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Abstract
Bayesian fused lasso is one of the sparse Bayesianmethods, which shrinks both regres-
sion coefficients and their successive differences simultaneously. In this paper, we
propose a Bayesian fused lasso modeling via horseshoe prior. By assuming a horse-
shoe prior on the difference of successive regression coefficients, the proposedmethod
enables us to prevent over-shrinkage of those differences. We also propose a Bayesian
nearly hexagonal operator for regression with shrinkage and equality selection with
horseshoe prior, which imposes priors on all combinations of differences of regression
coefficients. Simulation studies and an application to real data show that the proposed
method gives better performance than existing methods.

Keywords Fusion of coefficients · Hierarchical Bayesian model · Horseshoe prior ·
Markov chain Monte Carlo

1 Introduction

Recently, a wide variety of data have come to be used in statistical analysis. Especially,
the analysis of high-dimensional data, such as image data andfinancial data is taking on
added significance. To handle these data, it is important to perform variable selection
and variable fusion, which correspond to extracting relevant variables and capturing
the group structure of data, respectively. To this end, sparse regularization methods
such as lasso (Tibshirani, 1996), fused lasso (Tibshirani et al., 2005), and a hexagonal
operator for regression with shrinkage and equality selection (HORSES) (Jang et al.,
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2015) have been proposed. These methods allow us to execute variable selection and
variable fusion by the estimation of regression coefficients.

Meanwhile, many Bayesian approaches to these regularization methods, in which
priors on regression coefficients correspond to regularization terms, have also been
proposed. For example, Park and Casella (2008) proposed Bayesian lasso, which
shrinks regression coefficients by assuming that they follow a Laplace distribution.
Furthermore, Park andCasella (2008) developed aGibbs sampling using a hierarchical
expression of the Laplace distribution. Castillo et al. (2015) proposed Bayesian lasso
with a quantification of uncertainty. Kyung et al. (2010) expanded Bayesian lasso by
assuming Laplace distributions not only on regression coefficients but also on their
successive differences, which is called Bayesian fused lasso.

A Laplace prior tends to shrink its targets, such as regression coefficients and their
successive differences, too much. To overcome this problem, the Student-t prior and
the normal-exponential-gamma (NEG) distribution (Griffin and Brown, 2005), which
have heavier tails than a Laplace prior, have also been used. Song and Cheng (2020)
proposed using a Student-t prior to construct Bayesian fusion models. Shimamura
et al. (2019) proposed Bayesian fused lasso based on the hierarchical expression of
an NEG prior. In addition, a horseshoe prior (Carvalho et al., 2010) is also often
used instead of a Laplace prior. A horseshoe prior has an infinite spike at zero and a
Cauchy-like tail, which leads to simultaneous weak shrinkage on non-zero elements
and strong shrinkage on exactly zero ones. Makalic and Schmidt (2015) introduced
a linear regression model in which a horseshoe prior is assumed on the regression
coefficients and developed a simple Gibbs sampler for it. There are also many studies
for regression models with horseshoe prior (Bhattacharya et al. (2016); Johndrow et
al. (2020); Lee et al. (2021)). However, the existing methods assume a horseshoe prior
on only the regression coefficients.

In this paper, we propose Bayesian fused lasso modeling with horseshoe prior
under the framework of linear regression models. To formulate the Bayesian model,
we assume a Laplace prior on the regression coefficients and a horseshoe prior on their
successive differences. We also propose Bayesian nearly HORSES (nHORSES) with
horseshoe prior, where the horseshoe prior is assumed on every pair of differences
of regression coefficients. We develop a Gibbs sampler for the parameters by using
the hierarchical expression of the half-Cauchy prior (Wand et al., 2011) shown by
Makalic and Schmidt (2015). Through the proposal, we focus on grouping variables
which have the similar role in the prediction more flexibly than the existing methods.

We note that Banerjee (2022) proposed imposing a horseshoe prior on differ-
ences of coefficients. However, Banerjee (2022) used the model assumed in the
one-dimensional fused lasso signal approximation in Friedman et al. (2007), which
is a special case of a linear regression model. In addition, Banerjee (2022) did not
perform variable selection, unlike our proposed method.

The remainder of the paper is organized as follows. Section2 describes theBayesian
models and introduces sparse Bayesian modelings with horseshoe prior. In Sect. 3, we
propose Bayesian fused lasso and Bayesian nHORSES with horseshoe prior, and then
develop Gibbs samplings for them. Section4 presents Monte Carlo simulations and
an application to real data to compare our proposed method with existing methods.
We conclude our paper in Sect. 5.
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2 Sparse Bayesian linear regressionmodeling

In this section, we review Bayesian linear regression, Bayesian lasso, and Bayesian
fused lasso. We also describe Bayesian linear regression via horseshoe prior.

2.1 Preliminaries

Let y = (y1, y2, . . . , yn)T be an n-dimensional vector of the response variable and
X = (x1, x2, . . . , xn)T be an n × p design matrix. A linear regression model is
formulated as

y = Xβ + ε,

whereβ = (β1, β2, . . . , βp)
T is a p-dimensional regression coefficient vector and ε =

(ε1, ε2, . . . , εn)
T is an n-dimensional error vector that is distributed as Nn(0n, σ 2 In).

Here 0n is an n-dimensional vector of zeros, σ 2 is an error variance, and In is an n×n
identity matrix. Without loss of generality, we suppose that the response variable is
centered and the explanatory variable is standardized as follows:

n∑

i=1

yi = 0,
n∑

i=1

xi j = 0,
n∑

i=1

x2i j = n, ( j = 1, 2, . . . , p).

Then, the likelihood function is given by

f ( y | X;β, σ 2) =
n∏

i=1

f (yi | xi ;β, σ 2),

where

f (yi | xi ;β, σ 2) = 1√
2πσ 2

exp

{
− (yi − xTi β)2

2σ 2

}
.

2.2 Bayesian lasso

Tibshirani (1996) proposed lasso, which performs parameter estimation and variable
selection simultaneously in terms of frequentist. He also mentioned that the lasso
solution is identical to a posterior mode obtained by imposing the Laplace distribution
on the parameter vector β as its prior.

Based on the perspective of Tibshirani (1996), Park and Casella (2008) established
a Bayesian estimation for lasso. The estimation is called Bayesian lasso. Bayesian
lasso considers a conditional Laplace prior in the form:

π(β | σ 2) = (σ 2)
− p

2

p∏

j=1

Laplace

(
β j√
σ 2

∣∣∣∣ 0, λ
)

=
p∏

j=1

λ

2
√

σ 2
exp

(
− λ√

σ 2
|β j |

)
,

(1)

123



708 Japanese Journal of Statistics and Data Science (2023) 6:705–727

where λ (> 0) is a hyper-parameter. Conditioning β on σ 2 makes the posterior distri-
bution unimodal (for example, see Appendix A in Park and Casella (2008)).

The prior distribution in (1) can be rewritten as

λ

2
√

σ 2
exp

(
− λ√

σ 2
|β|
)

=
∫ ∞

0

1√
2πσ 2τ 2

exp

(
− β2

2σ 2τ 2

)
λ2

2
exp

(
−λ2

2
τ 2
)
dτ 2

by using a scale mixture of normals (Andrews and Mallows, 1974). This equation
means that the Laplace distribution is represented as the convolution of the following
two distributions:

π(β | σ 2, τ 21 , . . . , τ 2p) =
p∏

j=1

1√
2πσ 2τ 2j

exp

(
− β2

j

2σ 2τ 2j

)
,

π(τ 21 , . . . , τ 2p) =
p∏

j=1

λ2

2
exp

(
−λ2

2
τ 2j

)
.

For the parameter σ 2, the improper prior distribution π(σ 2) ∝ 1/σ 2 or any inverse
gamma distribution for σ 2 is assumed. Based on the likelihood and the prior distribu-
tions, a Gibbs sampling for Bayesian lasso is developed. We omit the Gibbs samplers.
For details, we refer the reader to Park and Casella (2008).

2.3 Bayesian fused lasso

The fused lasso (Tibshirani et al., 2005) encourages sparsity in both the coefficients and
their successive differences. Kyung et al. (2010) proposed Bayesian fused lasso as a
Bayesian counterpart to fused lasso. Bayesian fused lasso assumes a prior distribution
for β of the following form:

π(β | σ 2) ∝ (σ 2)−
2p−1
2 exp

⎛

⎝−λ1

σ

p∑

j=1

|β j | − λ2

σ

p∑

j=2

|β j − β j−1|
⎞

⎠ , (2)

where λ1 and λ2 are positive hyper-parameters. Similar to Bayesian lasso, a scale
mixture of normals is applied. Then the prior distribution (2) is transformed into

π(β | σ 2) ∝ (σ 2)−
2p−1
2

p∏

j=1

∫
1√
2πτ 2j

exp

(
− β2

j

2σ 2τ 2j

)
λ21

2
exp

(
−λ21

2
τ 2j

)
dτ 2j

×
p∏

j=2

∫
1√
2πτ̃ 2j

exp

{
− (β j − β j−1)

2

2σ 2τ̃ 2j

}
λ22

2
exp

(
−λ22

2
τ̃ 2j

)
d τ̃ 2j .

Using this hierarchical relationship, Kyung et al. (2010) developed a Gibbs sampling
for Bayesian fused lasso.
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To perform the fully Bayesian estimation, Kyung et al. (2010) further assumed the
gamma distribution for the hyper-parameters λ1 and λ2 as

λ21 ∼ Ga(r1, δ1),

λ22 ∼ Ga(r2, δ2),

where r1, r2, δ1, and δ2 are positive hyper-parameters. Here, the probability density
function of the gamma distribution is given by

Ga(x | m, c) = cm

	(m)
xm−1 exp(−cx), (x ≥ 0),

where m is a shape parameter, c is a rate parameter, both taking positive values, and
	(·) is the gamma function. In Kyung et al. (2010), r1 = 1, r2 = 1, δ1 = 10, and
δ2 = 10 are used because the gamma distribution is relatively flat with these parameter
values. We omit the full conditional posteriors and the Gibbs samplers. For details,
we refer the reader to Kyung et al. (2010).

Next, we explain HORSES by Jang et al. (2015). HORSES was proposed as an
extension of fused lasso; HORSES imposes an L1 penalty on all combinations of
differences of regression coefficients. In the Bayesian framework, this corresponds to
assuming a Laplace prior of the form:

π(β | σ 2) ∝ (σ 2)−
p2+p
4

p∏

j=1

Laplace

(
β j√
σ 2

∣∣∣∣ 0, λ1
)

×
p∏

j>k

Laplace

(
β j − βk√

σ 2

∣∣∣∣ 0, λ2
)

for regression coefficients β. Note that HORSES is also known as generalized fused
lasso (She, 2010).

The Laplace distribution shrinks all of the regression coefficients to the same extent.
Shimamura et al. (2019) proposed Bayesian fused lasso and Bayesian nHORSES with
NEG prior. This method assumes a Laplace prior on the regression coefficients and an
NEG prior on their differences. Because an NEG prior has two properties, a spike at
zero and extreme flatness of its tail, the method with an NEG prior has the advantage
that exactly identical regression coefficients tend to be estimated as identical, while
different regression coefficients tend to be estimated as different.

2.4 Bayesian linear regressionmodel with horseshoe prior

Makalic and Schmidt (2015) proposed the followingBayesian linear regressionmodel:
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y | X,β, σ 2 ∼ Nn(Xβ, σ 2 In),

β j | λ2j , τ
2, σ 2 ∼ N(0, λ2jτ

2σ 2),

σ 2 ∼ σ−2dσ 2,

λ j ∼ C+(0, 1),

τ ∼ C+(0, 1).

(3)

Here, C+(0, a) (a > 0) is a half-Cauchy distribution, which has the following density
function:

p(x) = 2a

π
(
x2 + a2

) , (x > 0).

The hierarchies of priors in (3) represent the horseshoe prior proposed in Carvalho
et al. (2010). In the model with horseshoe prior, the half-Cauchy prior distribution
is assumed on hyper-parameters λ j and τ . Hyper-parameter λ j adjusts the level of
local shrinkage for regression coefficient β j , while hyper-parameter τ determines the
degree of global shrinkage for all regression coefficients. Owing to having these two
types of hyper-parameters, the horseshoe prior simultaneously enjoys a heavy tail
and infinitely tall spike at zero. These properties induce exactly identical regression
coefficients to tend to be estimated as identical, while different regression coefficients
tend to be estimated as different.

To develop a Gibbs sampling for the parameters, Makalic and Schmidt (2015) used
a hierarchical expression of the half-Cauchy distribution (Wand et al., 2011), which
means that x follows C+(0, A) when x2 and a have the following priors:

x2 | a ∼ IG

(
1

2
,
1

a

)
, a ∼ IG

(
1

2
,
1

A2

)
, (4)

where A is a positive constant. Here, IG(x | ν0, η0) is the inverse gamma distribution
whose probability density function is given by

IG(x | ν0, η0) = η
ν0
0

	(ν0)
x−ν0−1 exp

(
−η0

x

)
, (x > 0),

where ν0, η0 (> 0) are hyper-parameters. Using (4), the priors of the model (3) can
be expressed as follows:

y | X,β, σ 2 ∼ Nn(Xβ, σ 2 In),

β j | λ2j , τ
2, σ 2 ∼ N(0, λ2jτ

2σ 2),

σ 2 ∼ σ−2dσ 2,

λ2j | ν j ∼ IG

(
1

2
,
1

ν j

)
,

τ 2 | ξ ∼ IG

(
1

2
,
1

ξ

)
,

ν1, . . . , νp, ξ ∼ IG

(
1

2
, 1

)
.
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We omit the full conditional posteriors and the Gibbs samplers. For details, we refer
the reader to Makalic and Schmidt (2015) and Nalenz and Villani (2018).

3 Proposedmethod

In this section, we propose the Bayesian linear regression modeling, which assumes
the horseshoe prior on successive differences of regression coefficients.We also extend
this approach to HORSES.

3.1 Bayesian fused lasso with horseshoe prior

We propose assuming a Laplace prior on regression coefficients and a horseshoe prior
on their successive differences as follows:

π(β | σ 2) ∝ (σ 2)−
p
2

p∏

j=1

Laplace

(
β j√
σ 2

∣∣∣∣ λ̃1
)

×
∫ ⎡

⎣
p∏

j=2

∫
1√

2πλ2j τ̃
2σ 2

exp

{
− (β j − β j−1)

2

2λ2j τ̃
2σ 2

}
2

π(1 + λ2j )
dλ2j

⎤

⎦ 2

π(1 + τ̃ 2)
d τ̃ 2.

(5)

By assuming the prior (5), small differences between successive regression coefficients
are largely shrunk, while large differences are not much shrunk. Note that we assumed
not a horseshoe prior but a Laplace prior on regression coefficients. It is because the
MCMC chain for a model only with horseshoe prior does not converge in almost all
cases. This problem might be related to the geometric ergodicity of MCMC chain.
Therefore, we adopt the combination of Laplace prior and horseshoe prior to obtain a
stable estimation.

Using a scale mixture of normals (Andrews and Mallows, 1974), the prior (5) can
be expressed as follows:

π(β | σ 2) ∝
∫

. . .

∫
(σ 2)−

2p−1
2 (τ̃ 2)−

p−1
2 π(τ̃ 2 | ξ)

×π(ξ)

p∏

j=1

(τ 2j )
− 1

2

p∏

j=2

(λ2j )
− 1

2 exp

(
− 1

2σ 2βT B−1β

)

×
p∏

j=1

π(τ 2j )

p∏

j=2

π(λ2j | ν j )

p∏

j=2

π(ν j )d τ̃ 2dξ

p∏

j=1

dτ 2j

p∏

j=2

dλ2j

p∏

j=2

dν j . (6)

123



712 Japanese Journal of Statistics and Data Science (2023) 6:705–727

Here, the inverse of matrix B is represented by

B−1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
τ 21

+ 1
λ22 τ̃

2 − 1
λ22 τ̃

2 0 . . . 0 0

− 1
λ22 τ̃

2
1
τ 22

+ 1
λ22 τ̃

2 + 1
λ23 τ̃

2 − 1
λ23 τ̃

2 . . . 0 0

0 − 1
λ23 τ̃

2
1
τ 23

+ 1
λ23 τ̃

2 + 1
λ24 τ̃

2 . . . 0 0

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

0 0 0 . . . 1
τ 2p−1

+ 1
λ2p−1 τ̃

2 + 1
λ2p τ̃

2 − 1
λ2p τ̃

2

0 0 0 . . . − 1
λ2p τ̃

2
1
τ 2p

+ 1
λ2p τ̃

2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The detailed calculation of (6) is given in Appendix A. Therefore, the priors on
β, τ 21 , . . . , τ 2p, τ̃

2, λ22, . . . , λ
2
p, ν2, . . . , νp, ξ are given by

β | σ 2, τ 21 , . . . , τ 2p, τ̃
2, λ22, . . . , λ

2
p ∼ Np(0p, σ 2B),

τ 2j ∼ EXP

(
λ̃21

2

)
,

τ̃ 2 | ξ ∼ IG

(
1

2
,
1

ξ

)
,

λ2j | ν j ∼ IG

(
1

2
,
1

ν j

)
, ( j = 2, . . . , p),

ξ, ν j ∼ IG

(
1

2
, 1

)
, ( j = 2, . . . , p),

where EXP(x | d) is an exponential prior with density function

EXP(x | d) = d exp(−dx), (x ≥ 0).

Here d is positive. In addition, we assume the priors on σ 2 and λ̃21 as

σ 2 ∼ IG
(ν0

2
,
η0

2

)
,

λ̃21 ∼ Ga(r1, δ1).
(7)

By using the likelihood and the priors for the parameters, we can obtain the full
conditional distributions as follows:

β | y, X, σ 2, τ 21 , . . . , τ 2p, τ̃
2, λ22, . . . , λ

2
p ∼ Np(A−1XT y, σ 2A−1),

A = XT X + B−1,

σ 2 | y, X,β, τ 21 , . . . , τ 2p, τ̃
2, λ22, . . . , λ

2
p ∼ IG

(n1
2

,
s1
2

)
,

n1 = n + 2p − 1 + ν0,

s1 = ( y − Xβ)T ( y − Xβ) + βT B−1β + η0,
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1

τ 2j
| β j , σ

2, λ̃21 ∼ IGauss

⎛

⎝

√√√√σ 2λ̃21

β2
j

, λ̃21

⎞

⎠ ,

λ̃21 | τ 21 , . . . , τ 2p ∼ Ga

⎛

⎝p + r1,
1

2

p∑

j=1

τ 2j + δ1

⎞

⎠ ,

τ̃ 2 | β1, . . . , βp, σ
2, λ22, . . . , λ

2
p, ξ ∼ IG

⎛

⎝ p

2
,

1

2σ 2

p∑

j=2

(β j − β j−1)
2

λ2j
+ 1

ξ

⎞

⎠ ,

λ2j | β j , β j−1, σ
2, τ̃ 2, ν j ∼ IG

(
1,

(β j − β j−1)
2

2σ 2τ̃ 2
+ 1

ν j

)
,

ν j | λ2j ∼ IG

(
1,

1

λ2j
+ 1

)
,

ξ | τ̃ 2 ∼ IG

(
1,

1

τ̃ 2
+ 1

)
.

By using the full conditional distributions, we can perform the Gibbs sampling.

3.2 Bayesian nHORSES with horseshoe prior

Next, we propose assuming a Laplace prior on the regression coefficients and a horse-
shoe prior on all combinations of their differences as follows:

π(β | σ 2, τ̃ 2) ∝ (σ 2)−
p
2

p∏

j=1

Laplace

(
β j√
σ 2

∣∣∣∣ λ̃1
)

×
∏

j>k

∫
1√

2πλ2j,k τ̃
2σ 2

exp

{
− (β j − βk)

2

2λ2j,k τ̃
2σ 2

}
2

π(1 + λ2j,k)

2

π(1 + τ̃ 2)
dλ2j,k .

(8)

Therefore, the priors on β, τ 21 , . . . , τ 2p, τ̃
2, λ21,2, . . . , λ

2
p−1,p, ν1,2, . . . , νp−1,p , and ξ

are given by

β | σ 2, τ 21 , . . . , τ 2p, τ̃
2, λ21,2, . . . , λ

2
p−1,p ∼ Np(0p, σ 2B),

τ 2j ∼ EXP

(
λ̃21

2

)
,

λ2j,k | ν j,k ∼ IG

(
1

2
,

1

ν j,k

)
,

ν j,k ∼ IG

(
1

2
, 1

)
,
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where λ2j,k = λ2k, j , ν
2
j,k = ν2k, j and the (i, j)-element of B−1 is represented as

B−1
(i, j) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1

τ 2j
+ 1

τ̃ 2

∑

l �=i

1

λ2i,l
, (i = j),

− 1

λ2i, j
, (i �= j).

By assuming an inverse gamma prior on σ 2 and a gamma prior on λ̃21 in (7), the
full conditional distributions are represented as

β | y, X, σ 2, τ 21 , . . . , τ 2p, τ̃
2, λ21,2, . . . , λ

2
p−1,p ∼ Np(A−1XT y, σ 2A−1),

A =XT X + B−1,

σ 2 | y, X,β, τ 21 , . . . , τ 2p, τ̃
2, λ21,2, . . . , λ

2
p−1,p ∼ IG

(n1
2

,
s1
2

)
,

n1 = n + p(p + 1)/2 + ν0,

s1 = ( y − Xβ)T ( y − Xβ) + βT B−1β + η0,

1

τ 2j
| β j , σ

2, λ̃21 ∼ IGauss

⎛

⎝

√√√√σ 2λ̃21

β2
j

, λ̃21

⎞

⎠ ,

λ̃21 | τ 21 , . . . , τ 2p ∼ Ga

⎛

⎝p + r1,
1

2

p∑

j=1

τ 2j + δ1

⎞

⎠ ,

λ2j,k | β j , βk , σ
2, τ̃ 2, ν j,k ∼ IG

(
1,

(β j − βk)
2

2σ 2τ̃ 2
+ 1

ν j,k

)
,

ν j,k | λ2j,k ∼ IG

(
1,

1

λ2j,k
+ 1

)
.

By using the full conditional distributions, we can perform the Gibbs sampling for
Bayesian nHORSES.

Note that the hyper-parameter τ̃ 2 in the prior (8) is treated as a tuning parameter.
The value of the tuning parameter is selected by any model selection criterion such as
the widely applicable information criterion (WAIC) (Watanabe, 2010).

4 Numerical studies

In this section, we compare the proposedmethodwith existingmethods throughMonte
Carlo simulations and show its effectiveness. In addition, we apply the proposed
method to the Appalachian Mountains Soil Data (Bondell and Reich (2008); Jang et
al. (2015)).
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4.1 Monte carlo simulation

We conducted Monte Carlo simulations with artificial data generated from the true
model:

y = Xβ∗ + ε,

where β∗ is the p-dimensional true coefficient vector and the error vector ε is dis-
tributed normally as Nn(0n, σ 2 In). In addition, xi (i = 1, 2, . . . , n) is distributed
according to the multivariate normal distribution Np(0p,Σ).

We considered the following settings:

Case 1: β∗ = β∗
1 or β∗

2, Σi i = 1, Σi j = ρ, (i �= j),
Case 2: β∗ = β∗

1 or β∗
2, Σi i = 1, Σi j = 0.5|i− j |, (i �= j),

Case 3: β∗ = β∗
3, Σi i = 1, Σi j = 0.5, (i �= j),

Case 4: β∗ = β∗
3, Σi i = 1, Σi j = 0.5|i− j |, (i �= j),

Case 5: β∗ = β∗
4, Σi i = 1, Σi j = ρ, (i �= j),

Case 6: β∗ = β∗
5, Σi i = 1, Σi j = ρ, (i �= j),

where Σi j is the (i, j)-th element of Σ . For each case, we considered σ =
0.5, 1.5. We simulated data with β∗

1 = (0.0T5 , 1.0T5 , 0.0T5 , 1.0T5 )T and β∗
2 =

(0.0T5 , 2.0T5 , 0.0T5 , 2.0T5 )T for Cases 1 and 2. In addition, we considered β∗
3 =

(3.0T5 ,−1.5T5 , 1.0T5 , 2.0T5 , 0.0T30)
T , β∗

4 = (3.0T5 ,−1.5T5 , 1.0T5 , 2.0T5 , 0.0T130)
T and

β∗
5 = (3.0T5 ,−1.5T5 , 1.0T5 , 2.0T5 , 0.0T980)

T for Cases 3, 4, 5, and 6. In Case 1, we
considered ρ = 0.5, 0.9. In Cases 5 and 6, we considered ρ = 0.5, 0.5|i− j |. We
considered n = 50, p = 20 for Cases 1 and 2, n = 30, 50, p = 50 for Cases 3 and
4, n = 50, p = 150 for Case 5, and n = 200, p = 1000 for Case 6. Therefore,
Cases 1 and 2 correspond to n > p cases, whereas Cases 3, 4, 5, and 6 correspond to
n ≤ p cases. For Cases 5 and 6, we used the fast sampling method from multivariate
normal distribution based on Woodbury matrix identity (Hager (1989); Bhattacharya
et al. (2016)). We simulated 100 datasets for each case. Cases 1 and 2 are according to
example 1 in Shen and Huang (2010), whereas Cases 3, 4, 5, and 6 are, respectively,
according to examples 2 and 3 in the same reference. For each Case 1 to Case 4, the
Gibbs sampling was run with 5000 iterations, where we discarded the first 2000 itera-
tions as burn-in. For Cases 5 and 6, the Gibbs sampling was run with 10,000 iterations
with the first 7000 samples discarded as burn-in for BFL and BFNEG. For BFH, the
Gibbs sampler was run in the same way except for the situation with ρ = 0.5|i− j | and
σ = 0.5. In this situation, the Gibbs sampling was run with 13,000 iterations with the
first 10,000 as burn-in.

We checked the convergence ofMCMC chains by using Gelman–Rubin diagnostic.
When theMCMC chain converges, the potential scale reduction factor R̂ (Gelman and
Rubin (1992); Brooks and Gelman (1998)) becomes close to 1.0. The factor R̂ was
computed by using its relationship with the effective sample size (Vats and Knudson,
2021). We used the package stableGR of the software R to compute R̂. The package
can be obtained from https://cran.r-project.org/web/packages/stableGR/index.html.
As Vehtari et al. (2021) recommended, we checked whether R̂ is below 1.01 or not.
The maximum values of R̂ in MCMC samples for 100 datasets for each regression
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coefficients were lower than 1.01 (see Table S.1 in the supplementary material, for
example.). Thus, we considered the MCMC chains are converged.

We compared Bayesian fused lasso with horseshoe prior (BFH) to Bayesian fused
lasso (BFL) and Bayesian fused lasso with NEG prior (BFNEG). For BFNEG, the
shape parameter in the gamma distribution in the NEG prior was set to 0.5 according
to the simulation study in Griffin and Brown (2011), while the rate parameter was
selected by WAIC in Cases 1 to 5. For Case 6, the rate parameter was set to 1.0,
because it was too time-consuming to finish. The values of WAIC for the selected
model are summarized in Table S.3 in the supplementary material.

To evaluate the accuracy of the estimation of regression coefficients, we used mean
squared error (MSE):

MSE = 1

100

100∑

k=1

(β̂
(k) − β∗)T (β̂

(k) − β∗),

where β̂
(k) = (β̂

(k)
1 , . . . , β̂

(k)
p )T is the regression coefficient vector estimated from the

k-th dataset. We also computed MSEdiff , expressed as

MSEdiff = 1

100

100∑

k=1

(β̂
(k)
diff − β∗

diff)
T (β̂

(k)
diff − β∗

diff),

where β∗
diff is a vector of the non-zero differences of the true regression coefficients

and β̂
(k)
diff is the estimated value of β∗

diff from the k-th dataset. MSEdiff is an index to
assess how close the differences of estimated regression coefficients which are not
zero are to the true differences. For example, regression coefficients for Case 1 are
given by β∗ = (0.0T5 , 2.0T5 , 0.0T5 , 2.0T5 )T and the non-zero successive differences
are between the 5th and 6th, 10th and 11th, and 15th and 16th elements of β∗. Then,
MSEdiff is calculated as follows:

MSEdiff = 1

100

100∑

k=1

[{
(β̂

(k)
6 − β̂

(k)
5 ) − (β∗

6 − β∗
5 )
}2

+
{
(β̂

(k)
11 − β̂

(k)
10 ) − (β∗

11 − β∗
10)
}2 +

{
(β̂

(k)
16 − β̂

(k)
15 ) − (β∗

16 − β∗
15)
}2]

.

In addition, we computed prediction squared error

PSE = 1

100

100∑

k=1

(β̂
(k) − β∗)TΣ(β̂

(k) − β∗)

to evaluate the accuracy of prediction.
The results are summarized in Tables 1, 2, 3, 4, 5, 6, and 7. For Cases 1 to 5,

the proposed method BFH shows the smallest MSEs and PSEs in all situations. This
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Table 1 MSE, MSEdiff , and PSE for Case 1 and ρ = 0.5

σ = 0.5 σ = 1.5

MSE MSEdiff PSE MSE MSEdiff PSE
(sd) (sd) (sd) (sd) (sd) (sd)

β∗
1 BFL 0.298 0.110 0.377 1.682 0.612 1.135

(0.120) (0.084) (0.316) (0.671) (0.462) (0.558)

BFNEG 0.229 0.095 0.341 1.284 0.604 0.932

(0.112) (0.073) (0.317) (0.535) (0.403) (0.518)

BFH 0.169 0.073 0.310 0.990 0.684 0.778

(0.099) (0.057) (0.313) (0.520) (0.434) (0.490)

β∗
2 BFL 0.632 0.217 1.199 2.107 0.802 2.009

(0.318) (0.171) (1.210) (0.819) (0.618) (1.380)

BFNEG 0.531 0.187 1.145 1.620 0.758 1.759

(0.321) (0.154) (1.211) (0.730) (0.574) (1.380)

BFH 0.459 0.165 1.107 1.134 0.602 1.504

(0.310) (0.139) (1.207) (0.627) (0.488) (1.343)

Bold font indicates smallest value amongBFL, BFNEG, and BFH. Figures in parentheses give the estimated
standard deviation

Table 2 MSE, MSEdiff , and PSE for Case 1 and ρ = 0.9

σ = 0.5 σ = 1.5

MSE MSEdiff PSE MSE MSEdiff PSE
(sd) (sd) (sd) (sd) (sd) (sd)

β∗
1 BFL 0.835 0.386 1.042 4.636 1.573 1.467

(0.332) (0.256) (1.285) (1.969) (1.070) (1.405)

BFNEG 0.673 0.415 1.027 3.366 1.452 1.342

(0.321) (0.273) (1.285) (1.656) (0.751) (1.407)

*BFH 0.594 0.407 1.019 3.003 1.936 1.311

(0.322) (0.288) (1.286) (1.118) (0.587) (1.406)

β∗
2 BFL 1.277 0.536 3.950 6.273 2.692 4.490

(0.639) (0.370) (5.092) (2.509) (1.712) (5.216)

BFNEG 0.947 0.403 3.917 5.090 3.041 4.376

(0.623) (0.301) (5.094) (2.257) (1.676) (5.216)

BFH 0.826 0.344 3.904 4.917 3.620 4.360

(0.607) (0.263) (5.096) (2.402) (1.963) (5.217)

Bold font indicates smallest value amongBFL, BFNEG, and BFH. Figures in parentheses give the estimated
standard deviation
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Table 3 MSE, MSEdiff , and PSE for Case 2

σ = 0.5 σ = 1.5

MSE MSEdiff PSE MSE MSEdiff PSE
(sd) (sd) (sd) (sd) (sd) (sd)

β∗
1 BFL 0.246 0.113 0.232 1.286 0.616 1.023

(0.102) (0.098) (0.116) (0.535) (0.479) (0.418)

BFNEG 0.182 0.091 0.199 0.918 0.557 0.829

(0.094) (0.085) (0.115) (0.396) (0.386) (0.357)

BFH 0.127 0.063 0.166 0.577 0.469 0.620

(0.077) (0.069) (0.107) (0.304) (0.334) (0.317)

β∗
2 BFL 0.555 0.219 0.610 1.675 0.824 1.446

(0.258) (0.197) (0.362) (0.691) (0.688) (0.640)

BFNEG 0.457 0.182 0.560 1.222 0.717 1.210

(0.253) (0.174) (0.363) (0.604) (0.616) (0.625)

BFH 0.394 0.155 0.523 0.766 0.473 0.931

(0.240) (0.159) (0.357) (0.457) (0.495) (0.548)

Bold font indicates smallest value amongBFL, BFNEG, and BFH. Figures in parentheses give the estimated
standard deviation

Table 4 MSE, MSEdiff , and PSE for Case 3

σ = 0.5 σ = 1.5

MSE MSEdiff PSE MSE MSEdiff PSE
(sd) (sd) (sd) (sd) (sd) (sd)

n = 30 BFL 4.412 2.411 3.988 13.605 5.228 8.672

(2.513) (2.250) (3.270) (6.302) (3.857) (4.509)

BFNEG 2.685 1.112 3.145 12.804 4.591 8.266

(1.444) (1.446) (3.122) (6.522) (3.982) (4.561)

BFH 1.800 0.868 2.683 6.936 3.429 5.290

(1.142) (1.040) (3.010) (4.487) (3.599) (3.668)

n = 50 BFL 1.897 0.522 1.978 8.840 2.152 5.494

(0.630) (0.423) (1.510) (3.237) (1.563) (2.075)

BFNEG 1.972 0.478 2.019 10.454 2.270 6.318

(0.620) (0.394) (1.496) (4.260) (1.699) (2.402)

BFH 0.836 0.301 1.429 2.397 1.076 2.234

(0.475) (0.290) (1.507) (1.205) (0.759) (1.535)

Bold font indicates smallest value amongBFL, BFNEG, and BFH. Figures in parentheses give the estimated
standard deviation
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Table 5 MSE, MSEdiff , and PSE for Case 4

σ = 0.5 σ = 1.5

MSE MSEdiff PSE MSE MSEdiff PSE
(sd) (sd) (sd) (sd) (sd) (sd)

n = 30 BFL 2.716 1.873 3.159 8.483 4.430 8.965

(1.110) (1.432) (1.375) (3.569) (3.279) (4.058)

BFNEG 1.921 0.869 2.423 8.464 4.117 8.601

(0.799) (0.818) (1.010) (4.101) (3.942) (3.775)

BFH 1.274 0.604 1.853 4.007 2.563 4.657

(0.627) (0.528) (0.884) (2.991) (3.360) (2.439)

n = 50 BFL 1.530 0.482 1.587 6.366 2.097 5.340

(0.531) (0.373) (0.662) (2.595) (1.599) (1.966)

BFNEG 1.613 0.464 1.638 7.737 2.304 6.186

(0.544) (0.371) (0.666) (3.476) (1.856) (2.508)

BFH 0.677 0.229 1.012 1.280 0.660 1.808

(0.345) (0.195) (0.559) (0.752) (0.613) (0.881)

Bold font indicates smallest value amongBFL, BFNEG, and BFH. Figures in parentheses give the estimated
standard deviation

Table 6 MSE, MSEdiff , and PSE for Case 5

σ = 0.5 σ = 1.5

MSE MSEdiff PSE MSE MSEdiff PSE
(sd) (sd) (sd) (sd) (sd) (sd)

ρ = 0.5 BFL 3.315 1.869 2.535 10.221 4.653 6.072

(1.704) (1.111) (1.609) (4.065) (2.528) (2.408)

BFNEG 1.335 0.377 1.534 7.739 2.221 4.830

(0.530) (0.325) (1.377) (3.202) (1.899) (2.104)

BFH 0.889 0.272 1.347 6.926 1.957 4.437

(0.544) (0.254) (1.421) (3.341) (1.759) (2.191)

ρ = 0.5|i− j | BFL 2.038 1.791 2.679 5.257 3.915 6.939

(0.870) (0.976) (1.273) (1.979) (2.253) (2.750)

BFNEG 0.997 0.369 1.495 4.191 1.795 5.600

(0.416) (0.324) (0.669) (1.849) (1.742) (2.154)

BFH 0.788 0.276 1.176 4.083 1.664 5.400

(0.423) (0.239) (0.642) (2.000) (1.651) (2.271)

Bold font indicates smallest value amongBFL, BFNEG, and BFH. Figures in parentheses give the estimated
standard deviation
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Table 7 MSE, MSEdiff , and PSE for Case 6

σ = 0.5 σ = 1.5

MSE MSEdiff PSE MSE MSEdiff PSE
(sd) (sd) (sd) (sd) (sd) (sd)

ρ = 0.5 BFL 0.536 0.209 0.527 2.734 0.771 1.648

(0.207) (0.144) (0.507) (0.486) (0.391) (0.567)

BFNEG 0.468 0.095 0.492 3.410 0.399 1.990

(0.169) (0.087) (0.514) (0.556) (0.282) (0.601)

BFH 0.605 0.092 0.562 4.461 0.417 2.516

(0.169) (0.081) (0.507) (0.744) (0.310) (0.648)

ρ = 0.5|i− j | BFL 0.337 0.213 0.517 1.426 0.669 2.334

(0.093) (0.102) (0.142) (0.254) (0.330) (0.358)

BFNEG 0.288 0.077 0.449 1.553 0.322 2.362

(0.088) (0.059) (0.121) (0.316) (0.250) (0.355)

BFH 0.369 0.080 0.524 2.161 0.338 2.919

(0.091) (0.061) (0.123) (0.423) (0.283) (0.441)

Bold font indicates smallest value amongBFL, BFNEG, and BFH. Figures in parentheses give the estimated
standard deviation

indicates that BFH outperformed othermethodswhen n > p and but alsowhen n ≤ p.
In addition, BFH gives smaller MSEdiff s than BFL in almost all situations. The reason
is why BFH does not shrink non-zero differences of regression coefficients too much
compared to BFL. Furthermore, BFH gives smaller values of MSEdiff in 21 situations,
out of the 24 situations, in comparison to BFNEG. These results show that BFH gives
a closer estimation to the true regression coefficients. For Case 6, BFNEG provides
smaller MSEs and PSEs than BFH and is competitive with BFH in terms of MSEdiff s.
Similar to BFNEG, BFL gives smaller MSEs and PSEs than BFH. However, BFH
outperforms BFL in terms of MSEdiff s in all situations.

We next conducted simulations for Bayesian HORSES methods. The following
settings were considered:
Case 7: β∗ = (3.0,−1.5, 1.0, 2.0, 0.0T4 , 3.0,−1.5, 1.0, 2.0, 0.0T4 )T ,

Σi i = 1, Σi j =
{
0.7 (βi �= 0 and β j �= 0, βi = 0 and β j = 0)

0.2 otherwise
(i �= j),

Case 8: β∗ = (3.0, 0.0T2 ,−1.5, 0.0T2 , 3.0, 0.0T2 ,−1.5)T ,

Σi i = 1, Σi j =
{
0.7 (βi �= 0 and β j �= 0)

0 otherwise
(i �= j),

Case 7 means that variables with non-zero coefficients are highly correlated; this is
true of those with zero coefficients, while Case 8 does that variables with non-zero
coefficients are highly correlated. For each case, we considered σ = 0.5, 1.5. The
sample size and the number of parameters were, respectively, set by n = 40, 80,
p = 16 for Case 7 and n = 30, 50, p = 10 for Case 8. We compared Bayesian
nHORSES with horseshoe prior (BHH) to Bayesian HORSES (BH) and Bayesian
nHORSES with NEG prior (BHNEG). We chose the hyper-parameters λ22 for BH,
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Table 8 MSE and PSE for Case
7

σ = 0.5 σ = 1.5

MSE PSE MSE PSE
(sd) (sd) (sd) (sd)

n = 40 BH 0.995 0.879 3.964 1.891

(0.626) (0.865) (1.827) (1.162)

BHNEG 0.910 0.844 4.217 1.955

(0.513) (0.836) (1.867) (1.141)

BHH 0.815 0.808 4.075 1.916

(0.531) (0.839) (2.086) (1.199)

n = 80 BH 0.386 0.389 1.571 0.812

(0.234) (0.355) (0.698) (0.435)

BHNEG 0.395 0.390 1.641 0.831

(0.224) (0.353) (0.711) (0.431)

BHH 0.348 0.376 1.465 0.780

(0.225) (0.356) (0.786) (0.455)

Bold font indicates smallest value among BH, BHNEG, and BHH.
Figures in parentheses give the estimated standard deviation

τ̃ 2 for BHH and the rate parameter in the gamma distribution in the NEG prior for
BHNEG by WAIC. The values of WAIC for the selected model are summarized in
Table S.4 in the supplementary material. We set the shape parameter in the gamma
distribution in the NEG prior for BHNEG as 0.5.

We measured the accuracy of the estimation of regression coefficients by MSE
and performance for prediction by PSE. We only considered MSE and PSE for the
Bayesian HORSES methods, because the structure of the coefficient vector β∗ is too
complicated to assess the performance of capturing groups of variables by an index
such as MSEdiff .

The results in Cases 7 and 8 are summarized in Tables 8 and 9, respectively. Table 8
shows that BHH gives smaller MSEs and PSEs in many situations. BH achieves the
smallest MSE and PSE in n = 40 and σ = 1.5 and PSE in n = 80 and σ = 0.5.
Table 9 shows that BHH outperforms BH and BHNEG in all situations in terms of
MSEs and PSEs. From these results, we believe that BHH might be a useful method
for analyzing the complex structure treated by HORSES.

4.2 Application

WeappliedBayesian nHORSESwith horseshoe prior in Section 3.2 to theAppalachian
Mountains Soil Data, which was analyzed in Bondell and Reich (2008) and Jang et al.
(2015). This dataset is available from https://blogs.unimelb.edu.au/howard-bondell/#
tab25 and was used for showing the relationship between soil characteristics and
rich cove forest diversity. The dataset was collected at twenty 500 m2 plots in the
Appalachian Mountains. Forest diversity, which is represented as the number of dif-
ferent plant species, is used for a response variable and 15 soil characteristics in 20
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Table 9 MSE and PSE for Case
8

σ = 0.5 σ = 1.5

MSE PSE MSE PSE
(sd) (sd) (sd) (sd)

n = 30 BH 0.906 0.485 4.029 1.752

(0.829) (0.406) (2.530) (0.945)

BHNEG 0.520 0.355 2.448 1.293

(0.500) (0.338) (1.619) (0.719)

BHH 0.489 0.338 2.363 1.221

(0.472) (0.332) (1.603) (0.706)

n = 50 BH 0.456 0.263 2.178 0.976

(0.387) (0.257) (1.469) (0.588)

BHNEG 0.293 0.214 1.281 0.724

(0.250) (0.248) (0.924) (0.483)

BHH 0.279 0.204 1.192 0.654

(0.248) (0.247) (0.947) (0.483)

Bold font indicates smallest value among BH, BHNEG, and BHH.
Figures in parentheses give the estimated standard deviation

plots are used as explanatory variables. The data are the average of five equally spaced
measurements in each plot. We standardized the dataset before the analysis.

We compared BHH to BH and BHNEG. For this application, we chose the hyper-
parameters λ22 for BH from five candidates between 10−4 and 10−2, τ̃ 2 for BHH from
five candidates between 104 and 106, and the rate parameter in the gamma distribution
in the NEG prior for BHNEG from five candidates between 0.1 and 1. The values of
the hyper-parameters were selected by WAIC. The values of WAIC for the selected
model are summarized in Table S.5 in the supplementary material. We set the shape
parameter in the gamma distribution in the NEG prior for BHNEG as 0.5.

We executed a leave-one-out cross-validation to assess the performance of the
models. In each estimation, the Gibbs sampling was run with 10,000 iterations and
5000 iterations were discarded as burn-in. We also computed the maximum R̂ from
MCMC samples for 20 datasets in the leave-one-out cross-validation. The maximum
values of 20 R̂s for each regression coefficients were lower than 1.01 (see Table S.2 in
the supplementary material.). Thus, we considered the MCMC chains are converged.

The mean values of cross-validation, CV, are summarized in Table 10. From
Table 10, the value of CV for BHH is smaller than that for BH. BHNEG gives the
smallest value of CV, but gives the largest value of standard deviation. On the other
hand, BHH gives the smallest value of standard deviation and the second largest value
of CV.

Table 11 shows the regression coefficients and its 95% credible intervals estimated
by all 20 samples. The mean of estimated regression coefficients and 95% credible
intervals are also described in Fig. 1. FromFig. 1, we observe that the range of the cred-
ible intervals of BH tends to be larger than ones of BHH and BHNEG. From Table 11
and Fig. 1, the regression coefficients of BHH and BHNEG for “base saturation”,
“sum cations”, “CEC buffer”, “calcium”, and “potassium” are negative. Therefore,
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Table 10 Results for the
Appalachian Mountains Soil
Data

BH BHNEG BHH

CV 0.000685 0.000618 0.000652

(sd) (0.000807) (0.000852) (0.000839)

Figures in parentheses give the estimated standard deviation

Fig. 1 95% credible intervals of estimated regression coefficients

those regression coefficients seem to form a same group, which is supported by the
results in Jang et al. (2015). BHH provides positive coefficients for “phosphorus”,
“copper”, and “exchangeableacidity” and negative for “zinc”, while BHNEG negative
for “exchangeableacidity” and positive for “zinc”. The results by BHH are same as
Jang et al. (2015). From the viewpoint of the range of credible intervals, we observe
that BHNEG is the most stable in three and BHH captures the difference between
variables.

5 Conclusion and discussion

We proposed Bayesian fused lasso modeling with horseshoe prior, and then developed
the Gibbs sampler for the parameters by using a scale mixture of normals and a
hierarchical expression of a half-Cauchy prior. In addition, we extended the method to
the Bayesian nHORSES. Through numerical studies, we showed our proposedmethod
is better than the existing methods in terms of prediction and estimation accuracy.

There are several studies about fused lassomodeling with regression coefficients on
a general graph, which includes the fusion of all possible pairs of coefficients (Wang
et al. (2016); Lee et al. (2021); Banerjee (2022)). Our proposed method can be also
expanded as the model whose parameters exist on a general graph. Let G = (V , E)

be an arbitrary undirected graph, where V is the node set whose elements consists
of indexes of explanatory variables in the design matrix X and E is the edge set that
represents a relationship among the explanatory variables. Based on the graph, we
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consider the following prior on regression coefficients:

π(β | σ 2, τ̃ 2) ∝ (σ 2)−
p
2

p∏

j=1

Laplace

(
β j√
σ 2

∣∣∣∣ λ̃1
)

×
∏

( j,k)∈E

∫
1√

2πλ2j,k τ̃
2σ 2

exp

{
− (β j − βk)

2

2λ2j,k τ̃
2σ 2

}
2

π(1 + λ2j,k)

2

π(1 + τ̃ 2)
dλ2j,k .

By using this prior, we can construct a Bayesian nHORSES with horseshoe prior on
a general graph. The sampling algorithm by MCMC may be built in a similar manner
of the algorithm of Bayesian nHORSES with horseshoe prior.

InBayesian nHORSESwith horseshoe prior, we select the value of global shrinkage
parameter τ̃ 2 by WAIC. It would be interesting to assume any proper prior on τ̃ 2. For
high-dimensional data, our proposed method requires much computational burden.
The reduction of computational time is thus necessary. For example, we might be
able to make the sampling algorithm faster by using the approximation method of the
horseshoe posterior (Johndrow et al., 2020). We leave these topics as future work.
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ADetailed calculation of the formula (6)

The detailed calculation of rewriting (5) as (6) is as follows:

π(β | σ 2) ∝ (σ 2)−
p
2

p∏

j=1

∫
1√
2πτ 2j

exp

(
− β2

j

2σ 2τ 2j

)
λ̃21

2
exp

(
− λ̃21

2
τ 2j

)
dτ 2j
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×
∫ ⎡

⎣
p∏

j=2

∫
1√

2πλ2j τ̃
2σ 2

exp

{
− (β j − β j−1)

2

2λ2j τ̃
2σ 2

}

×
∫
(

1
ν j

) 1
2

	
( 1
2

) (λ2j )
− 3

2 exp

(
− 1

ν jλ
2
j

)
1

	
( 1
2

) (ν j )
− 3

2 exp

(
− 1

ν j

)
dν j dλ2j

⎤

⎥⎥⎦

×
∫

( 1
ξ
)
1
2

	
( 1
2

) (τ̃ 2)−
3
2 exp

(
− 1

ξ τ̃ 2

)
1

	( 12 )
(ξ)−

3
2 exp

(
− 1

ξ

)
dξd τ̃ 2

∝
∫

. . .

∫ p∏

j=1

1√
2πσ 2τ 2j

exp

(
− β2

j

2σ 2τ 2j

) p∏

j=1

λ̃21

2
exp

(
− λ̃21

2
τ 2j

)

×
p∏

j=2

1√
2πλ2j τ̃

2σ 2
exp

{
− (β j − β j−1)

2

2λ2j τ̃
2σ 2

} p∏

j=2

( 1
ν j

)
1
2

	( 12 )
(λ2j )

− 3
2 exp

(
− 1

ν jλ
2
j

)

× ( 1
ξ
)
1
2

	( 12 )
(τ̃ 2)−

3
2 exp(− 1

ξ τ̃ 2
)

1

	( 12 )
(ξ)−

3
2 exp

(
− 1

ξ

) p∏

j=2

1

	( 12 )
(ν j )

− 3
2 exp

(
− 1

ν j

)

×d τ̃ 2dξ

p∏

j=1

dτ 2j

p∏

j=2

dλ2j

p∏

j=2

dν j

∝
∫

. . .

∫
(σ 2)−

2p−1
2 (τ̃ 2)−

p−1
2 π(τ̃ 2 | ξ)π(ξ)

p∏

j=1

(τ 2j )
− 1

2

p∏

j=2

(λ2j )
− 1

2 exp

(
− 1

2σ 2 βT B−1β

)

×
p∏

j=1

π(τ 2j )

p∏

j=2

π(λ2j | ν j )

p∏

j=2

π(ν j )d τ̃ 2dξ

p∏

j=1

dτ 2j

p∏

j=2

dλ2j

p∏

j=2

dν j .
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