
Japanese Journal of Statistics and Data Science
https://doi.org/10.1007/s42081-024-00243-4

ORIG INAL PAPER

Risk and Statistics in Actuarial Science

High-cardinality categorical covariates in network
regressions

Ronald Richman1 ·Mario V. Wüthrich2

Received: 23 August 2023 / Revised: 8 December 2023 / Accepted: 12 January 2024
© The Author(s) 2024

Abstract
High-cardinality (nominal) categorical covariates are challenging in regression mod-
eling, because they lead to high-dimensional models. For example, in generalized
linear models (GLMs), categorical covariates can be implemented by dummy cod-
ing which results in high-dimensional regression parameters for high-cardinality
categorical covariates. It is difficult to find the correct structure of interactions in
high-cardinality covariates, and such high-dimensional models are prone to over-
fitting. Various regularization strategies can be applied to prevent over-fitting. In neural
network regressions, a popular way of dealing with categorical covariates is entity
embedding, and, typically, over-fitting is taken care of by exploiting early stopping
strategies. In case of high-cardinality categorical covariates, this often leads to a very
early stopping, resulting in a poor predictive model. Building on Avanzi et al. (ASTIN
Bull, 2024), we introduce new versions of random effects entity embedding of cat-
egorical covariates. In particular, having a hierarchical structure in the categorical
covariates, we propose a recurrent neural network architecture and a Transformer
architecture, respectively, for random-effects entity embedding that give us very accu-
rate regression models.

Keywords Categorical covariates · Categorical features · Nominal features ·
High-cardinality features · Entity embedding · Embedding layer · Random-effects
model · Neural network · Recurrent neural network · Attention layer · Transformer ·
Regularization · Ridge regularization · Variational inference · Gaussian mean field
posterior

B Mario V. Wüthrich
mario.wuethrich@math.ethz.ch

Ronald Richman
ronaldrichman@gmail.com

1 Old Mutual Insure and University of the Witwatersrand, Johannesburg, South Africa

2 Department of Mathematics, RiskLab, ETH Zurich, Zurich, Switzerland

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s42081-024-00243-4&domain=pdf
http://orcid.org/0000-0003-4035-552X

Japanese Journal of Statistics and Data Science

1 Introduction

Dealing with nominal (unordered) categorical covariates in regression modeling is
generally a difficult task, especially, if these nominal categorical covariates have
many levels—called high-cardinality covariates—and if some of these levels only
have sparse observations. In addition, different categorical covariates can have a hier-
archical structure, e.g., in car insurance pricingwemayhave information about ’vehicle
brand’—’vehicle model’—’vehicle detail’. This leads to a natural thinning of obser-
vations in each generation of the hierarchy. There is a recent literature on dealing with
high-cardinality categorical covariates, potentially having a hierarchical structure. We
briefly review this literature and we explain our novel contribution to this literature.

A common way to integrate categorical covariates into neural network regression
models is the approach of entity embedding; we refer to Brébisson et al. (2015), Guo
and Berkhahn (2016), Richman (2021a, b) and Schelldorfer and Wüthrich (2019).
Entity embedding is inspired by natural language processing (NLP) where the cor-
pus of words is embedded into a low-dimensional Euclidean space, so that proximity
of words in this low-dimensional Euclidean space reflects similarity in their mean-
ings; see Bengio et al. (2013, 2003, 2006). This entity embedding approach does not
take care of sparse levels nor of a hierarchical structure, and the goal of this work is
to discuss these two issues. Delong and Kozak (2023) exploit pre-training of entity
embeddings using an auto-encoder, and they empirically show that this pre-training
leads to better predictive performance. Campo andAntonio (2023) use clustering tech-
niques for pre-processing high-cardinality hierarchical categorical covariates. Both of
these two approaches are unsupervised learning methods, because they pre-process
the categorical covariates before considering the response variables in a regression
model, and the objective function is either a similarity measure (for clustering) or a
reconstruction loss (for auto-encoding).

In a supervised learning approach, Campo and Antonio (2023) propose a gener-
alized linear mixed model (GLMM) to implement hierarchical categorical covariates
with random effects which are inferred using Bayesian credibility theory; we also
refer to Chapter 6 of Bühlmann and Gisler (2005) for Bayesian credibility theory. A
random-effects proposal, calledGLMMNet, is also considered in Simchoni andRosset
(2022) and Avanzi et al. (2024) for modeling high-cardinality categorical covariates
(non-hierarchical) in a neural network regression framework. Since in a non-linear
regression model, posterior distributions cannot be calculated explicitly, Avanzi et
al. (2024) exploit the method of variational inference for model fitting. The work of
Avanzi et al. (2024) builds the starting point of our proposal.

This paper makes the following contributions to the literature. First, the model
architecture considered in Simchoni and Rosset (2022) and Avanzi et al. (2024) uses
a random-effects entity embedding for high-cardinality categorical covariates. This
entity embedding is concatenated with the last hidden layer of a feed-forward neural
network that processes the continuous covariates, i.e., the high-cardinality categorical
covariates are only integrated into the last hidden layer of the neural network; see
Fig. 1 (lhs). The advantage of that proposal is that it maintains interpretability in the
categorical covariates (not the continuous ones). The deficiency of that approach is that
these categorical covariates cannot interact in a non-trivial way with the other (con-

123

Japanese Journal of Statistics and Data Science

Fig. 1 (lhs) Random-effects entity embedding of Avanzi et al. (2024); (rhs) our proposed random-effects
entity embedding architecture

tinuous) covariates (by propagating through the feed-forward neural network layers).
We modify this point by changing the network architecture, so that the random-effects
embedded categorical covariates can propagate through the network, this is illustrated
in Fig. 1 (rhs), and we also change the embeddings from one dimension to higher
dimensions allowing for more complex interactions within the network. Our exam-
ple shows that if we have non-trivial interactions between categorical and continuous
covariates, it is necessary to have this bigger modeling complexity to receive good pre-
dictive models. Furthermore, we discuss implementation of the random-effects entity
embedding, so that it properly scales w.r.t. the observed case weights, and we discuss
training of this network architecture. This is done either byweighted L2-regularization
(ridge regularization) or by variational inference of the high-cardinality entity embed-
ding using a Gaussian mean field approximation. We compare the two regularization
methods; this is done in Sect. 2. We show that the weighted L2-regularized version can
be seen as a first-order Taylor approximation to the Gaussian mean field variational
inference solution; in particular, it involves less hyperparameters and is more easy to
train at providing comparably good predictive models. This is verified in Sect. 4 where
we study a data example.

Our second contribution extends categorical random-effects entity embedding to a
hierarchical structure. The classical hierarchical credibility model has been studied by
Jewell (1975) and Bühlmann and Jewell (1987); see also Chapter 6 of Bühlmann and
Gisler (2005). This hierarchical credibility model has been extended by Campo and
Antonio (2023) to a GLM version having multi-level risk factor random effects, called
GLMM. Estimation of this GLMM can be done by the iterative scheme of Ohlsson
(2008) within Tweedie’s family of distributions using the log-link, or by numerical
integration and approximation of intractable likelihoods. We extend the GLMM of
Campo and Antonio (2023) by considering multi-dimensional multi-level risk factors
random-effects embedding which is regularized according to its hierarchical structure.
These multi-level risk factors embeddings then enter a neural network architecture,
which extends the model considered in Sect. 2. We relate this architecture to the non-
hierarchical one of Sect. 2, and we conclude that in both modeling approaches, we
receive the same predictive model, because neural networks can accommodate affine
transformations of inputs; this is discussed in Sect. 3.

123

Japanese Journal of Statistics and Data Science

Fig. 2 Hierarchical random-effects entity embedding processed by a recurrent neural network (RNN) layer
before concatenating with the continuous covariates

Our third contribution, also presented in Sect. 3, is to interpret hierarchical cate-
gorical covariates as a time-series, as hierarchical categorical covariates have a tree
structure that is similar to time-series. The main idea then is to understand hierarchical
embeddings as step-wise refinements across the generations of the hierarchy. Having
this interpretation, it is natural to process hierarchical categorical covariates’ embed-
dings by a recurrent neural network (RNN) layer to learn a new representation before
concatenating them with the continuous covariates; this is illustrated in Fig. 2. In our
example, we observe that benefiting from the hierarchical structure, and processing
this through an RNN layer, improves model accuracy compared to the random-effects
entity embeddingmodels presented in Sect. 2.We implement this approach using again
weighted L2-regularization of the high-cardinality hierarchical categorical covariates
to prevent over-fitting. Finally, we replace the RNN layer in Fig. 2 by a Transformer
layer which nowadays is the most powerful way of dealing with time-series data; see
Vaswani et al. (2017). It turns out that this Transformer specification will be the model
closest to the true data generating model.

Organization. In the next section, we discuss random-effects entity embedding of
high-cardinality categorical covariates, and we show how these models can be fitted
to data assuming a neural network regression architecture. In Sect. 3, we study the
hierarchical categorical covariates case. In analogy to time-series, we discuss recur-
rent neural network and Transformer processing, respectively, of these hierarchical
categorical covariates. Section4 presents a data example, where model accuracy of all
proposed models is studied. Finally, conclusion is drawn in Sect. 5.

2 Regularization of categorical entity embedding

We introduce entity embedding of high-cardinality (nominal) categorical covariates.
Learning these entity embeddings uses regularizationwithmore sparse levels receiving
stronger regularization. We show in this section how this intuitive behavior is obtained
within a random-effects entity embedding context.

123

Japanese Journal of Statistics and Data Science

2.1 Random-effects entity embedding

We start by considering one categorical covariate z ∈ A = {a1, . . . , aq} that takes
q different levels a j from set A; the extension to multiple categorical covariates is
presented in Sect. 2.7, below. One-hot encoding of this categorical covariate z gives
us a q-dimensional representation

z �→ (
1{z=a1}, . . . ,1{z=aq }

)� ∈ {0, 1}q .

These are the q basis vectors of the Euclidean space Rq . Compared to Avanzi et al.
(2024), we extend the one-hot encoding to amulti-dimensional entity embedding. This
requires the choice of an embedding dimension b ∈ N and of an embedding matrix
U ∈ R

b×q . We then consider the b-dimensional entity embedding map

z ∈ A �→ eU(z) = U
(
1{z=a1}, . . . ,1{z=aq }

)� ∈ R
b. (2.1)

Our main goal is to learn an optimal embedding matrix U ∈ R
b×q for the prediction

problem to be solved, in particular, similarity in response behavior of different levels
z and z′ ∈ A should be reflected in proximity in embeddings eU(z) and eU(z′) ∈ R

b.
Note that b = 1 reflects the classical encoding in GLMs up to the choice of the
reference level (to turn one-hot encoding into dummy coding).

In a next step, we concatenate this embedding eU(z) ∈ R
b of the categorical

covariate z ∈ A with the remaining (real-valued) covariates x ∈ R
b0 ; this gives us a

feature engineered new real-valued tabular covariate

(x, z) �→ (x, eU(z)) ∈ R
b0+b; (2.2)

we also refer to Fig. 1 (rhs). For a given embedding matrixU ∈ R
b×q , we receive data

sample

DU =
(
Yi , (xi , eU(zi)), vi

)n

i=1
;

the lower indices i ∈ {1, . . . , n} denote the different instances, Yi are the responses of
covariates (xi , zi) ∈ R

b0 × A, and vi > 0 are the (given) case weights (exposures) of
the instances i ∈ {1, . . . , n}.

We then select a neural network NNϑ of a given architecture and with network
parameter ϑ to model this dataDU; more modeling details of the neural network NNϑ

are provided formula (2.23) in Sect. 2.6. This neural network maps inputs to outputs
that serve as predictions of the responses Yi , that is, the predictions are given by the
mapping

(xi , eU(zi)) �→ NNϑ (xi , eU(zi)) ;

this is illustrated inFig. 1 (rhs). The optimal neural networkNNϑ of a given architecture
is found by minimizing a pre-selected loss function L over the network parameter ϑ ,

123

Japanese Journal of Statistics and Data Science

i.e., we aim at solving

argmin
ϑ

n∑

i=1

vi L
(
Yi ,NNϑ (xi , eU(zi))

)
.

This optimization assumes that we know the embedding matrix U ∈ R
b×q . A full

optimal parameter search optimizes over the embedding matrix, too, solving

argmin
ϑ,U

n∑

i=1

vi L
(
Yi ,NNϑ (xi , eU(zi))

)
. (2.3)

This optimization (2.3) is called no pooling in Antonio and Zhang (2014) and Avanzi
et al. (2024), because it does not impose any restrictions in parameter estimations of
categorical covariates. The other extreme case is to setU = 0, called complete pooling,
which does not consider the categorical covariates zi in the regression model at all.
Random-effects entity embedding is between these two extreme cases choosing a prior
distribution π on U that regularizes parameter estimation of categorical covariates.

Note that this framework (2.3) can easily be extended tomultiple categorical covari-
ates. All categorical covariates are embedded as in (2.1), but accounting for their
numbers of levels and they may also have different embedding dimensions. These
embeddings are then concatenated as in (2.2) to receive a new tabular covariate that
collects the real-valued covariates x ∈ R

b0 and all entity embeddings of the categorical
covariates, more details are given in Sect. 2.7.

2.2 Random-effects embedding within the exponential dispersion family

In all what follows, we assume that Yi follows a member of the exponential dispersion
family (EDF) with cumulant function κ , canonical link h = (κ ′)−1 and constant
dispersion parameter ϕ > 0. This implies that response Yi has EDF density

Yi ∼ f (y) = exp

{
yh(μi) − κ(h(μi))

ϕ/vi
+ a(y, ϕ, vi)

}
,

for μi being the expected value, and a(·) a normalizing function, so that the density
f (y) integrates to 1 w.r.t. the given σ -finite measure ν(y) on R; we refer to Chapter
2 of Wüthrich and Merz (2023). In that case, it is natural to choose the deviance
loss function for L . Optimization (2.3) under this deviance loss function choice is
equivalent to maximizing the corresponding log-likelihood function, for independent
EDF responses Y = (Y1, . . . ,Yn)� given by

�Y (ϑ |U)

= log fϑ (Y |U) ∝
n∑

i=1

Yi h (NNϑ (xi , eU(zi))) − κ (h (NNϑ (xi , eU(zi))))

ϕ/vi
,

123

Japanese Journal of Statistics and Data Science

where the proportionality sign ∝ indicates that we have dropped all terms that do not
depend on ϑ and U. The density fϑ (Y |U) considers the distribution of the responses
Y for given random effects U and given network parameter ϑ , which determine the
means by μi = NNϑ (xi , eU(zi)). For random-effects modeling, we now need to
choose a prior density π for U. This then gives the joint log-likelihood function of
(Y ,U)

log fϑ (Y ,U) = �Y (ϑ |U) + logπ(U)

∝
⎡

⎣
n∑

i=1

Yi h (NNϑ (xi , eU(zi))) − κ (h (NNϑ (xi , eU(zi))))

ϕ/vi

⎤

⎦+ logπ(U).

(2.4)

In notation (2.4), we omit that π may involve more parameters that need to be deter-
mined; we come back to this below. Log-likelihood function (2.4) is also called
complete log-likelihood, because it assumes that we have observed the responses Y
and the (latent) random effects U. The general problem in this field now is to solve
the estimation problem under unobserved random effects U, and estimate those. We
are going to discuss different estimation methods in Sects. 2.3–2.5.

2.3 Maximal a posterior estimator

Technically, the most basic way to solve the above estimation problem related to the
joint log-likelihood (2.4) is to determine the maximal a posteriori (MAP) estimator of
U, jointly with the maximum-likelihood estimator (MLE) of the network parameter
ϑ , given U. This is obtained by maximizing (2.4) jointly in ϑ and U, for given Y . We
describe this under a very specific prior density π choice, because this leads to the
classical ridge regularization of Tikhonov (1943); we also refer to Hastie et al. (2015).

The matrix U = [
u1, . . . ,uq

] ∈ R
b×q is a random matrix under π with column

vectors u j ∈ R
b. For categorical covariates zi of instances 1 ≤ i ≤ n, we are going to

change notation (2.1), because this is going to be more convenient in the sequel. Each
categorical covariate zi selects exactly one of these column vectors of U, that is

u j[i] = eU(zi) = U
(
1{zi=a1}, . . . ,1{zi=aq }

)� ∈ R
b, (2.5)

where we adopt the notation j[i] from Avanzi et al. (2024) saying that covariate zi
takes level a j[i]

j[i] = {
j ′ ∈ {1, . . . , q} with zi = a j ′

} = (
1{zi=a1}, . . . ,1{zi=aq }

)
(1, . . . , q)� .

(2.6)

Next, we assume that the column vectors (u j)
q
j=1 are i.i.d. with centered Gaussian

prior distributions having i.i.d. components with variance τ 2. Thus, all elements of U

123

Japanese Journal of Statistics and Data Science

are i.i.d. centered Gaussian with identical variance τ 2 > 0. This assumption allows
us to rewrite the joint log-likelihood of (Y ,U), given in (2.4), as follows:

log fϑ (Y ,U)

∝
q∑

j ′=1

([
n∑

i=1

1{ j[i]= j ′}
Yi h

(
NNϑ (xi ,u j ′)

)− κ
(
h
(
NNϑ (xi ,u j ′)

))

ϕ/vi

]

− 1

2τ 2
∥∥u j ′

∥∥2
)

= 1

ϕ

q∑

j ′=1

n∑

i=1

1{ j[i]= j ′} vi

[
Yi h

(
NNϑ (xi ,u j ′)

)− κ
(
h
(
NNϑ (xi ,u j ′)

))− 1

w j ′
ϕ

2τ 2
∥
∥u j ′

∥
∥2
]

= 1

ϕ

n∑

i=1

vi

[
Yi h

(
NNϑ (xi ,u j[i])

)− κ
(
h
(
NNϑ (xi ,u j[i])

))− 1

w j[i]
ϕ

2τ 2
∥∥u j[i]

∥∥2
]

, (2.7)

with aggregated case weights for 1 ≤ j ′ ≤ q

w j ′ =
n∑

i=1

1{ j[i]= j ′} vi . (2.8)

The crucial observation from (2.7) is that the prior terms−‖u j ′ ‖2/(2τ 2) scale inversely
proportionally to the aggregate caseweightsw j ′ . This fact provides an instance adapted
regularization of the randomeffects (u j)

q
j=1 accounting for themultiplicity of a certain

level a j ′ in the entire data

D =
(
Yi , (xi , zi), vi

)n

i=1
.

Thus, levels a j ′ with many observations zi = a j ′ , i.e., j[i] = j ′, receive only a
small influence from the prior distribution, whereas sparse levels are regularized more
strongly by the prior Gaussian distribution. The MAP is then given by

(
ϑ̂
MAP

, ÛMAP
)

= argmax
ϑ,U

log fϑ (Y ,U). (2.9)

From (2.7), we also observe that the priorπ regularizeswith a regularization parameter
λ = ϕ/(2τ 2) > 0. In MAP estimation, this regularization parameter is considered as
a hyperparameter which is either given a priori or which is determined using cross-
validation. Under a neural network functionNNϑ for the regressionmodel, the specific
choice of λ > 0 is less relevant; this is going to be discussed in detail in Sect. 2.6.

2.4 Variational Bayesian estimation

We exploit a Bayesian posterior expectation approach in this section. The natural
candidate for MLE is to consider the marginal log-likelihood of the observations Y

�Y (ϑ)= log fϑ (Y)= log
∫

fϑ (Y ,U) dU= log
∫

exp {�Y (ϑ |U) + logπ(U)} dU.

(2.10)

123

Japanese Journal of Statistics and Data Science

This integration makes the individual instances 1 ≤ i ≤ n dependent. Typically,
the integral in (2.10) cannot be calculated explicitly which makes it infeasible to go
along this direction. The idea is to maximize a lower bound of (2.10) to receive an
approximate solution to the MLE of ϑ .

We introduce the posterior density of U, given observations Y . Using Bayes’ rule,
we have

πϑ (U|Y) = fϑ (Y ,U)

fϑ (Y)
= fϑ (Y |U) π(U)
∫

fϑ (Y ,U) dU
.

This posterior density is also intractable as it involves the same integral as in (2.10).
In variational Bayesian (VB) estimation, we approximate this posterior density. The
approximating density is called variational density. Assume pψ(U) are candidate den-
sities to approximate theposterior densityπϑ (U|Y). These candidates are parametrized
by ψ . The accuracy of the approximation is measured by the Kullback–Leibler (KL)
divergence, denoted by DKL(·‖·). The optimal approximation within the candidate
densities is obtained by

ψ∗ = argmin
ψ

DKL
(
pψ(U)

∥∥πϑ (U|Y)
)

= argmin
ψ

∫
pψ(U) log

(
pψ(U)

πϑ (U|Y)

)
dU. (2.11)

Naturally, this optimal parameter ψ∗ = ψ∗(Y ,ϑ) is a function of the observations Y
and the network parameter ϑ . Since we do not know the network parameter ϑ , we need
to jointly estimate ϑ and ψ to get a good approximation to the optimal true model.

Using any variational density pψ(U), we can rewrite the marginal log-likelihood
(2.10) as follows; see, e.g., Wüthrich and Merz (2023, Lemma 11.19):

�Y (ϑ) = E (ψ |Y ,ϑ) + DKL
(
pψ(U)

∥∥πϑ (U|Y)
)
, (2.12)

with the evidence lower bound (ELBO) defined by

E (ψ |Y ,ϑ) =
∫

pψ(U) log

(
fϑ (Y ,U)

pψ(U)

)
dU = EU∼pψ

[
log

(
fϑ (Y ,U)

pψ(U)

)]
.

Using (2.12) and the positivity of the KL divergence, we have lower bound

�Y (ϑ) ≥ max
ψ

E (ψ |Y ,ϑ) , (2.13)

and, maximizing this ELBO inψ is equivalent to minimizing the KL divergence given
in (2.11) in ψ , because the left-hand side of (2.12) is independent of ψ .

In view of (2.13), the VB inference approach now seems clear. Namely, we aim

at maximizing the ELBO for receiving an approximate solution to the MLE ϑ̂
MLE

of the network parameter ϑ . The lower bound (2.13) suggests that we can alternate

123

Japanese Journal of Statistics and Data Science

maximizations of ψ (for given ϑ) and ϑ (for given ψ), this will approximate the

maximal log-likelihood �Y (ϑ̂
MLE

) from below, or, more precisely, we find (at least) a
local maximum of the lower bound to the objective function. Usually, one is satisfied
by such an approximate solution, as any better solution is intractable. For this reason,
we further exploit the ELBO. It satisfies

E (ψ |Y ,ϑ) = − DKL
(
pψ(U) ‖π(U)) + EU∼pψ

[
log fϑ (Y |U)

]
. (2.14)

Maximizing the ELBO in (2.13) means that we maximize the expected data log-
likelihood, last term in (2.14), under an approximate candidate posterior U ∼ pψ of
the true posterior distribution, this is also called reconstruction term, see, e.g., Odaibo
(2019). The negative KL divergence in (2.14) then acts as a regularizer that ensures
that the approximate candidate posterior U ∼ pψ reflects the prior assumptions π on
the latent random effects U.

For the prior density π , we choose i.i.d. centered Gaussians with variance τ 2 > 0
for all components of the embedding matrix U, see also (2.7), and for the variational
densities pψ(U) we choose the Gaussian mean field family, meaning that all compo-
nents of U are independent and Gaussian with mean parameters (νk, j)1≤k≤b,1≤ j≤q

and variance parameters (σ 2
k, j)1≤k≤b,1≤ j≤q . The advantage of this choice is that the

KL divergence in (2.14) takes a very simple form, the disadvantage of this choice is
that it cannot capture any posterior dependence inU. This Gaussian mean field choice
gives us KL divergence, see, e.g., Wüthrich and Merz (2023, Example 11.20)

DKL
(
pψ(U) ‖π(U)) =

b∑

k=1

q∑

j=1

1

2

(

− log

(
σ 2
k, j

τ 2

)

− 1 + σ 2
k, j + ν2k, j

τ 2

)

,

(2.15)

with 2bq-dimensional variational density parameter

ψ = (νk, j , σ
2
k, j)1≤k≤b,1≤ j≤q . (2.16)

Using a Gaussian mean field posterior VB approximation also allows us to apply the
reparametrization trick of Kingma andWelling (2019), saying that the column vectors
u j ∼ N(ν j = (νk, j)1≤k≤b, � j = diag(σ 2

k, j)1≤k≤b) of U have the same distributions
as

u j
(d)= ν j + �

1/2
j ε j , (2.17)

for a b-dimensional standard Gaussian ε j ∼ N(0, diag(1)).
Collecting all these assumptions and derivations, and assuming an EDF (2.4) for

the responses Y , we obtain from (2.14) the ELBO

E (ψ |Y ,ϑ) =
b∑

k=1

q∑

j=1

1

2

(

log

(
σ 2
k, j

τ 2

)

+ 1 − σ 2
k, j + ν2k, j

τ 2

)

123

Japanese Journal of Statistics and Data Science

+
q∑

j ′=1

Eε j ′

[
n∑

i=1

1{ j[i]= j ′}

Yi h
(
NNϑ (xi , ν j ′ + �

1/2
j ′ ε j ′)

)
− κ

(
h
(
NNϑ (xi , ν j ′ + �

1/2
j ′ ε j ′)

))

ϕ/vi

⎤

⎦

= 1

ϕ

q∑

j ′=1

n∑

i=1

1{ j[i]= j ′} vi

{
1

w j ′

b∑

k=1

ϕ

2

(

log

(
σ 2
k, j ′

τ 2

)

+ 1 − σ 2
k, j ′ + ν2k, j ′

τ 2

)

+ Eε j ′
[
Yi h

(
NNϑ (xi , ν j ′ + �

1/2
j ′ ε j ′)

)
− κ

(
h
(
NNϑ (xi , ν j ′ + �

1/2
j ′ ε j ′)

))]}
,

wherewe recall definition (2.8) of the aggregated caseweightsw j ′ . The latter expected
value is usually replaced by an empirical version. Having a large sample size n, it
suffices to simulate one independent Gaussian εi ∼ N(0, diag(1)) for each instance
1 ≤ i ≤ n. This provides us with an empirical version of the ELBO

Ê (ψ |Y ,ϑ) = 1

ϕ

n∑

i=1

vi

{
1

w j[i]

b∑

k=1

ϕ

2

(

log

(
σ 2
k, j[i]
τ 2

)

+ 1 − σ 2
k, j[i] + ν2k, j[i]

τ 2

)

+ Yi h
(
NNϑ (xi , ν j[i] + �

1/2
j[i]εi)

)
− κ

(
h
(
NNϑ (xi , ν j[i] + �

1/2
j[i]εi)

))}
.

(2.18)

Using this empirical ELBO, we solve with gradient descent

(
ϑ̂
VB

, ψ̂VB
)

= argmax
ϑ,ψ

Ê (ψ |Y ,ϑ) , (2.19)

where ϑ denotes the network parameter and ψ denotes the variational density param-
eter of the Gaussian mean field approximation.

We compare the MAP approach (2.7) and the VB inference approach (2.18). These
two approaches have in common that the regularization term scales inversely propor-
tionally to the case weights w j ′ , defined in (2.8). This highlights that the influence of
the prior density π vanishes if we have many observations for a certain level a j ′ ∈ A
of the categorical covariate (zi)ni=1. The MAP approach (2.7) regularizes the latent
random effects u j ′ directly and regularization scales as ϕ/(2τ 2w j ′) = λ/w j ′ . From
this, we see that the specific choices of the dispersion parameter ϕ > 0 and the prior
uncertainty τ 2 > 0 do not matter, but only their ratio λ = ϕ/(2τ 2) seems important;
we come back to this in (2.22) below. This behavior is different in the VB inference
approach (2.18). It regularizes the parameters of the random effects (not the random
effects themselves) and the specific choices of ϕ and τ 2 matter, not only their ratio.
Finally, in the MAP approach, the random effects u j are determined by maximizing
(2.7) yielding MAP ûMAP

j ; see (2.9). In the VB inference approach, we can estimate

these random effects by the approximate posterior means ûpostj = ν̂VBj , where these
approximate posterior means are obtained from maximization (2.19).

123

Japanese Journal of Statistics and Data Science

2.5 Ad-hoc random-effects estimation

Comparing the MAP approach (2.7) and the VB inference approach (2.18), there are
two essential differences, namely, regularization is different and the random effects are
considered differently in the data log-likelihood �Y (ϑ |U). The VB inference approach
(2.18) has been received by an empirical version of the ELBO. Using a Taylor expan-
sion log(x) ≈ (x − 1) − (x − 1)2/2, we can approximate the empirical version of the
ELBO as follows:

1

w j ′

b∑

k=1

ϕ

2

(

log

(
σ 2
k, j ′

τ 2

)

+ 1 − σ 2
k, j ′ + ν2k, j ′

τ 2

)

≈ − 1

w j ′
ϕ

2τ 2
∥
∥ν j ′

∥
∥2 − 1

w j ′
ϕ

4

b∑

k=1

(
σ 2
k, j ′

τ 2
− 1

)2

.

If we plug this Taylor approximation into (2.18), we have

Ẽ (ψ |Y , ϑ) = 1

ϕ

n∑

i=1

vi

{
− 1

w j[i]
ϕ

2τ 2
∥∥ν j[i]

∥∥2 − 1

w j[i]
ϕ

4

b∑

k=1

(
σ 2
k, j[i]
τ 2

− 1

)2

+ Yi h
(
NNϑ (xi , ν j[i] + �

1/2
j[i]εi)

)
− κ

(
h
(
NNϑ (xi , ν j[i] + �

1/2
j[i]εi)

))}
.

(2.20)

For σ 2
k, j[i] ≡ 0, this precisely gives the MAP approach (2.7) with u j[i] replaced by

ν j[i]. Formula (2.20) randomizes the random-effects case individually by adding noise
� j[i]εi , and at the same time, this additional noise term gets regularized through � j[i]
on the first line of (2.20). In this sense, we can interpret the empirical ELBO estimation
approach as a double Bayesian model.

In our examples, we also consider optimization of (2.20), providing the ad-hoc
estimators

(
ϑ̂
ad-hoc

, ψ̂ad-hoc
)

= argmax
ϑ,ψ

Ẽ (ψ |Y ,ϑ) . (2.21)

2.6 Hyperparameter selection for regularization

We consider the above three regularization methods of the MAP (2.9), VB inference
estimator (2.19), and the ad-hocmethod (2.21). These involve the dispersion parameter
ϕ > 0 and the prior Gaussian uncertainty τ 2 > 0.We discuss the selection of these two
parameters in this section. For this, we first need to understand how neural networks
NNϑ work.

Fully connected feed-forward neural network. We briefly discuss the structure
of a neural network NNϑ , and for a detailed description, we refer to Wüthrich and

123

Japanese Journal of Statistics and Data Science

Merz (2023, Chapter 7). A neural network is a mapping

NNϑ : Rb0+b → R, (x, eU(z)) �→ NNϑ (x, eU(z)) ,

for given embedding matrix U and embedding dimension b ∈ N; see (2.2). For the
neural network architecture, we choose a fixed depth d ∈ N, and then we compose d
hidden neural network layers �(l) : Rrl−1 → R

rl , 1 ≤ l ≤ d, to a mapping

(x, eU(z)) �→ �(d:1) (x, eU(z)) =
(
�(d) ◦ · · · ◦ �(1)

)
(x, eU(z)) ∈ R

rd ,

for given dimensions rl ∈ N, 1 ≤ l ≤ d. The lth hidden layer with rl ∈ N neurons
and hyperbolic tangent activation function reads as, x = (x1, . . . , xrl−1)

� ∈ R
rl−1

�(l) (x) =
(

tanh

(

ϑ
(l)
1,0 +

rl−1∑

k=1

ϑ
(l)
1,k xk

)

, . . . , tanh

(

ϑ
(l)
rl ,0

+
rl−1∑

k=1

ϑ
(l)
rl ,k

xk

))�
∈ R

rl ,

(2.22)

for network weights ϑ (l) = (ϑ
(l)
j,k)1≤ j≤rl ;0≤k≤rl−1 ∈ R

rl (rl−1+1). We initialize r0 =
b0 + b. Finally, because our responses will be positive, we choose the exponential
output function, giving us

(x, eU(z)) �→ NNϑ (x, eU(z)) = exp

{

ϑ
(d+1)
0 +

rd∑

k=1

ϑ
(d+1)
k �

(d:1)
k (x, eU(z))

}

;

(2.23)

this provides us with additional network weights ϑ (d+1) = (ϑ
(d+1)
k)0≤k≤rd ∈

R
rd+1. Collecting all these network weights gives us the network parameter ϑ =

(ϑ (1), . . . ,ϑ (d+1)) of NNϑ . The reason for explicitly recalling this structure (and not
citing to the literature) will become clear in the next paragraph.

Hyperparameter selection. To implement the random-effects estimations (2.9),
(2.19) and (2.21), we need to select the hyperparameters ϕ > 0 (dispersion parameter)
and τ 2 > 0 (degree of information in Gaussian prior π). We are going to argue that we
can set ϕ = 1, and τ 2 > 0 only needs a specific choice in the VB inference case (2.19)
and the ad-hoc case (2.21) for a neural network NNϑ (xi , eU(zi)) = NNϑ (xi ,u j[i]),
but not in the MAP case (2.9). To see this, we come back to the specific structure of
the hidden neural network layers given in (2.22).

� MAP case (2.9). Consider the neurons in the first hidden layer �(1). The s-th
neuron in this first hidden layer, 1 ≤ s ≤ r1, has network weights (ϑ

(1)
s,k)

r0=b0+b
k=0 ∈

R
r0+1, where the last b components refer to the embedding eU(zi) = u j[i] ∈ R

b.
From (2.22), we observe that we can scale the embeddings u j[i] ∈ R

b with any
positive constant c > 0 (not depending on the level index j[i]), and we obtain the
same value in the sth neuron (2.22), if we divide the network weights of that neuron

123

Japanese Journal of Statistics and Data Science

by the same constant, i.e., if we set

(ϑ
(1)
s,b0+k/c)

b
k=1 ∈ R

b. (2.24)

In view of the regularization term in (2.7), given by

1

w j[i]
ϕ

2τ 2
∥∥u j[i]

∥∥2 = 1

w j[i]

∥∥∥
∥

√
ϕ√
2τ

u j[i]
∥∥∥
∥

2

= 1

w j[i]

∥∥
∥
√

λu j[i]
∥∥
∥
2
,

we observe that the specific value of λ = ϕ/(2τ 2) > 0 does not matter, because the
network weights (ϑ

(1)
s,b0+k)

b
k=1 ∈ R

b will accommodate any positive value by rescaling
the networks weights correspondingly as in (2.24). Thus, it only matters whether we
have some regularization τ 2 ∈ (0,∞) or whether we do not have any regularization
τ 2 = ∞ in (2.7). For this reason, we could set ϕ = 2 and τ 2 = 1 in the MAP case
(2.7), yielding λ = ϕ/(2τ 2) = 1. In the second item of the following remarks, we
explain why in practice a different initialization still matters.

Remarks 2.1 • If we choose to have regularization, we note that it is not the size of
the regularization that matters but the relative inverse case weights 1/w j across all
levels a j ∈ A of the categorical covariates. If we also want to impose a constraint
on the sizes of the embeddings u j , then we also need to regularize the network

weights (ϑ
(1)
s,b0+k)

b
k=1 ∈ R

b in the first hidden layer, so that a compensation (2.24)
is penalized, e.g., we can require that the norms of these weights in the MAP case
are of a similar magnitude as the ones in the non-regularized case.

• In our examples, we will select λ = ϕ/(2τ 2) > 0 differently. Note that the choice
of λ directly relates to the sizes of the networkweights (2.24). For efficient gradient
descent training of neural networks all weights, i.e., components of the network
parameter ϑ , should live on a similar scale; otherwise, gradient descent fitting is
not efficient. That is, for gradient descent training, all components of the network
parameter ϑ are initialized randomly following a certain distribution having the
same scale for all components ofϑ , and, typically, it is hard for the gradient descent
algorithm to fully adapt to rescale the weights in one component, if the scale is
misspecified in that component. For this reason, the explicit choice of λ > 0 will
impact gradient descent training, and we are going to choose λ > 0 different from
1, so that we receive good fitting results with gradient descent, i.e., such that the
entity embedded categorical covariates have a similar range as the pre-processed
continuous covariates.

� Variational Bayesian inference case (2.19). We can do a similar observation for
theVB inference case (2.18).We first rewrite the regularization term using the notation
λ = ϕ/(2τ 2)

− 1

w j[i]

b∑

k=1

ϕ

2

(

log

(
σ 2
k, j[i]
τ 2

)

+ 1 − σ 2
k, j[i] + ν2k, j[i]

τ 2

)

123

Japanese Journal of Statistics and Data Science

= λ

w j[i]

[

‖ν j[i]‖2 +
b∑

k=1

σ 2
k, j[i] − τ 2 − τ 2 log

(
σ 2
k, j[i]
τ 2

)]

. (2.25)

From this, we see that λ > 0 can again be scaled through the network weights similar
to (2.24), and τ 2 needs to accommodate correspondingly. However, there remains the
hyperparameter τ 2 that needs to be chosen optimally to balance the influence of the
Gaussian noise terms in the VB inference. In our examples, we choose for λ > 0 the
same value as for the MAP case and we select the optimal τ 2 by a grid search. For
more interpretation, we refer to the next case.

� Ad-hoc case (2.21). In this case, we have regularization term

λ

w j[i]

⎡

⎣
∥∥ν j[i]

∥∥2 + τ 2

2

b∑

k=1

(
σ 2
k, j[i]
τ 2

− 1

)2
⎤

⎦ .

This term gives a nice interpretation to τ 2, namely, it gives the scale to the randomness
σk, j coming from the Gaussian noise terms in the random effects, see (2.17). In fact,
this can also be seen from (2.25), because the terms under the summation have the
same form as Poisson deviance losses which are zero if and only if σ 2

k, j[i] = τ 2.

2.7 Extension to themultiple categorical covariate case

We extend to multiple categorical covariates. Assume that in total, we have T ≥ 1 cat-
egorical covariates, and for each 1 ≤ t ≤ T , we have qt levels A(t) = {a(t)

1 , . . . , a(t)
qt }.

The categorical covariate of instance i then takes the values

zi =
(
z(1)i , . . . , z(T)

i

)� ∈ A(1) × · · · × A(T).

We apply the framework of one-hot encoding and embedding (2.1) to each categorical
component z(t)i ∈ A(t) individually, and we choose an identical embedding dimension
b ∈ N for all 1 ≤ t ≤ T . This provides us with embeddings

zi �→
(
eU(1) (z(1)i), . . . , eU(T) (z(T)

i)
)

∈ R
b×T , (2.26)

for embedding matrices of the categorical covariates z(t)i , 1 ≤ t ≤ T

U(t) =
[
u(t)
1 , . . . ,u(t)

qt

]
∈ R

b×qt . (2.27)

Adopting notation (2.6), we use jt [i] ∈ {1, . . . , qt } for saying that instance i with
categorical covariate zi takes level z

(t)
i = a(t)

jt [i] for index t . This gives us for (2.26)
the equivalent formulation

zi �→
(
u(1)
j1[i], . . . ,u

(T)
jT [i]

)
∈ R

b×T . (2.28)

123

Japanese Journal of Statistics and Data Science

This is a multi-categorical version of (2.5). We concatenate all covariates for given
embedding matrices (U(1), . . . ,U(T))

(xi , zi) �→
(
xi ,u

(1)
j1[i], . . . ,u

(T)
jT [i]

)
∈ R

b0+Tb. (2.29)

This is themultiple categorical covariate extensionof (2.2). Finally,we extend the input
dimension of the neural network correspondingly to receive the network mapping

(xi , zi) �→ NNϑ

(
xi ,u

(1)
j1[i],u

(2)
j2[i], . . . ,u

(T)
jT [i]

)
; (2.30)

this architecture is illustrated in Fig. 1 (rhs). Model fitting and regularization is done
completely analogously to above. In the MAP (2.9), VB inference (2.19), and the
ad-hoc (2.21) cases, respectively, we have regularization terms

T∑

t=1

λt

w jt [i]

∥
∥∥u(t)

jt [i]
∥
∥∥
2
,

T∑

t=1

λt

w jt [i]

[

‖ν(t)
jt [i]‖2 +

b∑

k=1

(σ
(t)
k, jt [i])

2 − τ 2t − τ 2t log

(
(σ

(t)
k, jt [i])

2

τ 2t

)]

,

T∑

t=1

λt

w jt [i]

⎡

⎣
∥
∥∥ν(t)

jt [i]
∥
∥∥
2 + τ 2t

2

b∑

k=1

(
(σ

(t)
k, jt [i])

2

τ 2t
− 1

)2⎤

⎦ , (2.31)

with regularization parameters λt ≥ 0, prior uncertainty parameters τ 2t > 0, with
aggregated case weights for j ′t ∈ {1, . . . , qt }

w j ′t =
n∑

i=1

1{ jt [i]= j ′t } vi , (2.32)

and with Gaussianmean field posterior approximation. Note that for the regularization
terms (2.31), we assume independent Gaussian priors across the different categorical
covariates.

3 The hierarchical random-effects case

In Sect. 2.7, we have presented the case of multiple categorical covariates zi =
(z(1)i , . . . , z(T)

i)�. These covariates have not been related to each other. In the present
section, we impose more structure on these categorical covariates, namely, we assume
that they have a hierarchical structure. This equips this set-up with additional infor-
mation on the categorical covariates. There are different ways of modeling this case.
Before discussing these different ways, we introduce a tree structure notation that is
useful in this context.

123

Japanese Journal of Statistics and Data Science

Fig. 3 Descendants of a(1)
1 ∈ A(1) with T = 3 generations

3.1 Tree structure and notation

As an example for random-effects modeling in the hierarchical categorical covariates
case we can think of having information about ’vehicle brand’—’vehicle model’—
’vehicle detail’.We assume that these covariates have a tree structure, andwe use index
t ∈ {1, . . . , T } to label the different generations in this tree. In the above example,
generation t = 1 corresponds to ’vehicle brand’, generation t = 2 to ’vehicle model’
and generation t = 3 to ’vehicle detail’. We assume that the categorical levels in each
generation uniquely determine the membership in the previous generations, e.g., a
certain ’vehicle detail’ level can only belong to one ’vehicle model’ and one ’vehicle
brand’, respectively. This guarantees identifiability in the tree structure, so that all
ancestors of a certain level in generation t ≥ 2 can uniquely be determined.

It will be useful to extend the previously introduced labeling (2.6) to the different
generations. Choose an index j ′t ∈ {1, . . . , qt } in generation 2 ≤ t ≤ T . We define its
direct ancestor (using a slight abuse of notation) by jt−1[j ′t] ∈ {1, . . . , qt−1}, this is
the direct ancestor in generation t − 1 of level a(t)

j ′t
∈ A(t) in generation t . Similarly,

we define the descendants of a given index j ′t ∈ {1, . . . , qt } of a given generation
1 ≤ t ≤ T − 1 as follows:

I j ′t = {
j ∈ {1, . . . , qt+1} with jt [j] = j ′t

}
.

Figure3 gives an example.
Choosing an identical embedding dimension b for all generations in (2.28) has

the advantage that we can measure the distance of a certain level embedding u(t)
j ′t

in

generation 2 ≤ t ≤ T to the one of its ancestor u(t−1)
jt−1[j ′t]. We define the corresponding

differences (increments)

(t)
j ′t

= u(t)
j ′t

− u(t−1)
jt−1[j ′t], (3.1)

and we initialize for t = 1 with
(1)
j ′1

= u(1)
j ′1
. This provides us with the Euclidean

distance
∥∥∥(t)

j ′t

∥∥∥ =
∥∥∥u(t)

j ′t
− u(t−1)

jt−1[j ′t]
∥∥∥ ; (3.2)

123

Japanese Journal of Statistics and Data Science

this is the distance between a random effect u(t)
j ′t

∈ R
b in generation t and the one of

its direct ancestor u(t−1)
jt−1[j ′t] ∈ R

b in generation t − 1. Typically, we assume that these
hierarchical embeddings provide a refinement of the regression function. In this case,
descendants of a given level in generation t − 1 will fluctuate around its ancestor,
meaning that we receive a clustering around the ancestor resulting in small distances
(3.2). Exactly, this intuition is going to be implemented (recursively) in the sequel by
considering the random-effects increments

(t)
j ′t

∈ R
b.

3.2 Gaussian hierarchical entity embedding

We extend the Gaussian categorical entity embedding approach of Sect. 2.7 to the
hierarchical case. We are going to present four different modeling proposals called
H0, H1, RNN and Transformer. The first proposal H0 is the canonical modeling set-
up resulting from the discussion of (3.2). The second proposal H1 can be seen as a
reduced form approach of H0 to make the model smaller. The third proposal, RNN,
stems from ’recurrent neural network’. Formula (3.1) proposes a linear aggregation
of increments, and the RNN architecture in Sect. 3.5 will modify this to a non-linear
version. Finally, in Sect. 3.6, we process the hierarchical categorical entity embeddings
with a Transformer layer that is another popular method of dealing with time-series
data.

Hierarchical random-effects modeling. For random-effects modeling, we need
to choose a prior distribution π on the embedding matrices (2.27). We define the
sequence of embedding matrices

U(1:T) =
(
U(1), . . . ,U(T)

)
.

For interpretation, the generation index 1 ≤ t ≤ T plays a similar role as the time index
in a time-series. We assume thatU(1:T) is a Markovian process in t , and conditionally,
given U(t−1), all components of U(t) = (U (t)

k, j)1≤k≤b,1≤ j≤qt are independent with

U (t)
k, j

∣∣∣
U(t−1)

= U (t)
k, j

∣∣∣
U (t−1)
k, jt−1[j]

∼ N
(
U (t−1)
k, jt−1[j], τ

2
t

)
, (3.3)

for 2 ≤ t ≤ T . Basically, this is a Gaussian version of Jewell’s credibility model
(Jewell, 1975). In the sequel, it is more convenient to express (3.3) in the increments
(3.1). We choose conditionally independent multivariate Gaussian increments

(t)
j

∣∣∣
U(t−1)

∼ N
(
0, diag(τ 2t)

)
, (3.4)

where this is a b-dimensional multivariate Gaussian distribution with independent
components. Aggregation across generations gives us for a sequence j1, . . . , jT of

123

Japanese Journal of Statistics and Data Science

level indices with jt ∈ I jt−1 for all t

u(t)
jt

= u(t−1)
jt−1

+
(t)
jt

=
t∑

s=1

(s)
js

. (3.5)

We collect all increments in the following random (time-series) vector:

(1:T) =
(
(

(1)
j1

)
q1
j1=1, . . . , (

(T)
jT

)
qT
jT =1

)
.

Hierarchical Model H0. For given embedding matrices U(1:T) and increments
(1:T), respectively, and adapting the neural network NNϑ to the input dimension
b0 + Tb, see (2.30), this gives us the data log-likelihood

�Y (ϑ |(1:T))

∝
n∑

i=1

Yi h
(
NNϑ (xi ,u

(1)
j1[i], . . . ,u

(T)
jT [i])

)
− κ

(
h
(
NNϑ (xi ,u

(1)
j1[i], . . . ,u

(T)
jT [i])

))

ϕ/vi
.

This neural network has the same structure as (2.30), and it uses input (2.29), but in
fact, we model its increments by (3.4). Therefore, we reformulate

NNϑ

(
xi ,u

(1)
j1[i],u

(2)
j2[i], . . . ,u

(T)
jT [i]

)
= NNϑ

(

xi ,
(1)
j1[i],

2∑

s=1

(s)
js [i], . . . ,

T∑

s=1

(s)
js [i]

)

,

(3.6)

being expressed in the random-effects increments (1:T). The notation on the right-
hand side of (3.6) is more convenient when it comes to discuss regularization; we refer
to Sects. 3.3–3.4.

HierarchicalModel H1.One could be concerned by the fact that the network input
turns out to be very high-dimensional if there are many generations in the hierarchical
categorical covariates; see (2.29). An alternativemodeling approach is to only consider
the last generation’s embedding, resulting in a neural network

NNϑ

(
xi ,u

(T)
jT [i]

)
= NNϑ

(

xi ,
T∑

s=1

(s)
js [i]

)

. (3.7)

Here, the network input has dimension b0+b, compared to b0+Tb in (3.6). Neverthe-
less, the randomeffectsu(T)

jT [i] consider all involved levels of all generations through the
sum over their increments

(s)
js [i], and these increments are regularized by a Gaussian

prior π ; see (3.4).

123

Japanese Journal of Statistics and Data Science

3.3 Regularization and random-effects estimation

We start with the MAPmethod. Using one of the two neural network approaches (3.6)
or (3.7) for •, gives us the joint log-likelihood of (Y ,(1:T))

log fϑ (Y ,(1:T)) ∝
[

n∑

i=1

Yi h (NNϑ (xi , •)) − κ (h (NNϑ (xi , •)))

ϕ/vi

]

+logπ((1:T))

∝ 1

ϕ

n∑

i=1

vi

[
Yi h (NNϑ (xi , •)) − κ (h (NNϑ (xi , •)))

−
T∑

t=1

λt

w jt [i]

∥∥∥(t)
jt [i]
∥∥∥
2
]
, (3.8)

For formula (3.8) to be correct, we assume that for every level in A(T) (last generation),
we have at least one observation. This implies that also all ancestors have positive
aggregated caseweights. Based on this, we can find theMAPof(1:T) and the network
parameter ϑ completely analogously to Sect. 2.3 using gradient descent. Again, this
is just a regularized gradient descent optimization where we regularize the random-
effects embedding inversely proportionally to the case weights, and using a ridge
regularization on the increments (1:T).

We also highlight the similarity of this last expression to (2.31), i.e., we only
exchange the random effects u(t)

jt [i] by the corresponding increments
(t)
jt [i]. The VB

inference case and the ad-hoc case are completely analogous; see also (2.31). There-
fore, we refrain from stating them explicitly.

3.4 Individual vs. hierarchical regularization

In this section, we argue that fitting Hierarchical Model H0 using, e.g., regularization
(3.8) is equivalent to fitting the non-hierarchical model (2.30) using regularization
(2.31). Therefore,HierarchicalModelH0 is superfluous andwill not be further studied.
The reason is again that using affine transformations, we can simply redefine the
network weights to go from one to the other model. We give the technical argument.
Choose a sequence j1, . . . , jT of level indices with jt ∈ I jt−1 for all t . The first hidden
layer of neural network (3.6) has in the s-th neuron the following structure:

tanh

⎛

⎝ϑ
(1)
s,0 +

b0∑

k=1

ϑ
(1)
s,k xk +

b0+b∑

k=b0+1

ϑ
(1)
s,k

(1)
j1,k−b0

+ . . .

+
b0+Tb∑

k=b0+(T−1)b+1

ϑ
(1)
s,k

T∑

l=1

(l)
jl ,k−b0+(T−1)b

⎞

⎠

123

Japanese Journal of Statistics and Data Science

= tanh

(

ϑ
(1)
s,0 +

b0∑

k=1

ϑ
(1)
s,k xk +

b∑

k=1

ϑ
(1)
s,k+b0

(1)
j1,k

+ . . .

+
b∑

k=1

ϑ
(1)
s,k+b0+(T−1)b

T∑

l=1

(l)
jl ,k

)

= tanh

(

ϑ
(1)
s,0 +

b0∑

k=1

ϑ
(1)
s,k xk +

b∑

k=1

ϑ̃
(1)
s,k+b0

(1)
j1,k

+ . . .

+
b∑

k=1

ϑ̃
(1)
s,k+b0+(T−1)b

(T)
jT ,k

)

,

where we have restructured the network weights

ϑ̃
(1)
s,k+b0+ub =

T−1∑

l=u

ϑ
(1)
s,k+b0+lb, (3.9)

for 0 ≤ u ≤ T−1.Weobserve that the networkNNϑ can copewith this transformation,
by just re-defining the network weights in the first hidden layer for the hierarchical
categorical covariates, and then, the approach is identical to the multiple categorical
covariate case of Sect. 2.7, just having a slightly different interpretation for u(t)

jt [i] and

(t)
jt [i], respectively. However, the network and its fitting procedure do not see this

different interpretation, and, in fact, we obtain the same predictive model when trained
on data. Therefore, we do not further consider Hierarchical Model H0.

In contrast, Hierarchical Model H1 is different from the models in Sect. 2.7. It has
a lower complexity, as it implicitly assumes that all parameters (3.9) are identical for
u ∈ {0, . . . , T −1}. In our example below, we will only study this Hierarchical Model
H1. In the next section, we will see that the Hierarchical Model H0 can nicely serve
as a motivation to more complex models based on RNN layers.

3.5 Recurrent network hierarchical random effects

The issue why the hierarchical structure H0 is not directly useful in view of the
network presented in Sect. 2.7 is that the neural network NNϑ can cope with affine
transformations. If we want to insist on the exploration of the hierarchical structure
in a family of categorical covariates, we need to transform the increments

(t)
jt [i] non-

linearly, i.e., we should not simply add them as in (3.6). This motivates the idea to
exploit a RNN layer �RNN after entity embedding and before imputing to NNϑ . An
RNN layer �RNN has precisely the same structure as the layer in (2.22), we only change
the input dimension, such that we can consider recursively for t ≥ 1

�RNN : R2b → R
b,

(

(t)
jt

, r(t−1)
)

�→ r(t) = �RNN
(

(t)
jt

, r(t−1)
)

, (3.10)

123

Japanese Journal of Statistics and Data Science

Fig. 4 RNN layer �RNN recursively processing the input ((t)
jt

, r(t−1))

with initialization r(0) = 0 ∈ R
b. That is, the RNN layer �RNN recursively processes

the increments of the time-series (1:T), providing an encoding of ancestors r(t) =
r(t)(

(1)
j1

, . . . ,
(t)
jt

) at time t . This recursive encoding always uses the same network

parameter in �RNN. In contrast to (3.5), we do not aggregate linearly, but we let the
network �RNN specify the (non-linear) aggregation. Figure4 illustrates an RNN layer.

The remainder is as in (3.6), i.e., after concatenating, we consider a neural network

NNϑ

(
xi , r(1), r(2), . . . , r(T)

)
. (3.11)

This architecture is illustrated in Fig. 2. Fitting then works as, e.g., in (3.8). However,
it also includes the parameters from the RNN layer �RNN.

Remark 3.1 The neural network (3.11) considers the entire RNNprocessed time-series
r(1:T) = (r(1), r(2), . . . , r(T)). In network implementations, this usually requires to
set a parameter called “return sequence” to true. Alternatively, the RNN layer could
only output the last encoding r(T) = r(T)(

(1)
j1

, . . . ,
(T)
jT

), which collects the whole
time-series in one variable. In fact, this then precisely corresponds to a non-linear
version of Hierarchical Model H1 (3.7).

3.6 Transformer processing of hierarchical random effects

The RNN layer recursively processes the time-series components of(1:T). A popular
alternative that processes the whole time-series (

(1)
j1

, . . . ,
(T)
jT

) at once is a Trans-
former layer. Transformer layers have been invented by Vaswani et al. (2017), and
they are the most powerful tools these days to deal with natural language processing
(NLP). Instead of recursively processing a time-series, Transformers assign attention
weights to the elements of the time-series data, emphasizing importance of individual
parts of the time-series. We briefly sketch an attention layer, and for more details, we
refer to Vaswani et al. (2017), in particular, Fig. 1 of that reference. An attention layer
consists of queries qt , keys kt and values vt , 1 ≤ t ≤ T , given by

kt = tanh
(
bK + WK

(t)
jt

)
∈ R

b,

qt = tanh
(
bQ + WQ

(t)
jt

)
∈ R

b,

123

Japanese Journal of Statistics and Data Science

vt = tanh
(
bV + WV

(t)
jt

)
∈ R

b,

for weight matrices WK ,WQ,WV ∈ R
b×b, biases bK , bQ, bV ∈ R

b, and where the
hyperbolic tangent function is applied element-wise. The idea behind this terminology
is the following. The key kt ∈ R

b of(t)
jt
tries to find a query qs ∈ R

b of a component

(s)
js

that matches. The components
(t)
jt

and
(s)
js

then start to communicate to see
whether their keys and queries match. For this, we stack the keys, queries, and values
in matrices

K = K (
(1)
j1

, . . . ,
(T)
jT

) = [k1, . . . , kT]� ∈ R
T×b,

Q = Q(
(1)
j1

, . . . ,
(T)
jT

) = [
q1, . . . , qT

]� ∈ R
T×b,

V = V (
(1)
j1

, . . . ,
(T)
jT

) = [v1, . . . , vT]
� ∈ R

T×b.

The matching problem is now computed by applying the softmax function to the rows
of the following matrix providing the attention weights:

A = A(
(1)
j1

, . . . ,
(T)
jT

) = softmax
(
QK�
√
b

)
∈ R

T×T .

This has the following interpretation. If the key kt of component
(t)
jt

matches the

query qs of component (s)
js
, their scalar product is large

〈qs, kt 〉 = q�
s kt = (QK�)s,t ,

and the attention weight As,t ∈ [0, 1] is close to 1. An attention layer, also called
attention head, is then defined by

H = H(
(1)
j1

, . . . ,
(T)
jT

) = A V ∈ R
T×b.

This encodes the time-series (
(1)
j1

, . . . ,
(T)
jT

) ∈ R
b×T by an attention head. A Trans-

former layer is based on this attention head. First, we aggregate the two time-series to
a new time-series

(
h(1), . . . , h(T)

)
= (

(1)
j1

, . . . ,
(T)
jT

) + H� ∈ R
b×T .

Each of these components h(t) ∈ R
b is then processed through an auto-encoder con-

sisting of two neural network layers �(2:1) = �(2) ◦ �(1) with input dimension being
equal to the output dimension (auto-encoder), i.e., we process

h(t) ∈ R
b �→ �(2:1)(h(t)) ∈ R

b.

123

Japanese Journal of Statistics and Data Science

In particular, all components h(t), 1 ≤ t ≤ T , share the same network parameters
in this auto-encoder which is called a time-distributed layer in network jargon. We
aggregate the resulting time-series once more with the previous time-series providing
us the Transformer

(
r̃(1), . . . , r̃(T)

)
= Transformer(

(1)
j1

, . . . ,
(T)
jT

)

=
(
h(1) + �(2:1)(h(1)), . . . , h(T) + �(2:1)(h(T))

)
∈ R

b×T .

(3.12)

The remainder is now completely analogous to (3.11), namely, input the Transformer
layer output together with the continuous covariates x to a deep feed-forward neural
network

NNϑ

(
x, r̃(1), . . . , r̃(T)

)
. (3.13)

Remarks 3.2 • There is a major difference though between the RNN case (3.11)
and the Transformer case (3.13), and Remark 3.1 does not apply in the latter
case. The RNN model is time-causal, meaning that r(t) = r(t)(

(1)
j1

, . . . ,
(t)
jt

)

only considers the first t components of the time-series, whereas the Transformer
layer considers (in our case) the entire information in every component t , i.e.,
r̃(t) = r̃(t)(

(1)
j1

, . . . ,
(T)
jT

). One could make the Transformer layer time-causal
too, but this is not necessary in our modeling problem.

• In relation to the previous item: actually we do not need a hierarchical structure
to apply this Transformer layer approach, and this proposal works on any high-
cardinality covariate situation.

4 Example: regularization of categorical entity embedding

4.1 Description of the data

We consider a synthetic insurance claim frequency example.1 We use a synthetic
dataset, because this has the advantage that we know the ground truth, and the quality
of any of the studied regression models can be compared to the true model.

In a first step, we need to construct an insurance portfolio (xi , zi)ni=1. Our insur-
ance portfolio has n = 199, 971 insurance policies, and for these policies, we have
continuous and binary covariates

x = (VehUse,Town,DrivAge,VehWeight,VehPower,VehAge)� ∈ R
6.

Furthermore, we have hierarchical categorical covariates VehBrand, VehModel
and VehDetail. For the simulation of the continuous covariates x, we consider the

1 The data and code can be downloaded from:
https://github.com/wueth/High-Cardinality-Covariates-Regularization

123

https://github.com/wueth/High-Cardinality-Covariates-Regularization

Japanese Journal of Statistics and Data Science

Listing 1 Excerpt of simulated dataset D.

1 ’data.frame ’: 199971 obs. of 11 variables:
2 $ VehUse : num 0 1 0 0 0 0 1 0 0 1 ...
3 $ Town : num 1 1 1 0 0 1 0 0 1 1 ...
4 $ DrivAge : num 51 41 25 40 43 45 72 60 30 19 ...
5 $ VehWeight: num 1730 1760 1230 1010 2150 1160 1050 1040

1370 1300 ...
6 $ VehPower : num 169 249 109 84 166 144 61 65 113 77 ...
7 $ VehAge : num 3 2 2 9 5 2 2 2 0 0 ...
8 $ VehBrand : Factor w/ 20 levels "A","B","C","D",..: 10 11 11

1 13 11 16 10 11 10 ...
9 $ VehModel : Factor w/ 100 levels "Aa","Ab","Ac",..: 47 54 54

4 63 54 80 46 54 47 ...
10 $ VehDetail: Factor w/ 470 levels "Aa1","Aa2","Aa3",..: 218

250 250 18 297 249 376 ...
11 $ True : num 0.1382 0.1127 0.1573 0.0696 0.1188 ...
12 $ ClaimNb : int 0 0 0 0 0 1 0 0 0 0 ...

same algorithm as for the generation of the synthetic data inMayer et al. (2023). These
continuous covariates are then extended by the categorical ones, which are simulated
from a categorical GLM using the continuous covariates as independent variables.
Listing 1 gives an excerpt of the resulting simulated data. We have 20 VehBrands;
these have 100 different VehModels, which in turn have 470 different VehDetails.

Figure 13 in the appendix illustrates the marginal distributions of the insurance
policies for all covariates.We observe the typical shapes for DrivAge, VehWeight,
VehPower and VehAge, and their dependence structure has also been chosen, such
that it reflects a real insurance portfolio. The categorical covariates are shown on the
last row of Fig. 13 and, in particular, VehDetail has some levels with only very
sparse observations. This is also verified by Fig. 5 that shows the case weights w

(3)
j3

of
VehDetail across all levels having indices j3 ∈ {1, . . . , q3 = 470}; note that we set
vi ≡ 1. The smallest level has three observations and the most common one 24,171.
For VehBrand, these numbers are 1,363 and 58,766, and for VehModel, we have
55 and 36,112.

Based on this portfolio (xi , zi)ni=1,we construct the true regression functionμ∗. Our
choice of μ∗ is as follows, we also refer to Listing 2 in the appendix. First, we define a
non-linear transformation of the driver age variable. Set DA1 = (DrivAge− 66)/60
and define

DA2(DrivAge) = 0.05 + DA81 + 0.4DA31 + 0.3DA2
1 + 0.06DA1.

The true regression function is chosen by

logμ∗(x, z) = 0.15Town + log (DA2(DrivAge)) + (0.3 + 0.15Town)VehPower/100

+ 0.1VehPower/ (VehWeight/100)2 + 0.2
q1∑

j1=1

β
(1)
j1
1{VehBrand=aVehBrandj1

}

+
q2∑

j2=1

(0.2 (2Town − 1) + 0.1VehUse) β
(2)
j2
1{VehModel=aVehModelj2

}

123

Japanese Journal of Statistics and Data Science

0 100 200 300 400

0
1

2
3

4
aggregate case weights of VehDetail levels

ranks

ag
gr

eg
at

e
ca

se
 w

ei
gh

ts
 (l

og
_1

0−
sc

al
e)

Fig. 5 Aggregate case weights w
(3)
j3

of all levels a(3)
j3

∈ A(3) of the categorical covariate VehDetail

having q3 = 470 different levels; the x-axis is ordered w.r.t. the ranks

+ 0.3 (2VehUse − 1)
q3∑

j3=1

β
(3)
j3
1{VehDetail=aVehDetailj3

} + 0.03VehAge,

(4.1)

with parameters (β
(1)
j1

)
q1
j1=1, (β

(2)
j2

)
q2
j2=1 and (β

(3)
j3

)
q3
j3=1 taking values in (−1, 1). We

remark that the categorical covariates interact with the continuous ones in a non-
linear way on the log-scale, in particular, the terms (2Town − 1) ∈ {−1,+1} and
(2VehUse−1) ∈ {−1,+1}may lead to sign switches in the parametersβ

(2)
j2

andβ
(3)
j3
,

respectively. Line 11 of Listing 1 called True gives these true expected frequencies
μ∗(xi , zi) over the entire portfolio.

Finally, we simulate independent Poisson random variables Yi ∼ Poi(μ∗(xi , zi))
which provides us with the data

D =
(
Yi , (xi , zi), vi ≡ 1

)n

i=1
.

Figure14 in the appendix gives the marginal observed and true frequencies. These are
supported by empirical two standard deviations confidence bounds, estimated for each
level individually and assuming a Poisson distribution, i.e., these bounds are obtained
by

μ̂ jt ± 2 ·
√

μ̂ jt

w jt
,

where μ̂ jt is the empirical frequency over all observations Yi that have covariate level

z(t)i = a(t)
jt

in generation t . For sparse levels, these confidence bounds become very

123

Japanese Journal of Statistics and Data Science

wide and empirical frequency estimations carry a lot of uncertainty as can be seen
from Fig. 14.

4.2 Plain-vanilla benchmarkmodels

We start by considering benchmarkmodels. These benchmarks do not use any regular-
ization. The first benchmark model is a plain-vanilla neural network using embedding
layers for categorical covariates, the second benchmark model is the GLMMNet of
Avanzi et al. (2024) not using any regularization, and the third benchmark model is
a LightGBM regression model. We fit these three regression approaches to different
inputs, considering all continuous covariates x and less or more of the categorical
covariates

z = (VehBrand,VehModel,VehDetail). (4.2)

We start by describing implementation of these three benchmark models.
Plain-vanilla neural network with entity embedding without regularization.

Weproceed as follows.We choose the Poissonmodel for the responses Yi . The Poisson
model belongs to the EDF with cumulant function κ(θ) = exp(θ) and canonical link
h(m) = log(m) for θ ∈ R and m > 0; see Wüthrich and Merz (2023, Section 2.2.2).
We start by fitting a plain-vanilla feed-forward neural network to these data using the
covariates xi ∈ R

6 as continuous inputs and subsets of the categorical covariates zi
are inputted by b = 2 dimensional entity embeddings without regularization. This
corresponds to setting λt = 0 in (2.31). We have log-likelihood in this Poisson case
(without regularization)

�Y (ϑ |U(1:T)) ∝
n∑

i=1

Yi log
(
NNϑ (xi ,u

(1)
j1[i], . . . ,u

(T)
jT [i])

)

−NNϑ (xi ,u
(1)
j1[i], . . . ,u

(T)
jT [i]),

with dispersion ϕ = 1 and exposures vi ≡ 1. We use a neural network of depth
d = 3 with numbers of neurons (r1, r2, r3) = (20, 15, 10) in the three hidden layers,
hyperbolic tangent activation function, the log-link (canonical link) for the output.
The loss function chosen is the Poisson deviance loss. The resulting neural network
is very similar to the one in Wüthrich and Merz (2023, Listing 7.4).

We fit this neural network on the dataset D using the nadam version of stochastic
gradient descent (SGD) and using early stopping on a 20% validation set V of D.
This selection needs some care for the resulting training set T = D\V which serves
at calculating the SGD steps. Since we have some scarce levels a(T)

jT
∈ A(T), we need

to ensure that every level a(T)
jT

appears at least once in the training data T; otherwise,
the corresponding embedding u(T)

jT
∈ R

b of that level a(T)
jT

remains untrained. Since
neural network fitting involves several elements of randomness (like initialization
of the algorithm), see Wüthrich and Merz (2023, Figures 7.16−7.17), we average
all network predictors over an ensemble of ten individual network fittings; for more

123

Japanese Journal of Statistics and Data Science

details, we refer to Wüthrich and Merz (2023, Section 7.4.4), in particular, to formula
(7.44) of that reference.

GLMMNet with entity embedding without regularization. For the GLMMNet
of Avanzi et al. (2024), we need to modify the network architecture, and we also refer
to Fig. 1. Namely, the concatenation of the embeddings of the categorical covariates
is applied to the neuron activations of the last hidden layer. Thus, in view of (2.23),
we choose a fully connected feed-forward neural network that only processes the
continuous covariates

x �→ �(d:1) (x) =
(
�(d) ◦ · · · ◦ �(1)

)
(x) ∈ R

rd .

These transformed continuous covariates are then concatenated with the embeddings
to provide the output

GLMMNetϑ (x, z) = exp

{

ϑ
(d+1)
0 +

rd∑

k=1

ϑ
(d+1)
k �

(d:1)
k (x) +

T∑

t=1

b∑

l=k

ϑ
(d+1)
rd+(t−1)b+kek,U(t) (z(t))

}

,

(4.3)

where ek,U(t) (z(t)) is the kth component of embedding eU(t) (z(t)) ∈ R
b.

In our applications, we are going to consider the same network architecture for �(d:1)
of depth d = 3 as in the plain-vanilla neural network case, except that we adjust the
input dimension to the continuous covariates x, only. The training is done as described
above, we use the same training-validation split, and we apply ensembling over ten
different network fittings.

LightGBM. The third benchmark model that we consider is the LightGBM regres-
sion tree boosting of Ke et al. (2017). For training and prediction, we use the R package
lightgbm, and we use the hyperparameters as in Mayer et al. (2023),2 the minimal
number of instances in each leaf is set to 50. To have comparability with the networks,
we exercise early stopping on exactly the same training and validation split T and V
of the entire data D as above.

For implementation, we use the Keras library (Chollet et al., 2017) in R for the
networks and the lightgbm package (Ke et al., 2017) for LightGBM. The fitted
models μ̂ are then compared to the true model μ∗ using the average KL divergence,
in the Poisson case given by

DKL
(
μ∗∥∥ μ̂

) = 1

n

n∑

i=1

μ̂(xi) − μ∗(xi) − μ∗(xi) log
(

μ̂(xi)
μ∗(xi)

)
;

seeWüthrich andMerz (2023, Example 2.24). Table 1 presents these averageKLdiver-
gences of the three benchmark models and for different selections of the categorical
covariates. Additionally, we provide in the appendix the corresponding rooted mean
squared errors (RMSEs) and the mean absolute errors (MAEs); see Tables 5 and 7.
Not considering any categorical covariates (complete pooling) provides an average

2 https://github.com/JSchelldorfer/ActuarialDataScience/tree/master/14-SHAP

123

https://github.com/JSchelldorfer/ActuarialDataScience/tree/master/14-SHAP

Japanese Journal of Statistics and Data Science

Ta
bl
e
1

B
en
ch
m
ar
k
m
od
el
s
w
ith

hi
gh
-c
ar
di
na
lit
y
ca
te
go
ri
ca
l
co
va
ri
at
es

us
in
g
b

=
2
di
m
en
si
on

al
em

be
dd

in
g
la
ye
rs

fo
r
th
e
ne
tw
or
ks

(2
.3
0)

an
d
(4
.3
);
nu

m
be
rs

in
ro
un

d
br
ac
ke
ts

(·)
in

th
e
1s
tc
ol
um

n
in
di
ca
te
th
e
nu
m
be
r
of

co
ns
id
er
ed

ca
te
go
ri
ca
lc
ov
ar
ia
te
co
m
po
ne
nt
s;
fig

ur
es

ar
e
in

10
−2

A
ve
ra
ge

K
L
di
ve
rg
en
ce

N
et
w
or
k
(2
.3
0)

G
L
M
M
N
et

(4
.3
)

L
ig
ht
G
B
M

(0
)

N
ul
lm

od
el
(e
m
pi
ri
ca
lm

ea
n)

1.
03

42
1.
03

42
1.
03

42

(0
)

w
/o

ca
te
go

ri
ca
lc
ov
ar
ia
te
s

0.
39

47
0.
39

70
0.
39

58

(1
)

W
ith

V
e
h
B
r
a
n
d

0.
26

22
0.
30

76
0.
27

63

(1
)

W
ith

V
e
h
M
o
d
e
l

0.
21

88
0.
29

61
0.
24

99

(1
)

W
ith

V
e
h
D
e
t
a
i
l

0.
26

15
0.
32

92
0.
22

40

(2
)

W
ith

V
e
h
B
r
a
n
d
,V

e
h
M
o
d
e
l

0.
23

12
0.
29

58
0.
26

18

(3
)

W
ith

V
e
h
B
r
a
n
d
,V

e
h
M
o
d
e
l
,V

e
h
D
e
t
a
i
l

0.
26

94
0.
33

05
0.
21

91

123

Japanese Journal of Statistics and Data Science

KL divergence of 0.3947 and 0.3958, respectively. The LightGBM has a decreasing
average KL divergence in the granularity of the categorical covariates, VehBrand –
VehModel – VehDetail are hierarchical, and the best model is received by includ-
ing all of themgiving us an averageKLdivergence of 0.2191. The networks do not have
this monotonicity, because early stopping implies in the case of high-cardinality cate-
gorical features a very early stopping time to prevent from over-fitting. In our case, the
plain-vanilla network with a 2-dimensional entity embedding leads to the best result of
0.2188 if we only include VehModel. If we include VehDetail, we stop the SGD
algorithm very early resulting in under-fitting on the remaining covariates. Therefore,
it is necessary to apply regularization to these high-cardinality categorical covariates.
Moreover, we observe that the GLMMNet is not fully competitive. This is because
we have non-linear interactions between categorical and continuous covariates that
cannot be captured by architecture (4.3), e.g., VehUse interacts with VehDetail,
see (4.1). On the other hand, we should mention that the GLMMNet has the advantage
of better interpretability.

4.3 High-cardinality entity embedding regularization

Next, we consider regularization of entity embeddings. In this section we do not
consider the hierarchical structure, but we just explore regularizations (2.31) in the
network NNϑ given in (2.30) and the GLMMNet (4.3) for the embedding matrices
U(t).

Since regularization requires selection of the hyperparameters λt and τ 2t , we run a
preliminary fit with cross-validation to select optimal hyperparameters. This is done
as follows. For VehBrand we set λ1 = 0, i.e., we do not regularize the VehBrand
entity embedding, because each level a(1)

j1
∈ A(1) in the first generation has many

observations. Then, we do a hyperparameter grid search for λ2 > 0 using MAP
regularization using themodel considering VehBrand and VehModel. This optimal
λ2 is kept fixed for the rest of the models. Afterward, we include VehDetail to the
MAP regularization to exploit the optimal λ3 > 0. We proceed analogously for τ 2t in
the ad-hoc and the VB regularization cases (using the MAP optimal values for λt).
Table 4 in the appendix reports the hyperparameters used.

Table 2 gives the KL divergence results, and in the appendix, we provide the corre-
sponding RMSE and MAE results; see Tables 6 and 8. We observe that regularization
of high-cardinality categorical covariates is highly beneficial to get better predictive
models. Considering all categorical covariates allows us to reduce the average KL
divergence from 0.2188 (best model in Table 1) by roughly 1/3 to 0.1410 (last line
of Table 2). This is also verified by the RMSE results, see Tables 5 and 6, and by the
MAE results, see Tables 7 and 8. Another interesting observation is that the type of
regularization only has a marginal influence on the results.

Figure 6 shows the resulting embeddings û(1)
j1

, û(2)
j2

, û(3)
j3

∈ R
2 in the MAP regular-

ized case including all three categorical covariates (4.2) (last line of Table 2). Because
we choose embedding dimension b = 2, we can nicely illustrate these embeddings.
The color scale is chosen, such that red color refers to small case weights w

(t)
jt

and

123

Japanese Journal of Statistics and Data Science

Ta
bl
e
2

R
eg
ul
ar
iz
at
io
n
of

hi
gh
-c
ar
di
na
lit
y
ca
te
go
ri
ca
l
co
va
ri
at
es

V
e
h
M
o
d
e
l
an
d
V
e
h
D
e
t
a
i
l
;
nu

m
be
rs

in
ro
un

d
br
ac
ke
ts

(·)
in

th
e
1s
t
co
lu
m
n
in
di
ca
te

th
e
nu

m
be
r
of

co
ns
id
er
ed

ca
te
go
ri
ca
lc
ov
ar
ia
te
co
m
po
ne
nt
s;
th
e
se
le
ct
ed

hy
pe
rp
ar
am

et
er
s
ar
e
gi
ve
n
in

Ta
bl
e
4;

fig
ur
es

ar
e
in

10
−2

A
ve
ra
ge

K
L
di
ve
rg
en
ce

N
et
w
or
k
(2
.3
0)

G
L
M
M
N
et

(4
.3
)

(2
)

N
o
re
gu
la
ri
za
tio

n:
w
ith

V
e
h
B
r
a
n
d
,V

e
h
M
o
d
e
l

0.
23

12
0.
29

58

(2
)

M
A
P
re
gu
la
ri
za
tio

n:
w
ith

V
e
h
B
r
a
n
d
,V

e
h
M
o
d
e
l

0.
22

12
0.
27

99

(2
)

A
d-
ho

c
re
gu

la
ri
za
tio

n:
w
ith

V
e
h
B
r
a
n
d
,V

e
h
M
o
d
e
l

0.
22

60
0.
27

94

(2
)

V
B
re
gu
la
ri
za
tio

n:
w
ith

V
e
h
B
r
a
n
d
,V

e
h
M
o
d
e
l

0.
23

31
0.
28

00

(3
)

N
o
re
gu
la
ri
za
tio

n:
w
ith

V
e
h
B
r
a
n
d
,V

e
h
M
o
d
e
l
,V

e
h
D
e
t
a
i
l

0.
26

94
0.
33

05

(3
)

M
A
P
re
gu
la
ri
za
tio

n:
w
ith

V
e
h
B
r
a
n
d
,V

e
h
M
o
d
e
l
,V

e
h
D
e
t
a
i
l

0.
14

46
0.
25

84

(3
)

A
d-
ho

c
re
gu

la
ri
za
tio

n:
w
ith

V
e
h
B
r
a
n
d
,V

e
h
M
o
d
e
l
,V

e
h
D
e
t
a
i
l

0.
14

49
0.
25

96

(3
)

V
B
re
gu
la
ri
za
tio

n:
w
ith

V
e
h
B
r
a
n
d
,V

e
h
M
o
d
e
l
,V

e
h
D
e
t
a
i
l

0.
14

10
0.
25

89

123

Japanese Journal of Statistics and Data Science

−0.4 −0.2 0.0 0.2 0.4

−0
.4

−0
.2

0.
0

0.
2

0.
4

MAP embedding weights: VehBrand

1st components of u^(1)

2n
d

co
m

po
ne

nt
s

of
 u

^(
1)

−0.04 −0.02 0.00 0.02 0.04

−0
.0

4
−0

.0
2

0.
00

0.
02

0.
04

MAP embedding weights: VehModel

1st components of u^(2)

2n
d

co
m

po
ne

nt
s

of
 u

^(
2)

−0.04 −0.02 0.00 0.02 0.04

−0
.0

4
−0

.0
2

0.
00

0.
02

0.
04

MAP embedding weights: VehDetail

1st components of u^(3)

2n
d

co
m

po
ne

nt
s

of
 u

^(
3)

Fig. 6 Resulting embeddings û(1)
j1

, û(2)
j2

, û(3)
j3

∈ R
2 in the MAP regularized case including all three cat-

egorical covariates (4.2); red color shows small case weights and cyan color shows high case weights

2 4 6 8 10

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

MAP embedding weights: VehDetail

logged case weights

Eu
cl

id
ea

n
no

rm
 ||

u^
(3

)||

2 4 6 8 10

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

Ad−hoc embedding weights: VehDetail

logged case weights

Eu
cl

id
ea

n
no

rm
 ||

nu
^(

3)
||

2 4 6 8 10

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

VB embedding weights: VehDetail

logged case weights

Eu
cl

id
ea

n
no

rm
 ||

nu
^(

3)
||

Fig. 7 Euclidean norms ‖̂u(3)
j3

‖ and ‖̂ν(3)
j3

‖ of the embeddings of the categorical variable VehDetail

plotted against the logged case weights log(w(3)
j3

): (lhs) MAP regularized, (middle) ad-hoc regularized, and
(rhs) VB regularized; colors coincide with the ones of Fig. 6 (rhs)

cyan color refers to high case weightsw
(t)
jt
. Figure6 illustrates the results: VehBrand

has not been regularized (λ1 = 0), and the colors of the dots do not have any structure
in Fig. 6 (lhs). VehModel and VehDetail are regularized with λ2 = λ2 = 103,
and the levels a(t)

jt
∈ A(t) with small case weights w

(t)
jt

are more concentrated around
the origin than the other levels; see Fig. 6 (middle, rhs). Remark that the other two
cases of the ad-hoc regularization and the VB regularization look similar to Fig. 6.

The last statement of above is verified in Fig. 7 where we show the Euclidean
norms ‖̂u(3)

j3
‖ and ‖̂ν(3)

j3
‖ of the embeddings of the categorical variable VehDetail

plotted against the logged caseweights log(w(3)
j3

) for all three considered regularization
methods; the black line gives a spline fit to these Euclidean norms. We observe that
on average these Euclidean norms are increasing in increasing case weights. This
precisely reflects less strong regularization in (2.31) of levels a(3)

j3
that have more

frequent observations j3[i], 1 ≤ i ≤ n.
The ad-hoc regularization method and the VB inference regularization have the

advantage that we also estimate posterior standard deviations σ̂
(t)
jt

= (̂σ
(t)
k, jt

)1≤k≤b ∈
R
b with the estimated embedding means ν̂

(t)
jt

∈ R
b, see (2.16) and (2.19). We remark

that these standard deviation estimates are rather sensitive in the choice of the prior
uncertainties τt > 0, we have used the choices given in Table 4. We calculate for the

123

Japanese Journal of Statistics and Data Science

2 4 6 8 10

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

Ad−hoc embedding weights: VehDetail

logged case weights

co
ef

fic
ie

nt
 o

f v
ar

ia
tio

n
||s

ig
m

a^
(3

)||
/||

nu
^(

3)
||

2 4 6 8 10

0
1

2
3

VB embedding weights: VehDetail

logged case weights

co
ef

fic
ie

nt
 o

f v
ar

ia
tio

n
||s

ig
m

a^
(3

)||
/||

nu
^(

3)
||

Fig. 8 Coefficients of variations ‖σ̂ (3)
j3

‖/‖̂ν(3)
j3

‖ of the embeddings of the categorical variable VehDetail

plotted against the logged case weights log(w(3)
j3

): (lhs) ad-hoc regularized, and (rhs) VB regularized; colors
coincide with the ones of Fig. 6 (rhs)

last generation t = T = 3, VehDetail, the coefficients of variations ‖σ̂ (3)
j3

‖/‖̂ν(3)
j3

‖,
and this reflects uncertainty divided by the mean estimates, i.e., a relative uncertainty
in the embeddings. These coefficients of variations are shown in Fig. 8 with horizontal
lines at levels 1 and 2. We observe that for bigger case weights w

(3)
j3
, these coefficients

of variations are well bounded below 2, whichmeans that it is unlikely that u(3)
j3

defined

by (2.17) takes a value close to zero. This rejects the null hypothesis of level a(3)
j3

not
being significant for prediction. Only for some levels that have scarce observations
(low case weights), we cannot reject the null hypothesis.

4.4 Hierarchical categorical entity embeddings

In this section, we present the hierarchical regularization approaches introduced in
Sect. 3. These are the Hierarchical Model H1 (3.7), the RNN layer encoding of the
entity embedding given in (3.11), and the Transformer processed entity embeddings
given in (3.13). In the previous section, we have seen that the type of regularization
only has a small influence on the results. For this reason, we only consider the MAP
regularization in the sequel, as it only involves the hyperparameters λt . A preliminary
hyperparameter searchhas provided thatwe canuse the same regularizationparameters
λt as in the non-hierarchical MAP case.

Table 3 presents the results, and we conclude that recognizing the hierarchical
structure in our categorical covariates can further improve the models. In fact, these
last three approaches provide the highest accuracy of all models considered here.

In Hierarchical Model H1, only the aggregated estimated increments û(3)
j3

=
̂

(1)
j1[j3] + ̂

(2)
j2[j2] + ̂

(3)
j3

enter the neural network; see (3.7). Figure9 shows this aggre-
gation recursively over the generations 1 ≤ t ≤ T = 3 from left to right; the coloring

123

Japanese Journal of Statistics and Data Science

Ta
bl
e
3

R
eg
ul
ar
iz
at
io
n
of

hi
gh
-c
ar
di
na
lit
y
ca
te
go
ri
ca
lc
ov
ar
ia
te
s
us
in
g
th
e
hi
er
ar
ch
ic
al
st
ru
ct
ur
e
w
ith

re
gu
la
ri
za
tio

n
pa
ra
m
et
er
s
λ
2

=
λ
3

=
10

3
;fi

gu
re
s
ar
e
in

10
−2

M
A
P
ca
se

K
L
di
v.

R
M
SE

M
A
E

(2
)

N
on
-h
ie
ra
rc
hi
ca
l:
w
ith

V
e
h
B
r
a
n
d
,V

e
h
M
o
d
e
l

0.
22

12
2.
45

83
1.
75

92

(2
)

H
ie
ra
rc
hi
ca
lH

1:
w
ith

V
e
h
B
r
a
n
d
,V

e
h
M
o
d
e
l

0.
21

44
2.
42

58
1.
74

15

(2
)

R
N
N
la
ye
r:
w
ith

V
e
h
B
r
a
n
d
,V

e
h
M
o
d
e
l

0.
22

22
2.
46

95
1.
76

21

(2
)

T
ra
ns
fo
rm

er
la
ye
r:
w
ith

V
e
h
B
r
a
n
d
,V

e
h
M
o
d
e
l

0.
20

41
2.
37

59
1.
70

39

(3
)

N
on
-h
ie
ra
rc
hi
ca
l:
w
ith

V
e
h
B
r
a
n
d
,V

e
h
M
o
d
e
l
,V

e
h
D
e
t
a
i
l

0.
14

46
2.
05

01
1.
36

53

(3
)

H
ie
ra
rc
hi
ca
lH

1:
w
ith

V
e
h
B
r
a
n
d
,V

e
h
M
o
d
e
l
,V

e
h
D
e
t
a
i
l

0.
13

51
1.
99

41
1.
30

66

(3
)

R
N
N
la
ye
r:
w
ith

V
e
h
B
r
a
n
d
,V

e
h
M
o
d
e
l
,V

e
h
D
e
t
a
i
l

0.
13

54
2.
00

13
1.
30

20

(3
)

T
ra
ns
fo
rm

er
la
ye
r:
w
ith

V
e
h
B
r
a
n
d
,V

e
h
M
o
d
e
l
,V

e
h
D
e
t
a
i
l

0.
12

94
1.
94

63
1.
28

02

123

Japanese Journal of Statistics and Data Science

−0.15 −0.10 −0.05 0.00 0.05

−0
.1

5
−0

.1
0

−0
.0

5
0.

00
0.

05
Hierarchical H1 embedding weights: VehBrand

1st component

2n
d

co
m

po
ne

nt

−0.15 −0.10 −0.05 0.00 0.05

−0
.1

5
−0

.1
0

−0
.0

5
0.

00
0.

05

Hierarchical H1: VehBrand + VehModel

1st component

2n
d

co
m

po
ne

nt

−0.15 −0.10 −0.05 0.00 0.05

−0
.1

5
−0

.1
0

−0
.0

5
0.

00
0.

05

Hierarchical H1: VehBrand + VehModel + VehDetail

1st component

2n
d

co
m

po
ne

nt

Fig. 9 Hierarchical Model H1: (lhs) estimates û(1)
j1

= ̂
(1)
j1
, (middle) estimates û(2)

j2
= ̂

(1)
j1[j2] + ̂

(2)
j2
, and

(rhs) estimates û(3)
j3

= ̂
(1)
j1[j3] + ̂

(2)
j2[j2] + ̂

(3)
j3
; the coloring is w.r.t. VehBrand

is the same in all figures and it has been taken according to the case weights w
(1)
j1

in the first generation VehBrand. We observe a clustering and refinement of the
embeddings across the generations, which precisely reflects the motivation discussed
in Sect. 3 of considering a hierarchical clustering across the generations. Interestingly,
this aggregated estimate û(3)

j3
∈ R

b carries sufficient information, so that it outper-
forms the non-hierarchical versions of Table 2. At the first sight, this seems surprising,
because we lose information by aggregation. However, the crucial point is that we
have a multi-dimensional embedding û(3)

j3
∈ R

b, b > 1, and the different dimensions
may well play different roles in the subsequent regression model of the neural network
NNϑ (xi ,u

(T)
jT [i]). In our case, embedding dimension b = 2 seems sufficient, but more

complex problems may require bigger embedding dimensions.
Figure 10 shows on the first row the Euclidean norms of the embeddings

(1)
j1
,(2)

j2

and
(3)
j3
, and on the second row the Euclidean norms of the RNN layer outputs r(1)

j1
,

r(2)
j2

and r(3)
j3
, for all levels in A(1), A(2) and A(3). The first row shows the regularization

in the VehModel embeddings (middle) and the VehDetail embeddings (rhs), with
smaller Euclidean norms for smaller case weightsw

(t)
jt
. The lower row shows the RNN

layer outputs given by see (3.10)

r(1)
j1

= �RNN
(

(1)
j1

, 0
)

,

r(2)
j2

= �RNN
(

(2)
j2

, r(1)
j1[j2]

)
,

r(3)
j3

= �RNN
(

(3)
j3

, r(2)
j2[j3]

)
.

Figure11 illustrates the RNN layer outputs, and similar to Fig. 9, we observe a
clustering w.r.t. VehBrand. However, since the RNN layer performs non-linear
transformations, we cannot simply aggregate from left to right in Fig. 11, but we
have non-linear transformations and there also seems to be a rotation (clockwise by
π/2) going from the inclusion of VehBrand in Fig. 11 (lhs) to the inclusion of
VehDetail Fig. 11 (rhs).

123

Japanese Journal of Statistics and Data Science

8 9 10 11

0.
00

0.
05

0.
10

0.
15

0.
20

RNN VehBrand: embeddings Delta^(1)

logged case weights

Eu
cl

id
ea

n
no

rm

4 5 6 7 8 9 10

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

RNN VehModel: embeddings Delta^(2)

logged case weights

Eu
cl

id
ea

n
no

rm

2 4 6 8 10

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

RNN VehDetail: embeddings Delta^(3)

logged case weights

Eu
cl

id
ea

n
no

rm

8 9 10 11

0.
0

0.
1

0.
2

0.
3

0.
4

RNN VehBrand: RNN output r^(1)

logged case weights

Eu
cl

id
ea

n
no

rm

4 5 6 7 8 9 10

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

RNN VehModel: RNN output r^(2)

logged case weights

Eu
cl

id
ea

n
no

rm

2 4 6 8 10

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

RNN VehDetail: RNN output r^(3)

logged case weights

Eu
cl

id
ea

n
no

rm
Fig. 10 RNN layer: (upper row) Euclidean norms of embeddings

(1)
j1
,

(2)
j2

and
(3)
j3
; (lower row)

Euclidean norms of RNN layer outputs r(1)j1
, r(2)j2

and r(3)j3

−0.2 0.0 0.2 0.4

−0
.2

0.
0

0.
2

0.
4

RNN output r^(1): VehBrand

1st component

2n
d

co
m

po
ne

nt

−0.2 0.0 0.2 0.4

−0
.2

0.
0

0.
2

0.
4

RNN output r^(2): VehBrand + VehModel

1st component

2n
d

co
m

po
ne

nt

−0.2 0.0 0.2 0.4

−0
.2

0.
0

0.
2

0.
4

RNN output r^(3): VehBrand + VehModel + VehDetail

1st component

2n
d

co
m

po
ne

nt

Fig. 11 RNN layer outputs: (lhs) r(1)j1
, (middle) r(2)j2

, and (rhs) r(3)j3
; the coloring is w.r.t. VehBrand

Figure 12 shows the analogous plots to Fig. 10 but for the Transformer layer
entity embedding processing. The upper row shows the Euclidean norms of the entity
embeddings

(1)
j1
, (2)

j2
and

(3)
j3
. Again, we can clearly see stronger regularization in

VehModel and VehDetail for levels with smaller case weights, middle and right
plots on the upper row of Fig. 12. The lower row in Fig. 12 shows the Transformer
layer outputs r̃(1), r̃(2) and r̃(3) of the entity embedding inputs (

(1)
j1

,
(2)
j2

,
(3)
j3

).
Since we no longer have time-causality in the Transformer outputs, see Remarks 3.2,
every output component has maximal cardinality being equal to the number of levels
of the last generation VehDetail, i.e., this differs from the RNN plot in Fig. 10.
Also because the Transformer output (3.12) involves several non-linear transforma-
tions, we sacrifice part of the interpretability for having a better predictive model. This
completes our example.

123

Japanese Journal of Statistics and Data Science

8 9 10 11

0.
0

0.
1

0.
2

0.
3

0.
4

Transformer VehBrand: embeddings Delta^(1)

logged case weights

Eu
cl

id
ea

n
no

rm

4 5 6 7 8 9 10

0.
00

0.
01

0.
02

0.
03

0.
04

Transformer VehModel: embeddings Delta^(2)

logged case weights

Eu
cl

id
ea

n
no

rm

2 4 6 8 10

0.
00

0.
01

0.
02

0.
03

0.
04

Transformer VehDetail: embeddings Delta^(3)

logged case weights

Eu
cl

id
ea

n
no

rm

2 4 6 8 10

0.
0

0.
5

1.
0

1.
5

Transformer output r^(1)

logged case weights

Eu
cl

id
ea

n
no

rm

2 4 6 8 10

0.
0

0.
5

1.
0

1.
5

Transformer output r^(2)

logged case weights

Eu
cl

id
ea

n
no

rm

2 4 6 8 10

0.
0

0.
5

1.
0

1.
5

Transformer output r^(3)

logged case weights

Eu
cl

id
ea

n
no

rm
Fig. 12 Transformer layer: (upper row) Euclidean norms of embeddings

(1)
j1
, (2)

j2
and

(3)
j3
; (lower row)

Euclidean norms of Transformer layer outputs r̃(1), r̃(2) and r̃(3)

5 Conclusions

The research question studied in this paper is motivated by practical needs in insurance
pricing, where one typically faces the problem of having high-cardinality categorical
covariates, potentially having a hierarchical structure. If we do not consider regulariza-
tion of such high-cardinality categorical covariates, we often receive poor predictive
models. In this paper, we discuss regularization of high-cardinality categorical covari-
ates, either using themaximal a posteriori (MAP) estimatorwhich is equivalent to ridge
regularization, or using variational Bayesian inference in a random-effects model for
categorical covariates. Both approach provide comparable predictive performance.
The former can be seen as a first-order Taylor approximation to the latter, and it seems
that the first-order terms are sufficient (which also requires less hyperparameters).
Our second contribution is that we show that predictive performance can be further
improved, if the high-cardinality categorical covariates encoding considers the hierar-
chical structure, if there is any. The hierarchical structure can be visualized with trees
and interpreted as time-series. This motivates to apply a recurrent neural network
layer or a Transformer layer to process the hierarchical categorical random effects.
We analyze these proposals on data which verify the improved predictive performance
of these latter two proposals.

Acknowledgements The authors kindly thank Michael Mayer for posing us this interesting question of
integrating high-cardinality categorical covariates into neural network regression models.

Funding Open access funding provided by Swiss Federal Institute of Technology Zurich

123

Japanese Journal of Statistics and Data Science

Data Availability The example is based on synthetic data which can be downloaded from: https://github.
com/wueth/High-Cardinality-Covariates-Regularization

Declarations

Conflict of interest On behalf of all authors, the corresponding author states that there is no conflict of
interest.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix A: An Empirical analysis of synthetic data and hyperparam-
eter selection

This appendix presents an empirical analysis of the synthetic data used, the chosen
regression function, and the hyperparameters for network fitting.

Listing 2 Choice of the true expected frequency μ∗(x, z).

1 # transform the DrivAge variable
2 age_effect <- function(DrivAge) {
3 x <- (DrivAge - 66) / 60
4 0.05 + x^8 + 0.4*x^3 + 0.3*x^2 + 0.06*x
5 }
6
7 # effect of categorical variables
8 cat_effect <- function(cat1 , seed) {
9 cat1 <- model.matrix(~cat1)[,-1]
10 set.seed(seed)
11 cat1 %*% (2* runif(ncol(cat1))-1)
12 }
13
14 #
15 true_model <- function(data) {
16 log_lambda <- with(
17 data ,
18 0.15 * Town +
19 log(age_effect(DrivAge)) +
20 (0.3 + 0.15 * Town) * VehPower / 100 +
21 0.1 * VehPower / (VehWeight / 100)^2 +
22 0.2 * cat_effect(VehBrand , 100) +
23 0.2 * (2*Town -1) * cat_effect(VehModel , 100) +
24 0.1 * VehUse * cat_effect(VehModel , 100) +
25 0.3 * (2*VehUse -1) *cat_effect(VehDetail , 300) +
26 0.03 * VehAge
27)
28 exp(log_lambda)
29 }

123

https://github.com/wueth/High-Cardinality-Covariates-Regularization
https://github.com/wueth/High-Cardinality-Covariates-Regularization
http://creativecommons.org/licenses/by/4.0/

Japanese Journal of Statistics and Data Science

0 1

Vehicle Use
0

20
00

0
40

00
0

60
00

0
80

00
0

10
00

00

0 1

Town

0
20

00
0

40
00

0
60

00
0

80
00

0
10

00
00

18 23 28 33 38 43 48 53 58 63 68 73 78 83

Driver Age

0
10

00
20

00
30

00
40

00
50

00

900 1100 1300 1500 1700 1900 2100 2300 2500 2700 2900

Vehicle Weight

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0
30

00
0

35
00

0

50 70 90 110 135 160 185 210 235 260 285 310

Vehicle Power
0

20
00

40
00

60
00

80
00

0 1 2 3 4 5 6 7 8 9 11 13 15 17 19 21

Vehicle Age

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0
30

00
0

A B C D E F G H I J K L M N O P Q R S T

Vehicle Brand

0
10

00
0

20
00

0
30

00
0

40
00

0
50

00
0

Aa Bc Ce Eb Fd Ha Ib Jc Ke Mb Nd Pa Qc Re Tb

Vehicle Model

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0
30

00
0

35
00

0

Aa1 Bc4 Da5 Ee3 Gd3 Ib3 Jd5 Lb3 Me2 Od3 Qb4 Re5 Td4

Vehicle Detail
0

50
00

10
00

0
15

00
0

20
00

0

Fig. 13 Numbers of policies of each covariate level; in total we have n = 199, 971 insurance policies

Table 4 Hyperparameters used to receive Table 2

Network (2.30) GLMMNet (4.3)

λ1 λ2 τ22 λ3 τ23 λ1 λ2 τ22 λ3 τ23

(2) MAP regularization 0 103 – – – 0 103 – – –

(2) Ad-hoc regularization 0 103 10−6 – – 0 103 10−4 – –

(2) VB regularization 0 103 10−4 – – 0 103 10−5 – –

(3) MAP regularization 0 103 – 103 – 0 103 – 103 –

(3) Ad-hoc regularization 0 103 10−6 103 10−5 0 103 10−6 103 10−5

(3) VB regularization 0 103 10−4 103 10−3 0 103 10−5 103 10−5

123

Japanese Journal of Statistics and Data Science

Ta
bl
e
5

R
M
SE

va
lu
es
:b
en
ch
m
ar
k
m
od
el
s
w
ith

hi
gh
-c
ar
di
na
lit
y
ca
te
go
ri
ca
lc
ov
ar
ia
te
s
us
in
g
b

=
2
di
m
en
si
on

al
em

be
dd

in
g
la
ye
rs
fo
rt
he

ne
tw
or
ks

(2
.3
0)

an
d
(4
.3
);
nu

m
be
rs

in
ro
un

d
br
ac
ke
ts

(·)
in

th
e
1s
tc
ol
um

n
in
di
ca
te
th
e
nu
m
be
r
of

co
ns
id
er
ed

ca
te
go
ri
ca
lc
ov
ar
ia
te
co
m
po
ne
nt
s;
fig

ur
es

ar
e
in

10
−2

R
oo

te
d
m
ea
n
sq
ua
re
d
er
ro
r
(R

M
SE

)

N
et
w
or
k
(2
.3
0)

G
L
M
M
N
et

(4
.3
)

L
ig
ht
G
B
M

(0
)

N
ul
lm

od
el
(e
m
pi
ri
ca
lm

ea
n)

5.
25

71
5.
25

71
5.
25

71

(0
)

w
/o

ca
te
go

ri
ca
lc
ov
ar
ia
te
s

3.
31

96
3.
33

35
3.
30

58

(1
)

W
ith

V
e
h
B
r
a
n
d

2.
72

01
2.
91

70
2.
76

44

(1
)

W
ith

V
e
h
M
o
d
e
l

2.
45

97
2.
80

94
2.
62

10

(1
)

W
ith

V
e
h
D
e
t
a
i
l

2.
61

30
2.
99

29
2.
50

35

(2
)

W
ith

V
e
h
B
r
a
n
d
,V

e
h
M
o
d
e
l

2.
52

45
2.
80

53
2.
68

70

(3
)

W
ith

V
e
h
B
r
a
n
d
,V

e
h
M
o
d
e
l
,V

e
h
D
e
t
a
i
l

2.
70

11
3.
00

08
2.
46

88

123

Japanese Journal of Statistics and Data Science

Ta
bl
e
6

R
M
SE

va
lu
es
:r
eg
ul
ar
iz
at
io
n
of

hi
gh
-c
ar
di
na
lit
y
ca
te
go
ri
ca
lc
ov
ar
ia
te
s
V
e
h
M
o
d
e
l
an
d
V
e
h
D
e
t
a
i
l
;n

um
be
rs
in

ro
un

d
br
ac
ke
ts

(·)
in

th
e
1s
tc
ol
um

n
in
di
ca
te
th
e

nu
m
be
r
of

co
ns
id
er
ed

ca
te
go
ri
ca
lc
ov
ar
ia
te
co
m
po
ne
nt
s;
th
e
se
le
ct
ed

hy
pe
rp
ar
am

et
er
s
ar
e
gi
ve
n
in

Ta
bl
e
4;

fig
ur
es

ar
e
in

10
−2

R
oo

te
d
m
ea
n
sq
ua
re
d
er
ro
r
(R

M
SE

)

N
et
w
or
k
(2
.3
0)

G
L
M
M
N
et

(4
.3
)

(2
)

N
o
re
gu
la
ri
za
tio

n:
w
ith

V
e
h
B
r
a
n
d
,V

e
h
M
o
d
e
l

2.
52

45
2.
80

53

(2
)

M
A
P
re
gu
la
ri
za
tio

n:
w
ith

V
e
h
B
r
a
n
d
,V

e
h
M
o
d
e
l

2.
45

83
2.
75

37

(2
)

A
d-
ho

c
re
gu

la
ri
za
tio

n:
w
ith

V
e
h
B
r
a
n
d
,V

e
h
M
o
d
e
l

2.
48

76
2.
75

25

(2
)

V
B
re
gu
la
ri
za
tio

n:
w
ith

V
e
h
B
r
a
n
d
,V

e
h
M
o
d
e
l

2.
52

11
2.
75

19

(3
)

N
o
re
gu
la
ri
za
tio

n:
w
ith

V
e
h
B
r
a
n
d
,V

e
h
M
o
d
e
l
,V

e
h
D
e
t
a
i
l

2.
70

11
3.
00

08

(3
)

M
A
P
re
gu
la
ri
za
tio

n:
w
ith

V
e
h
B
r
a
n
d
,V

e
h
M
o
d
e
l
,V

e
h
D
e
t
a
i
l

2.
05

01
2.
65

71

(3
)

A
d-
ho

c
re
gu

la
ri
za
tio

n:
w
ith

V
e
h
B
r
a
n
d
,V

e
h
M
o
d
e
l
,V

e
h
D
e
t
a
i
l

2.
06

63
2.
66

51

(3
)

V
B
re
gu
la
ri
za
tio

n:
w
ith

V
e
h
B
r
a
n
d
,V

e
h
M
o
d
e
l
,V

e
h
D
e
t
a
i
l

2.
03

81
2.
66

08

123

Japanese Journal of Statistics and Data Science

Ta
bl
e
7

M
A
E
va
lu
es
:b

en
ch
m
ar
k
m
od
el
s
w
ith

hi
gh
-c
ar
di
na
lit
y
ca
te
go
ri
ca
lc
ov
ar
ia
te
s
us
in
g
b

=
2
di
m
en
si
on

al
em

be
dd

in
g
la
ye
rs
fo
r
th
e
ne
tw
or
ks

(2
.3
0)

an
d
(4
.3
);
nu

m
be
rs

in
ro
un

d
br
ac
ke
ts

(·)
in

th
e
1s
tc
ol
um

n
in
di
ca
te
th
e
nu
m
be
r
of

co
ns
id
er
ed

ca
te
go
ri
ca
lc
ov
ar
ia
te
co
m
po
ne
nt
s;
fig

ur
es

ar
e
in

10
−2

M
ea
n
ab
so
lu
te
er
ro
r
(M

A
E
)

N
et
w
or
k
(2
.3
0)

G
L
M
M
N
et

(4
.3
)

L
ig
ht
G
B
M

(0
)

N
ul
lm

od
el
(e
m
pi
ri
ca
lm

ea
n)

3.
79

77
3.
79

77
3.
79

77

(0
)

w
/o

ca
te
go

ri
ca
lc
ov
ar
ia
te
s

2.
39

04
2.
39

92
2.
38

67

(1
)

W
ith

V
e
h
B
r
a
n
d

1.
94

38
2.
21

37
2.
07

54

(1
)

W
ith

V
e
h
M
o
d
e
l

1.
74

01
2.
08

31
1.
96

24

(1
)

W
ith

V
e
h
D
e
t
a
i
l

1.
72

02
2.
12

41
1.
83

85

(2
)

W
ith

V
e
h
B
r
a
n
d
,V

e
h
M
o
d
e
l

1.
78

69
2.
08

39
2.
02

07

(3
)

W
ith

V
e
h
B
r
a
n
d
,V

e
h
M
o
d
e
l
,V

e
h
D
e
t
a
i
l

1.
76

71
2.
12

31
1.
82

39

123

Japanese Journal of Statistics and Data Science

Ta
bl
e
8

M
A
E
va
lu
es
:
re
gu
la
ri
za
tio

n
of

hi
gh
-c
ar
di
na
lit
y
ca
te
go
ri
ca
l
co
va
ri
at
es

V
e
h
M
o
d
e
l
an
d
V
e
h
D
e
t
a
i
l
;
nu

m
be
rs

in
ro
un

d
br
ac
ke
ts

(·)
in

th
e
1s
t
co
lu
m
n
in
di
ca
te

th
e

nu
m
be
r
of

co
ns
id
er
ed

ca
te
go
ri
ca
lc
ov
ar
ia
te
co
m
po
ne
nt
s;
th
e
se
le
ct
ed

hy
pe
rp
ar
am

et
er
s
ar
e
gi
ve
n
in

Ta
bl
e
4;

fig
ur
es

ar
e
in

10
−2

M
ea
n
ab
so
lu
te
er
ro
r
(M

A
E
)

N
et
w
or
k
(2
.3
0)

G
L
M
M
N
et

(4
.3
)

(2
)

N
o
re
gu
la
ri
za
tio

n:
w
ith

V
e
h
B
r
a
n
d
,V

e
h
M
o
d
e
l

1.
78

69
2.
08

39

(2
)

M
A
P
re
gu
la
ri
za
tio

n:
w
ith

V
e
h
B
r
a
n
d
,V

e
h
M
o
d
e
l

1.
75

92
2.
05

24

(2
)

A
d-
ho

c
re
gu

la
ri
za
tio

n:
w
ith

V
e
h
B
r
a
n
d
,V

e
h
M
o
d
e
l

1.
78

48
2.
04

82

(2
)

V
B
re
gu
la
ri
za
tio

n:
w
ith

V
e
h
B
r
a
n
d
,V

e
h
M
o
d
e
l

1.
81

43
2.
05

30

(3
)

N
o
re
gu
la
ri
za
tio

n:
w
ith

V
e
h
B
r
a
n
d
,V

e
h
M
o
d
e
l
,V

e
h
D
e
t
a
i
l

1.
76

71
2.
12

31

(3
)

M
A
P
re
gu
la
ri
za
tio

n:
w
ith

V
e
h
B
r
a
n
d
,V

e
h
M
o
d
e
l
,V

e
h
D
e
t
a
i
l

1.
36

53
1.
92

64

(3
)

A
d-
ho

c
re
gu

la
ri
za
tio

n:
w
ith

V
e
h
B
r
a
n
d
,V

e
h
M
o
d
e
l
,V

e
h
D
e
t
a
i
l

1.
35

97
1.
92

85

(3
)

V
B
re
gu
la
ri
za
tio

n:
w
ith

V
e
h
B
r
a
n
d
,V

e
h
M
o
d
e
l
,V

e
h
D
e
t
a
i
l

1.
34

38
1.
92

48

123

Japanese Journal of Statistics and Data Science

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Vehicle Use

VehUse

cl
ai

m
s

fre
qu

en
cy

true (color)
observed
conf. bounds

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Town

Town

cl
ai

m
s

fre
qu

en
cy

true (color)
observed
conf. bounds

20 30 40 50 60 70 80

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Driver Age

DrivAge

cl
ai

m
s

fre
qu

en
cy

true (color)
observed
conf. bounds

1000 1500 2000 2500

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Vehicle Weight

VehWeight

cl
ai

m
s

fre
qu

en
cy

true (color)
observed
conf. bounds

50 100 150 200 250 300

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Vehicle Power

VehPower

cl
ai

m
s

fre
qu

en
cy

true (color)
observed
conf. bounds

0 5 10 15 20

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Vehicle Age

VehAge

cl
ai

m
s

fre
qu

en
cy

true (color)
observed
conf. bounds

5 10 15 20

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Vehicle Brands

ranked w.r.t. true expected frequency

cl
ai

m
s

fre
qu

en
cy

true (color)
observed
conf. bounds

0 20 40 60 80 100

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Vehicle Models

rankded w.r.t. true expected frequency

cl
ai

m
s

fre
qu

en
cy

true (color)
observed
conf. bounds

0 100 200 300 400

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Vehicle Details

ranked w.r.t. true expected frequency

cl
ai

m
s

fre
qu

en
cy

true (color)
observed

Fig. 14 Marginal frequencies (true and empirical) of all covariates. The y-scale is identical in all plots;
the gray area computes two standard deviations empirical confidence bounds for all levels using a Pois-
son assumption; the coloring in the graphs VehBrand, VehModel, VehDetail (last row) is identical
indicating the VehBrand by different colors

References

Antonio, K., & Zhang, Y. (2014). Linear mixed models. In E. W. Frees, G. Meyers, & R. A. Derrig (Eds.),
Predictive modeling applications in actuarial science (Vol. I, pp. 182–216). Cambridge University
Press.

Avanzi, B., Taylor, G., Wang, M., Wong, B. (2024). Machine learning with high-cardinality categorical
features in actuarial applications. ASTIN Bulletin 54(2) (in press)

Brébisson, de A., Simon, É., Auvolat, A., Vincent, P., & Bengio, Y. (2015). Artificial neural networks
applied to taxi destination prediction. arXiv:1508.00021

Bengio, Y., Courville, A., & Vincent, P. (2013). Representation learning: A review and new perspectives.
IEEE Transactions on Pattern Analysis and Machine Learning Intelligence, 35(8), 1798–1828.

Bengio, Y., Ducharme, R., Vincent, P., & Jauvin, C. (2003). A neural probabilistic language model. Journal
of Machine Learning Research, 3(Feb), 1137–1155.

Bengio, Y., Schwenk, H., Senécal, J.-S., Morin, F., & Gauvain, J.-L. (2006). Neural probabilistic language
models. In D. E. Holmes & L. C. Jain (Eds.), Innovations in machine learning, Studies in fuzziness
and soft computing (Vol. 194, pp. 137–186). Springer.

123

http://arxiv.org/abs/1508.00021

Japanese Journal of Statistics and Data Science

Bühlmann, H., & Gisler, A. (2005). A course in credibility theory and its applications. Springer.
Bühlmann, H., & Jewell, W. S. (1987). Hierarchical credibility revisited. Bulletin of the Swiss Association

of Actuaries, 1987(1), 35–54.
Campo, B. D. C., & Antonio, K. (2023). Insurance pricing with hierarchically structured data an illustration

with a workers’ compensation insurance portfolio. Scandinavian Actuarial Journal. (in press).
Campo, B. D. C., & Antonio, K. (2023). On clustering levels of a hierarchical categorical risk factor.

arXiv:2304.09046
Chollet, F., & Allaire, J. J., et al. (2017). R interface to Keras. https://github.com/rstudio/keras
Delong, Ł,&Kozak, A. (2023). The use of autoencoders for training neural networkswithmixed categorical

and numerical features. ASTIN Bulletin, 53(2), 213–232.
Guo, C., Berkhahn, F. (2016). Entity embeddings of categorical variables. arXiv:1604.06737
Hastie, T., Tibshirani, R., & Wainwright, M. (2015). Statistical learning with sparsity: The Lasso and

generalizations. CRC Press.
Jewell, W. S. (1975). The use of collateral data in credibility theory: A hierarchical model. Giornale

dell’Instituto Italiano degli Attuari, 38, 1–16.
Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., & Liu, T.-Y. (2017). LightGBM: A

highly efficient gradient boosting decision tree. Advances in Neural Information Processing Systems,
30, 3146–3154.

Kingma, D. P., &Welling, M. (2019). An introduction to variational autoencoders. Foundations and Trends
in Machine Learning, 12(4), 307–392.

Mayer,M.,Meier, D., &Wüthrich,M.V. (2023). SHAP for actuaries: Explain anymodel. SSRNManuscript
ID 4389797.

Odaibo, S. G. (2019). Tutorial: Deriving the standard variational autoencoder (VAE) loss function.
arXiv:1907.08956

Ohlsson, E. (2008). Combining generalized linear models and credibility models in practice. Scandinavian
Actuarial Journal, 2008(4), 301–314.

Richman, R. (2021). AI in actuarial science—A review of recent advances—Part 1. Annals of Actuarial
Science, 15(2), 207–229.

Richman, R. (2021). AI in actuarial science—A review of recent advances—Part 2. Annals of Actuarial
Science, 15(2), 230–258.

Schelldorfer, J., Wüthrich, M. (2019). Nesting classical actuarial models into neural networks. SSRN
Manuscript ID 3320525.

Simchoni, G., & Rosset, S. (2022). Integrating random effects in deep neural networks. arXiv:2206.03314.
Tikhonov,A.N. (1943).On the stability of inverse problems.DokladyAkademii Nauk SSSR, 39(5), 195–198.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I.

(2017). Attention is all you need. arXiv:1706.03762v5
Wüthrich, M. V., & Merz, M. (2023). Statistical foundations of actuarial learning and its applications.

Springer Actuarial. https://link.springer.com/book/10.1007/978-3-031-12409-9

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://arxiv.org/abs/2304.09046
https://github.com/rstudio/keras
http://arxiv.org/abs/1604.06737
http://arxiv.org/abs/1907.08956
http://arxiv.org/abs/2206.03314
http://arxiv.org/abs/1706.03762v5
https://link.springer.com/book/10.1007/978-3-031-12409-9

	High-cardinality categorical covariates in network regressions
	Abstract
	1 Introduction
	2 Regularization of categorical entity embedding
	2.1 Random-effects entity embedding
	2.2 Random-effects embedding within the exponential dispersion family
	2.3 Maximal a posterior estimator
	2.4 Variational Bayesian estimation
	2.5 Ad-hoc random-effects estimation
	2.6 Hyperparameter selection for regularization
	2.7 Extension to the multiple categorical covariate case

	3 The hierarchical random-effects case
	3.1 Tree structure and notation
	3.2 Gaussian hierarchical entity embedding
	3.3 Regularization and random-effects estimation
	3.4 Individual vs. hierarchical regularization
	3.5 Recurrent network hierarchical random effects
	3.6 Transformer processing of hierarchical random effects

	4 Example: regularization of categorical entity embedding
	4.1 Description of the data
	4.2 Plain-vanilla benchmark models
	4.3 High-cardinality entity embedding regularization
	4.4 Hierarchical categorical entity embeddings

	5 Conclusions
	Acknowledgements
	Appendix A: An Empirical analysis of synthetic data and hyperparameter selection
	References

