynamic results showed that first a radial crack forms and propagates normal to the free
boundary followed by a circumferential crack.
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