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Abstract
It is now 62 years since the publication of James and Stein’s seminal article on the
estimation of a multivariate normal mean vector. The paper made a spectacular first
impression on the statistical community through its demonstration of inadmissability
of the maximum likelihood estimator. It continues to be influential, but not for the
initial reasons. Empirical Bayes shrinkage estimation, now a major topic, found its
early justification in the James–Stein formula. Less obvious downstream topics include
Tweedie’s formula and Benjamini and Hochberg’s false discovery rate algorithm. This
is a short and mainly non-technical review of the James–Stein rule and its effects on
the machine learning era of statistical innovation.

Keywords Empirical bayes · Shrinkage · Tweedie’s formula · Benjamini–Hochberg
algorithm

1 Introduction

By and large, the statistics world is one of heuristics, approximations, and asymp-
totics. The James–Stein estimator arrived in that world in 1961 on a note of startling
specificity: unseen parameters μ1, μ2, . . . , μn produce independent observations

xi
ind∼ N (μi , 1), i = 1, . . . , n, (1)

n ≥ 3. The James–Stein rule in its simplest form proposed estimating the μi by

μ̂JS
i =

(
1 − n − 2

S

)
xi

(
S =

n∑
i=1

x2i

)
. (2)
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Formula (2) looked implausible: the estimate of μi depended on the other obser-
vations x j , j �= i (through S), as well as xi , despite the independence assumption.
Nevertheless, James and Stein showed that Rule (2) always beat the obviousmaximum
likelihood estimates

μ̂ML
i = x̄i (i = 1, . . . , n) (3)

in terms of total expected squared error

E

{
n∑

i=1

(
μ̂i − μi

)2}
. (4)

That “always” was the shocking part: two centuries of statistical theory, ANOVA,
regression, multivariate analysis, etc., depended on maximum likelihood estimation.
Did everything have to be rethought?

One path forward involved Bayesian thinking. If we assumed that theμi themselves
came from a normal distribution,

μi
ind∼ N (0, A) for i = 1, . . . , n, (5)

with variance A ≥ 0, the Bayes estimates would be

μ̂
Bayes
i = Bxi (B = A/(A + 1)) . (6)

We don’t know A or B but

B̂ = 1 − (n − 2)/S (7)

is B’s unbiased estimate: we can rewrite (2) as

μ̂JS
i = B̂xi , (8)

which at least looks more plausible.
In the language introduced by Robbins (1956), formula (8) is an empirical Bayes

estimator, another shocking post-war statistical innovation. Carl Morris and I wrote
a series of papers in the 1970s exploring Bayesian roots of the James–Stein estima-
tor (Efron and Morris, 1973). Something is lost in the empirical Bayes formulation,
namely the frequentist “always” of expected square error minimization, but a lot is
gained in flexibility and scope, as discussed in Sect. 2.

Figure 1illustrates an example of simultaneous estimation pursued in Sect. 2.1 of
Efron (2010). A microarray study has compared expression levels between prostate
cancer patients and control subjects for n = 6033 genes. For each gene, a statistic xi
has been calculated (essentially a “z-value”),

xi ∼ N (μi , 1), i = 1, . . . , n, (9)
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Fig. 1 Prostate data: 6033 x values; mean 0.003, sd = 1.135; curve is proportional to a N (0, 1) density

where μi measures the difference between cancer and control group levels.
The solid curve in Fig. 1 is a N (0, 1) density scaled to have the same area as the

histogram of the 6033 x values. A bad result from the researchers’ point of viewwould
be a perfect fit of curve to histogram, which would imply all the genes have μi = 0,
the “null” value of no difference between cancer patients and controls.

That’s not what happened: the histogram has mildly heavy tails in both directions.
The researchers were hoping to find genes with large values of ‖μi‖—ones that might
be a clue to prostate cancer etiology—as suggested by the heavy tails. How encouraged
should they be?

Not very, according to the James–Stein rule. The 6033 xi values have mean 0.003,
which I’ll take to be zero, and empirical variance

σ̂ 2 = 1.289. (10)

The James–Stein estimate (2) is

μ̂JS
i =

(
1 − n − 2

n − 1

1

σ̂ 2

)
xi

= 0.224 · xi ,
(11)

so even xi = 5 yields an estimate barely exceeding 1. Section2 suggests a more
optimistic analysis.
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2 Tweedie’s formula

The impressive precision of the James–Stein theorem came at a cost in generality.
Efforts to extend the theorem, say to Poisson rather than normal observations, or to
measures of loss other than total squared error, gave encouraging asymptotic results
but not the James–Stein kind of finite sample frequentist dominance.

Better progress was possible on the empirical Bayes side of the street. Tweedie’s
formula (Efron, 2011) has been particularly useful. We wish to calculate Bayesian
estimates

μ
Bayes
i = E{μi | xi }, i = 1, . . . , n, (12)

in the normal sampling model (1), starting from a given (possibly non-normal) prior
π(μ), applying to all n cases. Let f (x) be the marginal density

f (x) =
∫
R

π(μ)φ(x − μ) dμ, (13)

with φ the standardN (0, 1) density andR the range of μ. (It isn’t necessary for π(·)
to be a continuous distribution but it simplifies notation.)

Tweedie’s formula provides an elegant statement for μ
Bayes
i , the posterior expecta-

tion of μi given xi ,

μ
Bayes
i = E{μi | xi } = xi + l ′(xi )

with l ′(xi ) = d

dx
log ( f (xi )) .

(14)

In the empirical Bayes situation (1), where the prior π(·) is unknown, we can use the
observed data x1, . . . , xn to estimate the marginal density f (x), say by f̂ (x), giving
empirical Bayes estimates

μ̂i = xi + l̂ ′(xi ). (15)

The Bayes estimate (14) can be thought of as theMLE xi plus a Bayesian correction
term l ′(xi ). When the prior π(μ) is the N (0, A) distribution (5), μ

Bayes
i equals Bxi

(6). Simple formulas for μ
Bayes
i give out for most other choices of π(μ) but now, in

the machine learning era1 of statistical research, numerical methods provide useful
ways forward, as discussed next.

The log polynomial class2 of marginal densities defines f (x) by

log
(
fβ(x)

) = β0 + β�c(x). (16)

1 Where algorithms can substitute for theorems.
2 For general use, a natural spline basis is preferable to polynomials, to control the behavior of logπ(μ) at
the extremes.
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Fig. 2 Prostate data: Tweedie’s estimate of E{μ | x}, 5 degrees of freedom; dashed curve is James–Stein
estimate

Here

c(x) = (x, x2, . . . , x J )�

and β = (β1, . . . , βJ )
�,

(17)

withβ0 chosen tomake fβ(x) integrate to 1. The choice J = 2 gives normalmarginals;
larger values of J allow for marginal non-normality.

The choice J = 5 was applied to the prostate cancer data of Fig. 1: Tweedie’s
formula (14) gave μ̂(x) = E{μ | x}, graphed as the solid curve in Fig. 2 . It differs
markedly from the James–Stein estimate J = 2, the dashed line.At x = 4 for example,
the J = 5 estimate is3

E{μ | x = 4} = 2.555 (18)

compared to 0.901 for the James–Stein estimate.
The estimated curve E{μ | x} is empirical Bayes in the same sense as (8): the

parameter vector β was selected by maximum likelihood, as discussed next. With
J = 5, the prior was able to adapt to the “fishing expedition” nature of suchmicroarray
studies, where we expect most of the genes to be null or close to null, with μi nearly
zero (corresponding here to the flat part of the curve for x between −2 and 2) and,
hopefully, a small proportion of interestingly large μi s.

3 With an estimated bootstrap standard error of 0.192.
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The sample size n = 6033 has much to do with Fig. 2. James and Stein (1961) was
usually considered in terms of small samples, perhaps n ≤ 20, for which there would
be little hope of seeing the detail in Fig. 2. The term “machine learning era” seems less
fanciful when considering the scale of problems statisticians are now asked to deal
with, as well as the tools they use to solve them.

It looks like it might be hard work computing Fig. 2 but it’s not. The histogram in
Fig. 1 has 97 bins, with centerpoints

v = (−4.4,−4.3, . . . , 5.1, 5.2). (19)

Let y j be the count in bin j , that is, the number of the 6033 xi values falling into it,
with the vector of counts being

y = (y1, . . . , y97). (20)

Then the single R command

l̂ = log
(
glm ( y ∼ poly(v, 5), poisson) $ fit

)
(21)

provides a close approximation to the MLE of log f (x) in (14); numerical differenti-
ation of l̂ gives Tweedie’s estimate. Section 3.4 of Efron (2023) shows why Poisson
regression (21) is appropriate here.

The James–Stein theorem depends on the independence assumption in (1), unlikely
to be true in the microarray study, but the estimates (2) have a certain marginal validity
even under dependence. This is clearer from the empirical Bayes point of view. The
Tweedie estimate xi + l̂ ′(xi ) requires only that l̂ ′(x) be close to l ′(x), not that it be
estimated from independent xi s.4

3 Shrinkage estimators

James and Stein’s paper aroused excited interest in the statistics community when
it arrived in 1961. Most of the excitement focused on the strict inadmissibility of
the traditional maximum likelihood estimate demonstrated by the James–Stein rule.
Other rules dominating the MLE were discovered, for instance the Bayes estimator of
Strawderman (1971), that was itself admissiblewhile rendering theMLE inadmissible.

Big new ideas can take a while to make their true impact felt. The James–Stein rule
had an influential side effect on subsequent theory and practice in that it demonstrated,
in an inarguable way, the virtues of shrinkage estimation: given an ensemble of prob-
lems, individual estimates are shrunk toward a central point; that is, a deliberate bias
is introduced, pulling estimates away from their MLEs for the sake of better group
performances.

Admissibility and inadmissibility aren’t much in the air these days, while shrinkage
estimation has gone on to play a major role in modern practice. A spectacular success

4 The accuracy of the Tweedie estimate does suffer under dependence, so the previously quoted bootstrap
standard error is likely to be optimistic.
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Fig. 3 Empirical Bayes conditional density of μ given μ not zero; Pr{μ = 0} equals 0.825

story is the lasso (Tibshirani, 1996). Lasso shrinkage is extreme, pulling some (often
most) of the coefficient estimates all the way back to zero.

Bayes and empirical Bayes rules tend to be strong shrinkers. Tweedie’s estimate in
Fig. 2 (J = 5) shrinks the estimate of E{μ | x = 4} from its MLE value 4 down to
2.555. For μ between −1 and 1, the shrinkage is almost all the way to zero.

The reader may have been surprised to see that neither Tweedie’s formula (14) for
E{μi | xi } nor its empirical version (15) require estimation of the prior π(μ). This is
a special property of the posterior expectation E{μi | xi } and isn’t available for say
Pr{μi ≥ 2 | xi }, or most other Bayesian targets.

“Bayesian deconvolution” (Efron, 2016) uses low-dimensional parametric model-
ing of π(μ) for general empirical Bayes computations. It was applied to finding a prior
density π(μ) that would give the distribution of x seen in Fig. 1, assuming the normal
sampling model (1). The deconvolution model for π(μ) used a delta function atμ = 0
(for the “null” genes) and a natural spline function with four degrees of freedom for
the non-null cases.

The estimated prior5 π̂(μ) is shown in Fig. 3 ; it put probability 0.825 on μ =
0, while the conditional distribution given μ �= 0 was a moderately heavy-tailed
version ofN (0, 1.332). Based on π̂(μ)we can form estimates of any Bayesian target,
for instance P̂r{μi ≥ 2 | xi = 4} = 0.80. Figure3 is a direct descendent of the
James–Stein rule, now 60-plus years on.

5 Estimated using the CRAN package deconvolveR (Narasimhan and Efron, 2020).
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A less-direct descendent, but still on the family tree, arrived in 1995. The false
discovery rate paper by Benjamini and Hochberg concerned simultaneous hypothesis
testing. Looking at Fig. 1, which of the n = 6033 genes can confidently be labeled as
non-null, that is as having μi �= 0?

Suppose for convenience that the xi s are ordered from smallest to largest. The
right-sided significance level for testing μi = 0 is

S0(xi ) = 1 − �(xi ), (22)

where � is the standard normal cumulative distribution function. Of the 6033 genes,
401 had Si ≤ 0.05, the usual rejection level for individual testing, but even if actually
all of the genes were null we would expect 302 such rejections, so individual testing
can’t be right. Benjamini and Hochberg proposed a novel simultaneous testing rule
that safely controls the number of “false discoveries” — genes falsely labeled ”non-
null” — while not being discouragingly strict. (My summary here won’t give the BH
rule its full due; see Chapter 4 of Efron (2010) for a more complete description.)

Let Ŝ(x) be the observed proportion of xi s exceeding value x , and define

F̂dr(x) = π0S0(x)/Ŝ(x), (23)

where π0 is the proportion of null genes among all n.6 For a fixed control level α,
such as α = 0.1, the BH rule says to reject the null hypothesis μi = 0 for those genes
having

F̂dr(xi ) ≤ α. (24)

The Benjamini–Hochberg theorem states that under independence assumptions like
(1), the expected proportion of false discoveries by rule (24) is α.

Figure 4 shows F̂dr for the prostate cancer data and also for the left-sided Fdr
estimate, where significance is defined by S0(xi ) = �(xi ) rather than (22). I applied
the BH rule with α = 0.1 which labeled 60 genes as non-null, 32 on the left and 28
on the right. The BH theorem says that we can expect 6 of the 60 to actually be null.

The fdr story has evolved very much along the lines of its James–Stein predecessor.
Intense initial interest focused on the exact frequentist control of false discovery rates.
The Bayes and empirical Bayes implications came later: as at (5), we assume that each
xi is a realization of a random variable x given by

μ ∼ π(μ) and x | μ ∼ p(x | μ), (25)

where p(x | μ) is a known probability kernel which I’ll take here to be the normal
sampling model (1). Then if S(x) is 1 minus the cdf of the marginal density (13),
Bayes rule gives

Pr{μ = 0 | x} = π0S0(x)/S(x). (26)

6 π0 can be estimated but in practice it is usually replaced by its upper bound 1 in applying rule (24). For
cases like the prostate data where most of the genes are null, this doesn’t much affect the outcome.
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Fig. 4 Prostate data: left Fdr and right Fdr; dashes show 60 genes with Fdr < 0.1

Comparing (26) with (23) says that the BH rule amounts to labeling case i as non-
null if its obvious empirical Bayes estimate of nullness is less than α. This is less
precise than the frequentist control theorem but, as with the James–Stein estimator, is
more robust in not demanding independence among the xi s. The family resemblance
between JS and BH is through shrinkage: in the BH case the shrinkage of significance
levels. For instance, xi = 3 has individual significance level 0.001 against nullness,
whereas F̂dr = 0.164 for the prostate data, i.e, still with about a 1/6 chance of gene i
being null.

So what doesmachine learning have to dowith the James–Stein estimator? Nothing
to its birth but, as the articles in this volume show, a great deal to its downstream effects
on statistical theory and practice. Charles Stein, who was a good applied statistician
when he put his mind to it, might have enjoyed these developments, but maybe not;
his heart was always with the mathematics.

Funding No funds, grants, or other support was received.

Declarations

Conflict of interest The author has no relevant financial or non-financial interests to disclose.

123



Japanese Journal of Statistics and Data Science

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful
approach to multiple testing. Journal of the Royal Statistical Society Series B, 57(1), 289–300.

Efron, B. (2010). Large-scale inference: Empirical Bayes methods for estimation, testing, and prediction
(Vol. 1). Cambridge: Cambridge University Press.

Efron, B. (2011). Tweedie’s formula and selection bias. Journal of the American Statistical Association,
106(496), 1602–1614. https://doi.org/10.1198/jasa.2011.tm11181

Efron, B. (2016). Empirical Bayes deconvolution estimates. Biometrika, 103(1), 1–20. https://doi.org/10.
1093/biomet/asv068

Efron, B. (2023). Exponential Families in Theory and Practice. Cambridge: Cambridge University Press.
Efron, B., & Morris, C. (1973). Stein’s estimation rule and its competitors—An empirical Bayes approach.

Journal of the American Statistical Association, 68, 117–130.
James, W., & Stein, C. (1961). Estimation with quadratic loss. In Proc. 4th Berkeley Sympos. Math. Statist.

and Prob. (Vol. I, pp. 361–379). Berkeley: University of California Press.
Narasimhan,B.,&Efron,B. (2020). deconvolveR:AG-ModelingProgram forDeconvolution andEmpirical

Bayes Estimation. Journal of Statistical Software, 94(11), 1–20. https://doi.org/10.18637/jss.v094.i11
Robbins, H. (1956). An empirical Bayes approach to statistics. In Proc. 3rd Berkeley Sympos. Math. Statist.

and Prob. (Vol. I, pp. 157–163). Berkeley: University of California Press.
Strawderman, W. E. (1971). Proper Bayes minimax estimators of the multivariate normal mean. Annals of

Mathematical Statistics, 42(1), 385–388. https://doi.org/10.1214/aoms/1177693528
Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical

Society Series B, 58(1), 267–288.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1198/jasa.2011.tm11181
https://doi.org/10.1093/biomet/asv068
https://doi.org/10.1093/biomet/asv068
https://doi.org/10.18637/jss.v094.i11
https://doi.org/10.1214/aoms/1177693528

	Machine learning and the James–Stein estimator
	Abstract
	1 Introduction
	2 Tweedie's formula
	3 Shrinkage estimators
	References


