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Abstract
In this paper, we propose a method for fitting the proportional odds model by
maximizing the marginal likelihood while incorporating an elastic net penalty. We
assign adaptive weights to different coefficients, allowing important variables to
receive smaller penalties and be more protectively retained in the final model, while
unimportant variables receive larger penalties and are more likely to be eliminated.
This approach combines the strengths of adaptively weighted LASSO shrinkage and
quadratic regularization, resulting in optimal large sample performance and the ability
to effectively handle collinearity. We also present a computational algorithm for the
proposed method and compare its performance to that of LASSO, elastic net, and
adaptive LASSO through simulation studies and applications to real datasets. The
results demonstrate that the proposed method tends to perform better than existing
approaches.

Keywords Shrinkage · Penalization · Marginal likelihood · Survival analysis

1 Introduction

Variable selection, the process of identifying the covariates that are most associated
or predictive of survival time from the set of available covariates, is crucial in survival
modeling. Deciding which covariates to include in the final model is an important
task for investigators, as it affects both accuracy and interpretability of the model. In
ordinary linear regression settings, a variety of variable selection methods have been
well established, such as all possible subsets method, forward selection, backward
selection, and step-wise selection. These methods are typically evaluated using crite-
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ria such as Mallows’ Cp (Mallows, 1973), Akaike’s Information Criterion (Akaike,
1974) (AIC), Schwarz’s Bayesian Information Criterion (Schwarz, 1978) (BIC), Cop-
ula Information Criterion (Grønneberg & Hjort, 2014) (CIC), Deviance Information
Criterion (Spiegelhalter et al., 2014) (DIC), etc. However, these methods can suffer
from high variability and long computation time for large datasets, as well as selection
bias, which leads to overestimating the effects of the selected covariates.

In the last decades, shrinkage methods have become increasingly popular in model
selection, such as LASSO (Tibshirani, 1996), Adaptive LASSO (Schneider &Wagner,
2012), and Elastic Net (Zou&Hastie, 2005). Thesemethods use penalties to shrink the
coefficients of less important variables to zero, thus reducing the risk of overfitting and
improves the interpretability of the model. For survival analysis, variable selection is
more challenging due to the nature of censored data. Recent methods, such as LASSO
and Smoothly Clipped Absolute Deviation or SCAD (Fan & Li, 2001), have been
proposed and applied for variable selection in survival analysis (Salerno & Li, 2022).

Cox’s model is the most widely used model in survival analysis. However, pro-
portional hazards, the most important assumption of Cox’s model, are violated in
some cases (e.g., when modeling prognostic factors in studies with long follow-up
times). While Cox’s model can be expanded to accommodate non-proportional haz-
ards, such as by integrating time-varying regression coefficients (Hess, 1994; Hastie
& Tibshirani, 1993), there isn’t a universally endorsed or straightforward method to
do so and developing a suitable model using these approaches can be a very complex
and challenging task. In the cases where proportional hazards assumption is not sat-
isfied, the proportional odds (PO) model is a useful alternative. The PO model was
initially presented by Bennett (1983) within a semi-parametric framework. Under the
PO model, which specifies that the covariate effect is a multiplicative factor on the
baseline odds function, the hazard ratio between two sets of covariate values tends
to approach unity instead of remaining constant as time progresses. Collett (1994)
applied the PO model to the data on the survival times of women with breast tumors
that were negatively or positively stained. Crowder et al. Crowder (1991) employed
the PO model for the analysis of reliability data. Rossini and Tsiatis (1996) adapted
the PO model for modeling current status data.

Regarding the variable selection problem for the PO model, Lu and Zhang (2007)
suggested to fit it by maximizing the marginal likelihood subject to LASSO and
adaptive LASSO penalties and their numerical study shown that adaptive LASSO
outperforms LASSO. However, both of the two approaches have weakness when
confront with high-dimensional data (Zou & Hastie, 2005; Zou & Zhang, 2009) or
collinearity issues. The adaptive elastic net penalty (Zou & Zhang, 2009), using both
l2 and weighted l1 constraints, inherits the oracle properties (Zou, 2006) from adaptive
LASSO and has stronger capability of handling collinearity problem.

In this paper, we propose using the adaptive elastic net penalty to the marginal like-
lihood function of POmodel and solve variable selection problems under proportional
odds assumption. We compare its performance with LASSO, adaptive LASSO and
elastic net methods in simulation studies as well as in applications to real datasets.
Results show that the proposed method tends to work better than existing ones.

In Sect. 2, a brief review is given to common proportional odds model with right-
censored data and its marginal likelihood function. In Sect. 3, we apply the adaptive
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elastic net approach to marginal likelihood of proportional odds model. In Sect. 4, we
develop a computational algorithm.We also discuss how to choose tuning parameters.
In Sect. 5, we present the results of simulation study. Then, in Sect. 6, we apply
this method to real data sets to compare its performance with other methods. Finally,
summary and discussion are given in Sect. 7.

2 Proportional oddsmodel and its marginal likelihood function

For a survival analysis problem involving right-censored data, the dataset comprises
n independent observations, each denoted as (min{Ti ,Ci }, θi ), where Ti represents
the time until the occurrence of a specific event of interest, Ci denotes a censoring
time, and θi stands for the censoring indicator 1(Ti<Ci ). Additionally, we possess
Zi = (Zi1, . . . , Zip)

′, which denotes a p-dimensional vector of covariates for the i th
observation. Our primary objective is to explore the relationship between the survival
time T and the covariates Z. In the realm of survival analysis, the most commonly
employed model is the Proportional Hazards (PH) model, originally proposed by Cox
(1972). However, in some certain scenarios, the underlying assumptions under the
PH model may not hold. In such cases, the Proportional Odds model serves as a
valuable alternative (Peterson et al., 1990). The Proportional Odds model is based on
the assumption that

1 − S(t | Z)

S(t | Z)
= 1 − S0(t)

S0(t)
exp(β ′Z), (1)

where S(t | Z) denotes the conditional survival function of T given Z and S0(t) is
the baseline survival function with Z = 0, which is completely unspecified. β =
(β1, . . . , βp)

′ is the regression parameter vector.
Let H(t) = log[(1 − S0(t))/S0(t)], a regression model under proportional odds

assumption (1) can be expressed as

H(T ) = −β ′Z + ε, (2)

where ε follows standard logistic distribution.
The partial likelihood function of β under the PO model is unavailable, we use

Lam and Leung’s (2001) method to estimate β by maximizing its marginal likelihood
function: Let T(1) < · · · < T(K ) represent the ordered uncensored failure times in the
sample and define T(0) = 0, T(K+1) = ∞. For 0 ≤ k ≤ K, let Lk denote the set of
labels i corresponding to those observations censored in the interval [T(k), T(k+1)). The
complete ranks of Ti ’s are unknown as the result of the censoring scheme. LetR denote
the unobserved rank vector of Ti ’s and let G denote the collection of all possible rank
vectors of Ti ’s consistent with the observed data (T̃i , θi ) (i = 1, . . . , n). The marginal
likelihood is then defined by Ln,M (β) = P(R ∈ G), where the probability is with
respect to the underlying uncensored version of the study. It can be shown that Ln,M (β)
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can be represented as

Ln,M (β) =
∫

· · ·
∫
V(1)<···<V(K )

n∏
i=1

{λ(V(ki ) + β ′Zi)}θi e−�(V(ki )+β ′Zi )
K∏

k=1

dV(k),

(3)

where V(k) = H(T(k)), k = 1, . . . , K . �(x) denote the cumulative hazard function of
ε, i.e., �(x) = log{1 + exp(x)} and λ(x) = d�(x)/dx .

Because there is no explicit solution to the maximization of (3), importance sam-
pling method is used to approximate it. Following Lu and Zhang (2007), (3) can be
estimated by performing a multiplication followed by a division by:

c
n∑

i=1

{λ(V(ki ))}θi e−�(V(ki )), (4)

where the constant c is the total number of possible rank vectors in G. When Vi ≡
H(Ti ) (i = 1, . . . , n) are independent and identically distributed according to the
distribution function F(x), and then it can be shown that (4) is the density function
of V(1), . . . , V(K ) under progressive type II censoring scheme. Then, the marginal
likelihood (3) can be expressed as

Ln,M (β) = E{Q(V(1), . . . , V(K );β)}, (5)

where the expectation is with respect to the density (4) and

Q(V(1), . . . , V(K );β) = 1

c

n∏
i=1

{λ(V(ki ) + β ′Zi)}θi e−�(Vki +β ′Zi)

{λ(V(ki ))}θi e−�(V(ki ))
. (6)

Then, (5) can be estimated by

L̂n,M (β) = 1

B

B∑
b=1

Q{F−1(Ub
(1)), . . . , F

−1(Ub
(K ));β}, (7)

where F−1(·) is the inverse of F(·) and Ub
(1), . . . ,U

b
(K ), b = 1, . . . , B, denote B

independent instances of the uncensored order statistics derived from a random sample
of size n, taken from a uniform distribution subject to the progressive type II censoring
scheme.

3 Adaptive elastic net approach for proportional oddsmodel

To address the challenges posed by the inherent instability of high-dimensional data
and the limitation in handling collinearity, as originally encountered with the LASSO
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and adaptive LASSO methods proposed by Lu and Zhang (2007), we have chosen
to employ the adaptive elastic net penalty, as outlined in the work of Zou and Zhang
(2009). This approach encompassed both the l2 andweighted l1 penalties and is applied
to enhance the robustness of the marginal likelihood estimation

min
β

⎛
⎝−1

n
l̂n,M (β) + λ1

p∑
j=1

w j | β j | +λ2

p∑
j=1

w jβ
2
j

⎞
⎠ , (8)

where l̂n,M (β) = log[L̂n,M (β)].
The tuning parameters, denoted as λ1 and λ2, exercise control over the magnitudes

of the l1 (LASSO) and l2 (ridge) penalty, respectively. Analogous to conventional
regression scenarios, the distinguishing feature between l1 and l2 penalty lies in that
l2 penalty tends to yield small but non-zero coefficient estimates across all variables,
whereas l1 penalty is inclined to make some regression coefficients shrunk to exactly
0 and some other coefficients with comparatively little shrinkage. Combining l1 and
l2 penalties is likely to give a result in between and an intermediate outcome, with
fewer coefficient estimates set to 0 than in a pure LASSO setting, and more shrinkage
for other coefficients.

The larger the tuning parameters λ1 and λ2 are, the greater degree of penalty or
shrinkage is imposed upon the coefficients. In practice, it can be challenging to deter-
mine the appropriate values for these parameters. We propose to use BIC criterion to
find the optimal values. The choice of tuning parameters is further discussed at the
end of next section.

w = (w1, . . . , wp)
′ is a non-negative weight vector, which adjusts penalties applied

to the coefficients. As the weight value increase, the corresponding penalties are
augmented accordingly. For important covariates, we take larger value weights; for
unimportant covariates, we take small value weights. In practice, the weights are cho-
sen adaptively by data. For example, any consistent estimator of β could be used as a
good candidate (Zou, 2006).

Here, we denote the maximum marginal likelihood estimate (MMLE) of β as

β̃ = argmax
β

(L̂n,M (β)).

Lam and Leung (2001) have shown that β̃ is a consistent estimator of β. The absolute
values of the elements in β̃ reflect the relative importance of the covariates. Hence,
we set ŵ j = 1

|β̃ j | .
We define our adaptive elastic net estimate for proportional odds model as

β̂ = argmin
β

⎛
⎝−1

n
l̂n,M (β) + λ1

p∑
j=1

ŵ j | β j | +λ2

p∑
j=1

β2
j

⎞
⎠ , (9)

where ŵ j = 1
|β̃ j | .
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If β̃ j = 0, then we assign β̂ j = 0. When equal weights are used in (9), the adaptive
elastic net estimate simplifies and transforms to elastic net estimate. If we set λ2 = 0,
then it leads to the simplification of the adaptive elastic net estimate into the adaptive
LASSO estimate.

4 Computational algorithm and choice of tuning parameters

In this section, we discuss the computational algorithm to solve the adaptive elastic net
challenges within the context of the proportional odds model. The algorithm involves
3 transformations. First, leveraging Taylor’s expansion, we convert the adaptive elastic
net penalized likelihood problem into an adaptive elastic net penalized least square
problem. Subsequently, we transform the adaptive elastic net penalized least square
problem into an adaptiveLASSOpenalized least square problem.Finally,we transform
the adaptive LASSO problem into an ordinary LASSO problem. Following these
successive transformations, the ordinary LASSO problem can be easily solved using
existing methods as described as LARS (Efron et al., 2004).

We define the gradient vector of l(β) as ∇l(β) = −∂ l̂n,M (β)/∂β and the Hessian
matrix ∇2l(β) = −∂2l̂n,M (β)/∂ββ ′. Let X be 1√

2n
of the Cholesky decomposition

of ∇2l(β), such that X ′X = 1
2n∇2l(β). A pseudo-response vector Y is set as Y =

1
2n (X ′)−1(∇2l(β)β − ∇l(β)).

Applying similar argument by Lu and Zhang (2007), we can show that − 1
n l̂n,M (β)

can be approximated using the second-order Taylor expansion by (Y−Xβ)′(Y−Xβ).
Therefore, we can solve (9) iteratively. First, we solve maximum marginal likeli-

hood estimate β̃. Afterward, we compute ∇l(β̃), ∇2l(β̃), X and Y based on β̃. Then,
we update β by minimizing

(Y − Xβ)′(Y − Xβ) + λ1

p∑
j=1

ŵ j | β j | +λ2

p∑
j=1

β2
j (10)

until it converges.
Next, we show that this adaptive elastic net problem can be transformed into an

adaptive LASSO type problem in some augmented space. Building upon the approach
outlined by Zou and Hastie (2005), we construct an artificial augmented data set
(X A,Y A), where

X A
(n+p)×p = (1 + λ2)

− 1
2

(
X√
λ2 I

)
(11)

Y A
(n+p)×1 =

(
Y
0

)
. (12)

Let γ = λ1/
√
1 + λ2, β A = √

1 + λ2β. For the adaptive elastic net solution, we
have
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argmin
β

(Y − Xβ)′(Y − Xβ) + λ1

p∑
j=1

ŵ j | β j | +λ2

p∑
j=1

β2
j

= argmin
β

{((
Y
0

)
− 1√

1 + λ2

((
X√
λ2 I

))√
1 + λ2β

)′ ((
Y
0

)

− 1√
1 + λ2

((
X√
λ2 I

)) √
1 + λ2β

)
+ λ1

p∑
j=1

ŵ j | β j |
⎫⎬
⎭

= argmin
β

{((
Y
0

)
− 1√

1 + λ2

((
X√
λ2 I

))√
1 + λ2β

)′ ((
Y
0

)

− 1√
1 + λ2

((
X√
λ2 I

)) √
1 + λ2β

)
+ λ1√

1 + λ2

p∑
j=1

ŵ j | √
1 + λ2β j |

⎫⎬
⎭

= 1√
1 + λ2

argmin
β A

⎡
⎣(Y A − X Aβ A)′(Y A − X Aβ A)′ + γ

p∑
j=1

ŵ j | β A
j |

⎤
⎦ .

(13)

At this juncture, the problem is reconfigured as an adaptive LASSO problem, fea-
turing a tuning parameter denoted as γ = λ1/

√
1 + λ2, which is a convex optimization

problem and does not suffer from the multiple local minima issue (Zou, 2006).
According to Zou (2006), the solution to an adaptive LASSO problem

argmin
β

⎛
⎝( y − Xβ)′( y − Xβ) + λ

p∑
j=1

ŵ j | β j |
⎞
⎠

is β̂alasso
j = sign(β̂ols

j )(| β̂ols
j | − 1

2 ŵ jλ)+, for j = 1, . . . , p, where β̂ols
j is the ordinary

least square estimate and z+ denotes the positive part of z, i.e., z+ = z if z > 0 and 0
otherwise.

Bymultiplying the LASSO solution by its respective weight, we derive the solution
to β̂ols

j . Notably, established computational techniques are available for addressing
LASSO problems, such as least angle regression (LARS) introduced by Efron et al.
(2004) and path-wise coordinate descent algorithm proposed byWu andLange (2008).

Here, we use a modified shooting algorithm (Fu, 1998; Lu & Zhang, 2007) to
solve the adaptive LASSO problem to avoid additional transformation and make com-
putation more efficient. We define G(β) = ∑n

i=1(yi − β ′xi )2, Ġ j (β) = ∂G(β)
∂β j

,

j = 1, . . . , p, and denote β by (β j ,β
− j )′ where β− j is the (p − 1)-dimensional

vector consisting of the βi ’s other than β j .
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The complete algorithm to compute adaptive elastic net solution for proportional
odds model when p < n is given as follows:

argmin
β

⎛
⎝−1

n
l̂n,M (β) + λ1

p∑
j=1

ŵ j | β j | +λ2

p∑
j=1

β2
j

⎞
⎠ . (14)

1. Solve β̃ by maximizing l̂n,M (β). Set ŵ j = 1
|β̃ j | for j = 1, . . . , p.

2. Let k = 0, and β
(0)
j = 0 for j = 1, . . . , p.

3. Compute ∇l, ∇2l, X and Y based on current value of β(k).
4. Solve

β(k+1) = argmin
β

[(Y − Xβ)′(Y − Xβ) + λ1

p∑
j=1

ŵ j | β j | +λ2

p∑
j=1

β2
j ].

(a) Let

X A
(n+p)×p = (1 + λ2)

− 1
2

(
X√
λ2 I

)
,Y A

(n+p)×1 =
(
Y
0

)
and γ = λ1/

√
1 + λ2.

(b) Solve β̂
A = argminβ A [(Y A − X Aβ A)′(Y A − X Aβ A) + γ

∑p
j=1

|β A
j |

|β̃ j | ].
(i) Start with β̂0 = β̃ = (β̃i , . . . , β̃p)

′ and let λ j = γ

|β̃ j | for j = 1, . . . , p.

(ii) At step m, for each j = 1, . . . , p, let G0 = Ġ j (0, β̂
− j
m−1) and set

β̂ A
j =

⎧⎪⎨
⎪⎩

λ j−G0

2(x j )′x j if G0 > λ j
−λ j−G0

2(x j )′x j if G0 < λ j

0 if | G0 |≤ λ j .

(iii) Repeat ((ii)) until β̂
A
m converges.

(c) Set βk+1 = 1√
1+λ2

β̂
A
.

5. If
∥∥βk+1 − βk

∥∥2 < 0.0001 (or other given small ε > 0), then stop, else set k = k+1
and go to 3.

For p � n cases, theMMLEofβ is not available. Following Zou and Zhang (2009),
we use elastic net estimates to construct the adaptive weight ŵ j . We first apply the

algorithm with the initial adaptive weight ŵ(0)
j = 1 for j = 1, . . . , p to get the elastic

net estimates β̂enet
j , then set ŵ j = (| β̂enet

j | + 1
n )−1 and run step 2 through 5 to get

the adaptive elastic net solution.
Tuning is a very important aspect of model fitting. For adaptive elastic net

approaches, we need to find the optimal value of λ1 and λ2. We use Bayesian Infor-
mation Criterion (BIC) (Schwarz, 1978) to choose the best combination of λ1 and λ2.
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We define the BIC for proportional odds model as

BIC = −2L̂n,M (β̂
aenet | λ1, λ2) + k log(n), (15)

where k is the total number of non-zero parameters and n is the number of observations.
The typicalway to dealwith two tuning parameters in adaptive elastic net problem is

to pick a relatively small grid of values for λ2, for example (0, 0.001, 0.01, 0.1, 1, 10).
Then, for each value of λ2, we get the BIC scores for a sequence of λ1. The chosen
(λ1, λ2) is the pair that gives the smallest BIC score.

5 Simulation studies

We generate data from proportional odds models and apply adaptive elastic net proce-
dure to do variable selection. For each model, we generate 100 simulated datasets and
gauge the variable selection performance using (C0, IC0), where C0 is the number
of unimportant covariates that the procedure correctly estimates as zero and IC0 is
the number of important covariates that the procedure incorrectly estimates as zero.
To measure prediction accuracy, we follow Tibshirani (1996) to summarize the aver-
age mean square error (MSE) (β̂ − β)′V (β̂ − β) over the 100 runs, where V is the
population covariance matrix of the covariates. BIC method is used to choose tun-
ing parameters. The simulation is run in no censoring, 20% censoring rate and 40%
censoring rate settings, respectively. Also, 3 sample sizes, n = 100, n = 200, and
n = 500 are used for each model. The results are then compared with LASSO, adap-
tive LASSO, and elastic net. In our implementation, we set λ2 = 0 in the adaptive
elastic net to get the adaptive LASSO fit. To get the elastic net fit, we set w j = 1 for
j = 1, 2, . . . , p. For these 3 methods, BIC method is also used to select the tuning
parameter. Five models with different β and Pearson’s correlation coefficient ρi, j are
used for our simulation studies. The results are as follows:

Model 1: The design contains ten covariates: (Z1, Z2, . . . , Z10). The covariates
are marginally standard normal distributed and ρi, j = 0.2 for i, j = 1, 2, . . . , 10
and i 	= j . β ′ = (−0.8, 0, 0,−0.8, 0, 0,−0.7, 0, 0,−0.7). Therefore, Z1, Z4, Z7
and Z10 are important variables. This model is used to compare the performance of
adaptive elastic net and other 3 procedures in a scenario that important covariates all
have large effects and that the pairwise correlations between the covariates are weak.
The simulation result is summarized and shown in Fig. 1.

For model 1, when sample size is small (n = 100), the performances of two
procedures with oracle properties (Zou, 2006), adaptive LASSO and adaptive elastic
net, are comparable in terms of accuracy. LASSO and elastic net are outperformed
by their counterparts. Regarding mean square error, the adaptive elastic net approach
is better than any of the other 3 approaches (around 24.5% smaller MSE on average
compared to the next best approach). Adaptive LASSO and elastic net have similar
MSE. LASSO is the one that have the largest MSE. When the sample size is increased
to 200, the difference in MSE for adaptive LASSO and adaptive elastic net becomes
small (around10%onaverage).When sample size is increased to 500, adaptiveLASSO
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Fig. 1 Variable selection results and MSE for ρ = 0.2 and β ′ = (−0.8, 0, 0, −0.8, 0, 0, −0.7, 0, 0, −0.7).
The MSE is the averaged value over 100 replicates

and adaptive elastic net perform equally good in terms of accuracy. However, adaptive
elastic net is still slightly better than adaptive LASSO in terms of MSE (around 6% on
average). For this model, we conclude that adaptive LASSO and adaptive elastic net
are the two best approaches in terms of selection accuracy. Also, the adaptive elastic
net does better than adaptive LASSO in terms of MSE when sample size is small.

Model 2: The design contains ten covariates: (Z1, Z2, . . . , Z10). The covariates
are marginally standard normal distributed and ρi, j = 0.8 for i, j = 1, 2, . . . , 10 and
i 	= j . β ′ = (−0.8, 0, 0,−0.8, 0, 0,−0.7, 0, 0,−0.7). This model is used to compare
the performance of the 4 procedures in a scenario that important covariates all have
large effects and that the pairwise correlations between the covariates are strong. The
simulation result is summarized and shown in Fig. 2.

For model 2, when sample size is 100, adaptive elastic net and adaptive LASSO
seem to have the largest accuracy rate and adaptive elastic net has the smallest MSE
(around 3% smaller on average than the elastic net, which has the second smallest
MSE). At high censoring rate, adaptive elastic net and adaptive LASSO tend to shrink
more important variables to 0 than LASSO and adaptive LASSO do. When sample
size is increased to 500, none of the 4 procedures misses any important variables and
adaptive LASSO and adaptive elastic net have comparable performance in terms of
accuracy. Adaptive elastic net is still the best in terms of MSE (around 7% smaller on
average).Weconclude that adaptive elastic netmethodhas the best overall performance
for model 2.

Model 3: The design contains ten covariates: (Z1, Z2, . . . , Z10). The covariates
are marginally standard normal distributed and ρi, j = 0.2 for i, j = 1, 2, . . . , 10 and
i 	= j . β ′ = (−0.3, 0, 0,−0.3, 0, 0,−0.2, 0, 0,−0.2). This model is used to compare
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Fig. 2 Variable selection results and MSE for ρ = 0.8 and β ′ = (−0.8, 0, 0, −0.8, 0, 0, −0.7, 0, 0, −0.7).
The MSE is the averaged value over 100 replicates

the performance of the 4 procedures in a scenario that important covariates all have
small effects and that the pairwise correlations between the covariates are low. The
simulation result is summarized and shown in Fig. 3.

When sample size is 100, adaptive LASSO seems to have the best accuracy in terms
with dropping unimportant variables, but it also tends to drop important variables
more than the other 3 methods. On the contrary, elastic net selects the least number of
unimportant variables, but it does the worst job in keeping important variables. The
adaptive elastic net is very closed to adaptive LASSO in keeping no-zero variables (7%
less accurate rate) and is almost as good as elastic net in eliminating zero variables.
Also, adaptive elastic net is consistently the best among the 4 approaches in terms
of MSE (around 24% less than elastic net, the approach that has the second smallest
MSE). As sample size increases to 200, the difference in correct 0 s as well as MSE
gets closer between adaptive elastic net and adaptive LASSO. When sample size gets
to 500, adaptive elastic net outperforms adaptive LASSO in dropping unimportant
variables. Elastic net is still the best in keeping important variables. Adaptive elastic
net still has the least MSE. Considering all 3 factors, we conclude that adaptive elastic
net is the best approach for this scenario.

Model 4: The design contains ten covariates: (Z1, Z2, . . . , Z10). The covariates
are marginally standard normal distributed and ρi, j = 0.8 for i, j = 1, 2, . . . , 10 and
i 	= j . β ′ = (−0.3, 0, 0,−0.3, 0, 0,−0.2, 0, 0,−0.2). This model is used to compare
the performance of the 4 procedures in a scenario that important covariates all have
small effects and that the pairwise correlations between the covariates are strong. The
simulation result is summarized and shown in Fig. 4.
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Fig. 3 Variable selection results and MSE for ρ = 0.2 and β ′ = (−0.3, 0, 0,−0.3, 0, 0, −0.2, 0, 0, −0.2).
The MSE is the averaged value over 100 replicates

Fig. 4 Variable selection results and MSE for ρ = 0.8 and β ′ = (−0.3, 0, 0,−0.3, 0, 0, −0.2, 0, 0, −0.2).
The MSE is the averaged value over 100 replicates
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Fig. 5 Variable selection results and MSE for ρ = 0.5, 0.8 and β ′ = (−0.8I10, −0.7I10, −0.3I10,
−0.2I10, 060) censoring rate 20% The MSE is the averaged value over 100 replicates

For model 4, elastic net is still the best in retaining the none-zero variables in the
model and adaptive LASSO and adaptive elastic net is the best in eliminating zero
variables out of the model. For small sample size, adaptive elastic net has the smallest
MSE (around 3% difference on average). At large sample size, adaptive elastic net and
adaptive LASSO have the smallest MSE. For this model, we conclude that adaptive
elastic net has overall the best performance when sample size is small. When sample
size is large, elastic net is the best procedure in terms of selection accuracy and adaptive
elastic net is the best procedure in terms of MSE.

Model 5: The design contains 100 marginally standard normal distributed
covariates: (Z1, Z2, . . . , Z100). β ′ = (−0.8I10,−0.7I10,−0.3I10,−0.2I10, 060). So
Z1, Z2, . . . , Z20 are important variables having large effects, Z21, Z22, . . . , Z40 are
important variables having small effects, and Z41, Z42, . . . , Z100 are unimportant
variables. We use this model to compare the performance of the 4 procedures in a
complicated case that have large dimension of covariates and the important covariates
have both small and large effects. We run this model with 20% and 40% censoring
rate and consider pairwise correlation coefficient in 0.5 and 0.8 settings. Result is
summarized and shown in Figs. 5 and 6.

For this complex model, the adaptive elastic net demonstrates the lowest MSE in
10 out of 12 combinations of sample sizes, correlation coefficients, and censoring
rates. Adaptive LASSO and adaptive elastic net are the two best approaches in terms
of dropping correct zero variables. Elastic net outperforms the other 3 methods in
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Fig. 6 Variable selection results and MSE for ρ = 0.5, 0.8 and β ′ = (−0.8I10, −0.7I10, −0.3I10,
−0.2I10, 060) censoring rate 40% The MSE is the averaged value over 100 replicates

keeping non-zero variables. If penalizing the selection of unimportant variables and
the omission of important ones carry the same weight, then the adaptive elastic net is
considered the most favorable approach for this complex model.

6 Application in real data

6.1 Veteran cancer data

We apply the adaptive elastic net method to the data from the Veteran’s Adminis-
tration lung cancer trial (Prentice & Kalbfleisch, 2002). In this trial, 137 males with
advanced inoperable lung cancer were randomized to either a standard treatment or
chemotherapy. There are six covariates: treatment (1= standard, 2= test); cell type
(1= squamous, 2= small cell, 3=adeno, 4= large); Karnofsky score; months from
diagnosis; age; prior therapy (0=no, 10=yes).

We include all the covariates and all the patients in our analysis and compute the
adaptive elastic net estimates under the proportional odds model. Maximum marginal
likelihood, LASSO, adaptive LASSO, and elastic net estimates are also computed.

Table 1 summarizes the estimated coefficients estimated by the 4 approaches. The
maximum marginal likelihood estimates are in good agreement with those reported
in Lam and Leung (2001) and Lu and Zhang (2007). The LASSO selects cell type
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Table 1 Estimated coefficients for lung cancer data

Covariate MMLE LASSO ALASSO ENET AENET

Treatment 0.132 0 0 0 0

Squamous versus large 0.023 − 0.059 0 0 0

Small versus large 0.927 0.612 0.608 0.503 0.516

Adeno versus large 1.122 0.732 0.811 0.682 0.713

Karnofsky − 0.056 − 0.053 − 0.051 − 0.049 − 0.049

Month from diagnosis 0.002 0 0 0 0

Age − 0.011 0 0 0 0

Prior therapy 0.004 0 0 0 0

(squamous versus large, small versus large, and adeno versus large) and Karnofsky
score as important variables, while all other threemethods eliminate onemore variable
(squamous versus large).

We use k-fold cross-validation, a standard resampling procedure to evaluate
and compare the models in general machine learning and survival analysis. In the
cross-validation, the dataset is randomly partitioned into k blocks, which are used,
respectively, as test set in each cross-validation iteration. The remaining k − 1 blocks
are combined and used as the training set to fit themodel. Concordance index proposed
by Zheng and Heagerty (2005) is used to evaluate the performance of the models in
the cross-validation procedure. The concordance index is defined as

CI = 1 − 1

| ε |
∑

{i :δi=1}

∑
ti<t j

(
1 f (xi )< f (x j ) + 1

2
1 f (xi )= f (x j )

)
, (16)

where ε is defined as the set of all pairs (ti , t j ) with i, j = 1, . . . , n where it can
be concluded that ti ,< t j , ti ,= t j , or ti ,> t j , despite censoring; f (x) denotes the
predicted survival time of the event given covariate vector x.

The concordance index is the probability of concordance of observed and predicted
survival time and can be interpreted as the portion of all pairs of subjects whose
predicted survival times are correctly ordered among all subjects that can actually be
ordered. Values of concordance index that close to 0 mean nearly perfect prediction;
values of concordance index that close to 0.5 are signs of random predictions.

Here, we apply threefold cross-validation, the reason why we use a low number
of folds is because we need a large enough number of samples in the test set to get a
meaningful concordance index. In each iteration of the cross-validation, the 4 selection
procedures are used to build themodels and the concordance indices (CI) are calculated
using the linear predictor X testβ̂train. The CI for the cross-validation is the average of
the CIs of the 3 iterations. We run the cross-validation procedure 3 times and take the
average of concordance indices to reduce the performance error due to randomization.

The results of cross-validation are shown in Table 2; we can see that the adap-
tive elastic net has the lowest mean concordance index, meaning that it has the best
performance among the 4 methods in the cross-validation.
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Table 2 Mean concordance
indices comparison for VC data

Method LASSO ALASSO ENET AENET

Mean CI 0.363 0.352 0.327 0.305

Table 3 Characteristics of lung cancer datasets

Dataset Chip Patients Events Gene covariates

GSE4573 HG-U133-A 129 67 22,283

GSE14814 HG-U133-A 90 38 22,283

GSE31210 HG-U133-Plus2 226 35 54,675

GSE37745 HG-U133-Plus2 194 143 54,675

GSE50081 HG-U133-Plus2 181 75 54,675

Fig. 7 Kaplan–Meier estimator of survival for 5 GSE datasets

6.2 GSE data

We select 5 lung cancer data sets with genome wide gene expression measurements
and additional clinical information from Gene Expression Omnibus: GSE4573 (Beer,
2006), GSE14814 (Tsao, 2010), GSE31210 (Gotoh, 2012), GSE37745 (Micke, 2013),
and GSE50081 (Tsao, 2014). Table 3 and Fig. 7 show the characteristics of the
datasets and the Kaplan–Meier estimates of survival times, respectively. As we can
see,GSE14814,GSE50081, andGSE4573have comparable estimated survival curves,
GSE37745 has slightly lower survival times over time, andGSE31210has significantly
higher survival rate than the other 4 datasets.

In addition to the gene covariates, important clinical variables, including sex, age,
stage, and histology, are also used in the analysis. We remove all the incomplete
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Table 4 Mean concordance
indices for 5 GSE datasets

Dataset LASSO ALASSO ENET AENET

GSE4573 0.59 0.53 0.45 0.51

GSE14814 0.48 0.51 0.45 0.47

GSE31210 0.31 0.26 0.28 0.22

GSE37745 0.52 0.54 0.48 0.47

GSE50081 0.44 0.37 0.34 0.30

Mean 0.476 0.448 0.400 0.388

The bold indicates the smallest mean concordance index for the GSE
dataset

observations before we apply the model selection methods. For all the 5 datasets, we
evaluate the LASSO, adaptive LASSO, elastic net, and adaptive elastic net methods
through threefold cross-validation. The CI for the cross-validation is the average of
the CIs of the three iterations. Again, we run the cross-validation procedure 3 times
and take the average of concordance indices to reduce the performance error due to
randomization. The results are shown in Table 4.

We can see that though the 5 datasets are taken from the same field, to fit a pre-
dictive model on them is unequally difficult. This is quite obvious by comparing the
concordance indices across the 5 datasets. For datasets GSE4573, GSE14814, and
GSE37745, the concordance indices of cross-validation are around 0.5 for all model
selection procedures that we are comparing, which means that the prediction is nearly
random. Adaptive elastic net does not seem to perform better in terms of prediction
than othermethods. However, for datasets GSE31210 andGSE50081, it is much easier
to build a model to predict the survival. In these two datasets and the adaptive elastic
net method does perform better in prediction than other methods. For GSE31210, the
concordance index for adaptive elastic net method is 0.04 (15.3%) smaller than the
next best method, and for GSE50081, the concordance index is also 0.04 (11.8%)
smaller than the next best method. The mean concordance index for adaptive elastic
net, across all the 5 datasets, is 0.012 (3%) smaller than the next best approach.

7 Summary and discussion

In this paper, we have studied the application of adaptive elastic net for variable
selection problem under the proportional odds model and compared its performance
with LASSO, adaptive LASSO, and elastic net. Our simulation results show that the
adaptive elastic netmethod has superior result in terms of accuracy of variable selection
and MSE in most of the cases. The simulation also indicates that as the censoring rate
increases, all the approaches tend to have higher error rate in selection and higher
MSE, but the relative ranks of their performance do not change. Our proposed method
naturally exhibits greater complexity compared to LASSO, adaptive LASSO, and
elastic net. As a result, when conducting a comparison with those three methods, it
should be anticipated that our method will demand more computation time, with the
percentage varying across different scenarios. Nevertheless, taking into account its
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superior performance in the majority of scenarios, our method continues to be an
efficient approach. Moreover, because adaptive elastic net has the oracle properties
(Zou, 2006), the bias of its coefficient estimates tends to be zero when the number of
samples goes to infinity. For finite samples, because of the nature of shrinkage, the
adaptive elastic net estimator may have obvious bias. Therefore, in real applications,
it may be a good choice to do variable selection and estimation separately: We first
eliminate unimportant variables using the adaptive elastic net procedure, and then fit
the model using classical method such as maximummarginal likelihood estimation to
get the coefficient estimates.

Data Availability The data that support the findings of this study are openly available in R project [https://
search.r-project.org/CRAN/refmans/ncvreg/html/Lung.html] andNCBIGeneExpressionOmnibus [https://
www.ncbi.nlm.nih.gov/geo/].
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